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Indistinguishability

Distinguish:

1 Indistinguishability in a mathematical structure

= Indistinguishability of objects by some or all of the means available
the structure

Usually an equivalence relation

Examples:
Topological indistinguishability = having the same neighborhoods
Indistinguishability of strings by a language L: x ≡L y iff

(∀z ∈ Σ∗)(xz ∈ L ⇔ yz ∈ L)

Isomorphic objects in a category, Leibniz identity, . . .

2 Indistinguishability as a phenomenon regarding perception (by humans
or other agents, possibly equipped by some instruments)

3 Mathematical modeling of the latter (maps of the territory) = this talk
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Pre-theoretical properties of indistinguishability

Observe:
Indistinguishability can regard all or only some aspects of objects
(position, size, color, . . . )
Indistinguishability depends on the means employed
(naked eye, telescope, microscope, . . . )

⇒ There is no single relation of indistinguishability, but rather many
= a kind of relations (like, eg, orderings)

Indistinguishability relations are
Reflexive, x ∼ x
Symmetric, x ∼ y → y ∼ x
Transitive, x ∼ y ∼ z → x ∼ z . . . or are they?
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The Poincaré paradox

H. Poincaré (1902):
Indistinguishability relations should intuitively be transitive, but in a
sufficiently long sequence of pairwise-indistinguishable objects,

x0 ∼ x1 ∼ x2 ∼ · · · ∼ xN−1 ∼ xN ,

x1 and xN can well be distinguishable

⇒ Modeling indistinguishabilities as either
equivalence relations (reflexive, symmetric, transitive) or
proximity relations (reflexive, symmetric, but not necessarily transitive)

each addresses just one horn of the dilemma presented by the paradox
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Another pre-theoretical property of indistinguishability

Observe:
Indistinguishability is, generally, a graded notion:

Some pairs of objects can be distinguished more easily than others

Full indistinguishability is the limit of increasingly difficult
distinguishability (note: indistinguishability is a negative notion)

sssssssss
⇒ Adequate models of indistinguishability should take its gradedness
into account

Libor Běhounek (Ostrava) A Vopěnka-style principle for fuzzy math. Czech Gathering 2022 5 / 22



Graded models of indistinguishability

Graded indistinguishability (or increasingly difficult distinguishability) can
be mathematically modeled in several ways:

(a) R =
⋂

d∈D Rd for a directed set D
(where the elements of D represent, eg, distinction-difficulty levels,
sharpness of the view, or instruments used for discrimination)

(b) Binary real-valued functions (eg, metrics, pseudometrics, . . . ),
representing the ‘distance’ of objects as regards their distinguishability
d : A2 → [0,+∞]

Note: the reflexivity and symmetry of indistinguishability then
correspond to the conditions d(x , x) = 0 and d(x , y) = d(y , x)

(c) Dually to the latter (and slightly more generally), fuzzy relations
R : A2 → L (for suitable structures of degrees L)

satisfying appropriate conditions
(of fuzzy reflexivity, symmetry, and transitivity)
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Fuzzy indistinguishability relations

Some merits of fuzzy relations as models of indistinguishability:
They are fuzzily transitive (in fact, are fuzzy equivalences), but still
avoid the Poincaré paradox
They can be handled in first-order fuzzy logic similarly to classical
equivalence relations
When formalized in fuzzy logic, they admit more general degrees of
indistinguishability besides reals (incl. abstract non-numerical degrees,
hyperreal degrees, non-linearly ordered degrees, etc)
Formalized in fuzzy logic, they interpret (graded) binary predicates
⇒ no type-mismatch (“is indistinguishable from” is a binary predicate
rather than a binary function)
They are well and long studied (Zadeh 1971, Valverde 1985, . . . )

Their standard [0,1]-valued models are dual to (pseudo)metrics via
simple functions (1 − x , − log x and such), so option (b) is included
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Fuzzy logics (Łukasiewicz and others)

Axiomatics of Łukasiewicz logic (primitive language: &, →, 0):

(BL1) ((φ→ ψ) → ((ψ → χ) → (φ→ χ)))

(BL4) (φ& (φ→ ψ)) → (ψ & (ψ → φ))

(BL5a) (φ→ (ψ → χ)) → ((φ& ψ) → χ)

(BL5b) ((φ& ψ) → χ) → (φ→ (ψ → χ))

(BL6) ((φ→ ψ) → χ) → (((ψ → φ) → χ) → χ)

(BL7) 0 → φ

(Ł) ((φ→ 0) → 0) → φ

(MP) φ, φ→ ψ / ψ

Defined connectives:

¬φ ≡df φ→ 0 1 ≡df ¬0

φ⊕ ψ ≡df ¬(¬φ& ¬ψ) φ↔ ψ ≡df (φ→ ψ) ∧ (ψ → φ)

φ ∧ ψ ≡df φ& (φ→ ψ) φ ∨ ψ ≡df ((φ→ ψ) → ψ) ∧ ((ψ → φ) → φ)
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Łukasiewicz fuzzy logic

Standard semantics on [0, 1]:

∥φ& ψ∥ = max(0, ∥φ∥+ ∥ψ∥ − 1) ∥φ ∧ ψ∥ = min(∥φ∥ , ∥ψ∥)
∥φ⊕ ψ∥ = min(1, ∥φ∥+ ∥ψ∥) ∥φ ∨ ψ∥ = max(∥φ∥ , ∥ψ∥)
∥φ→ ψ∥ = min(1, 1 − ∥φ∥+ ∥ψ∥) ∥φ↔ ψ∥ = 1 −

∣∣∥φ∥ − ∥ψ∥
∣∣

∥¬φ∥ = 1 − ∥φ∥

General semantics: MV-algebras (modulo signature)
= involutive divisible semilinear commutative bounded integral

residuated lattices
(eg, Chang’s algebra on {− 1

n | n ∈ N+} ∪ { 1
n | n ∈ N+})

Optional expansion: Ł△ = Ł + the unary connective △

∥△φ∥ = 1 if ∥φ∥ = 1, otherwise 0 (in linear MV△-algebras)
Axiomatized by adding 5 axioms + 1 rule (of necessitation) to Ł
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Further fuzzy logics (of continuous t-norms)

Further fuzzy logics are obtained by changing the standard semantics of:
& to another continuous commutative order-preserving monoidal
operation (a continuous t-norm)
→ to its residuum, x → y =df sup{z | z & x ≤ y}
¬,↔,⊕ accordingly

Prominent examples (besides Ł):

Product fuzzy logic Π:
x & y = x · y
x → y = y/x if x > y , otherwise 1

Gödel fuzzy logic G = intuitionistic + (φ→ ψ) ∨ (ψ → φ):
x & y = min(x , y)
x → y = y if x > y , otherwise 1

Axiomatized by changing the axiom (Ł) appropriately
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First-order fuzzy logics

Semantics: A model M over an L-algebra A:

∥Px1, . . . , xn∥, ∥φ(x1, . . . , xn)∥ : Mn → A
Constants and functions as usual, ∥f (x1, . . . , xn)∥ : Mn → M

∥(∀x)φ(x)∥ =df infa∈M ∥φ∥(a), ∥(∃x)φ(x)∥ =df supa∈M ∥φ∥(a)

M is safe ≡df the inf, sup exist in A for all φ (A need not be lattice-complete)

Axiomatics of all safe L-models:
(models over a single L-algebra A typically not axiomatizable)

(∀1) (∀x)φ(x) → φ(t) (t free for x in φ)
(∃1) φ(t) → (∃x)φ(x) (t free for x in φ)
(∀2) (∀x)(χ→ φ) → (χ→ (∀x)φ) (x not free in χ)
(∃2) (∀x)(φ→ χ) → ((∃x)φ→ χ) (x not free in χ)
(∀3) (∀x)(φ ∨ χ) → (∀x)φ ∨ χ (optional, completness wrt lin L-alg)

(gen) φ / (∀x)φ (∀1)–(∃2)+(gen) = Rasiowa’s axioms)
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Fuzzy indistinguishability relations

Fuzzy indistinguishability =
a binary predicate ∼ in first-order fuzzy logic,
ie, semantically, a binary fuzzy relation R : M2 → A,

satisfying the following conditions:

Condition Axiom Semantics
(∀x)(∀y)(∀z) For all a, b, c ∈ M

Fuzzy reflexivity x∼x Raa = 1
Fuzzy symmetry x∼y ↔ y∼x Rab = Rba

Fuzzy transitivity (x∼y & y∼z) → x∼z Rab &A Rbc ≤ Rac

Optional (indistinguishabilities separating points):
Separation △(x∼y) → x=y Rab = 1 only if a = b
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Fuzzy indistinguishability relations

Examples:

The Euclidean indistinguishability on R: Exy =df max(1 − |x − y |, 0)
(over the standard MV-algebra [0, 1]Ł)

Rxy =df 2−|x−y | (over [0, 1]Π)

All classical (‘crisp’) equivalence relations are fuzzy indistinguishability
relations too

Terminology: Fuzzy indistinguishability relations are also known as
(fuzzy) indistinguishability operators, (fuzzy) similarity relations,
fuzzy equivalences, or fuzzy equalities

Classical references:

L. Zadeh: Similarity relations and fuzzy orderings. Inf Sci 1971

L. Valverde: On the structure of F -indistinguishability operators. FSS 1985

J. Recasens: Indistinguishability Operators. Springer 2010
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Overcoming the Poincaré paradox

Fuzzy indistinguishability relations are fuzzy transitive (Rxy & Ryz ≤ Rxz),
but in most fuzzy logics (except G), & is not idempotent

(eg, .99 & .99 = .98 in [0, 1]Ł)

⇒ ∥x0 ∼ xi∥ can decrease along the Poincaré sequence

x0 ∼ x1 ∼ x2 ∼ · · · ∼ xN−1 ∼ xN ,

even if ∥xi ∼ xi+1∥ > 1 − ε for all i and a very small value ε > 0
(ie, even if the neighboring elements are practically indistinguishable)

⇒ For sufficiently large N, the guaranteed value ∥x0 ∼ xN∥ gets very small
(eg, ∥x0 ∼ xN∥ = 0 for N ≥ 1/ε in [0, 1]Ł)

xi : x0 ∼ x1 ∼ x2 ∼ x3 ∼ . . . ∼ x99 ∼ x100

∥xi ∼ xi+1∥ = .99 .99 .99 .99 .99 .99
∥x0 ∼ xi∥ ≥ 1 .99 .98 .97 . . . .01 0
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Duality to (pseudo)metrics

Fuzzy indistinguishability relations valued in the standard algebras of a
broad class of t-norm fuzzy logics are dual to (pseudo)metrics:

(Valverde 1985)

If R is a fuzzy indistinguishability valued in
[0, 1]Π, then d(x , y) = − log(Rxy) is an (extended) pseudometric
[0, 1]Ł, then d(x , y) = 1 − Rxy is a bounded pseudometric
[0, 1]G, then d(x , y) = 1 − Rxy is a bounded pseudoultrametric

(d(x , z) ≤ max(d(x , y), d(y , z)))

(In all of these cases, d is a metric if R is separated)

The distance measures dissimilarity (so, distinguishability) of the objects
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Duality to (pseudo)metrics

Vice versa, (pseudo)metrics give rise to fuzzy indistinguishability relations,
namely, Rxy = e−d(x ,y) over [0, 1]Π and Rxy = 1 − d(x , y) over [0, 1]Ł,G

This correspondence can be generalized to a broad class of continuous
t-norms (Archimedean = with no idempotent elements) by means of their
additive generators (ie, functions f such that x & y = f (−1)(f (x) + f (y))):

R generates dR(x , y) = f (Rxy) and d generates Rdxy = f (−1)(d(x , y))

⇒ Metric notions are applicable to fuzzy indistinguishability
eg, betweenness and one-dimensionality (Boixader–Jacas–Recasens 2017)
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Another principle for perception-based indistinguishability

Arguably, perception-based indistinguishability satisfies another property,
caused by the physical agents’ limited ability of discernment:

One can never distinguish all elements of an infinite set from each other

Formally: ¬Fin(X ) → (∃x , y ∈ X )(x ̸= y & x ∼ y)

Trivial in classical logic (equivalences with only finitely many equivalence
classes), but less so for a fuzzy indistinguishability R on M:

If A ⊆ M is infinite, then
∨

a,b∈A
a ̸=b

Rab = 1

Corresponds to the precompactness (ie, total boundedness) of the
corresponding pseudometric
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Relation to Vopěnka’s treatment of infinity in AST

In his Alternative Set Theory (AST), Vopěnka equates infinity with
unsurveyability:

In his approach, finite sets are those in which we can clearly discern all of
their elements

“[Finite sets] can be construed as having the multitude of their
elements present before the horizon that limits the clarity of the
view.” (Vopěnka 1989, p. 138)

A set is considered infinite by Vopěnka iff some of its elements are not
clearly distinguishable

⇒ Vopěnka’s conception of infinity involves a kind of unavoidable
indiscernibility between some elements
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Infinity as indiscernibility

AST (which uses classical logic) treats the notions of infinity and
indistinguishability in specific ways (left aside here):

Infinity by means of semisets = proper subclasses of sets
Indistinguishability along the lines of R =

⋂
d∈D Rd mentioned earlier
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Precompact fuzzy indistinguishability relations

Observe:

If R is a precompact fuzzy indistinguishability on M and A ⊆ M an infinite
set, then for all α < 1 there are a, b ∈ A such that Rab > α

⇒ In every infinite set, there can only be finitely many (nα) elements
indistinguishable from each other at most to degree α (ie, distinguishable
at least to degree ε = 1−α), for each α < 1 (nα can increase with α↗ 1)

Example: The Euclidean indistinguishability is not precompact on R
(although it is precompact on bounded intervals)

Rather, α-cuts (for α < 1) of a precompact indistinguishability relation
on R must equate all elements in some half-bounded intervals

(α-cut Rα = {⟨x , y⟩ | Rxy ≥ α})
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Existence of fuzzy minima

The precompactness of a fuzzy indistinguishability relation brings about
many properties analogous to those of compact metric spaces (closedness
is often non-essential under fuzzification)

Theorem (cf B., 2016): In an ordering fuzzified by a compatible precompact
fuzzy indistinguishability relation, every fuzzy set has a non-empty fuzzy
minimum

R is compatible with an ordering ≤ on A ≡df
a ≤ b ≤ c implies Rab ≥ Rac and Rbc ≥ Rac , for all a, b, c ∈ A

S fuzzifies ≤ by a fuzzy relation R ≡df Sab = (a ≤ b) ∨ Rab

Fuzzy minimum of a fuzzy set A in a fuzzy ordering S :
(MinS A)a =df Aa ∧

∧
b(Ab →A Sab)
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An application: The non-triviality of fuzzy counterfactuals

The existence of fuzzy minima can be used in the recently proposed fuzzy
semantics for counterfactuals (B.–Majer, Synthese 2021):

Lewis’ Analysis 2: A □→ B is true in a possible world w if all A-worlds
most similar to w are C -worlds (classically relies on the implausible Limit
Assumption that there are closest A-worlds ⇒ rejected)

Fuzzifying the similarity ordering of possible worlds (acknowledging its
vagueness) by a precompact fuzzy indistinguishability on the distances of
possible worlds from the actual world (precompact, since our ability to
discern distances of worlds is not infinite ⇒ a natural assumption),
we can show that the fuzzified semantics of A □→ C can retain Lewis’
(simpler and intuitive) Analysis 2 (all of the closest A-worlds are C -worlds)
without the implausible Limit Assumptions
(In particular, precompactness guarantees the existence of minimal
A-worlds to non-zero degrees by the previous theorem)
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