A Vopěnka-style principle for fuzzy mathematics

Libor Běhounek

University of Ostrava

Czech Gathering of Logicians 2022

Indistinguishability

Distinguish:

Indistinguishability in a mathematical structure

= Indistinguishability of objects by some or all of the means available the structure

Usually an equivalence relation

Examples:

- Topological indistinguishability = having the same neighborhoods
- Indistinguishability of strings by a language $L: x \equiv_L y$ iff
 - $(\forall z \in \Sigma^*)(xz \in L \Leftrightarrow yz \in L)$
- Isomorphic objects in a category, Leibniz identity, ...
- Indistinguishability as a phenomenon regarding perception (by humans or other agents, possibly equipped by some instruments)
- Solution Mathematical modeling of the latter (maps of the territory) = this talk

Pre-theoretical properties of indistinguishability

Observe:

- Indistinguishability can regard all or only some aspects of objects (position, size, color, ...)
- Indistinguishability depends on the means employed (naked eye, telescope, microscope, ...)
- \Rightarrow There is no single relation of indistinguishability, but rather many = a *kind* of relations (like, eg, orderings)
 - Indistinguishability relations are
 - Reflexive, $x \sim x$
 - Symmetric, $x \sim y \rightarrow y \sim x$
 - Transitive, $x \sim y \sim z \rightarrow x \sim z$... or are they?

The Poincaré paradox

H. Poincaré (1902):

Indistinguishability relations should intuitively be transitive, but in a sufficiently long sequence of pairwise-indistinguishable objects,

$$x_0 \sim x_1 \sim x_2 \sim \cdots \sim x_{N-1} \sim x_N$$

 x_1 and x_N can well be distinguishable

 \Rightarrow Modeling indistinguishabilities as either

• equivalence relations (reflexive, symmetric, transitive) or

• proximity relations (reflexive, symmetric, but not necessarily transitive) each addresses just one horn of the dilemma presented by the paradox

Another pre-theoretical property of indistinguishability

Observe:

• Indistinguishability is, generally, a graded notion:

Some pairs of objects can be distinguished more easily than others

Full indistinguishability is the limit of increasingly difficult distinguishability (note: indistinguishability is a negative notion)

 \Rightarrow Adequate models of indistinguishability should take its gradedness into account

Graded models of indistinguishability

Graded indistinguishability (or increasingly difficult distinguishability) can be mathematically modeled in several ways:

- (a) $R = \bigcap_{d \in D} R_d$ for a directed set D(where the elements of D represent, eg, distinction-difficulty levels, sharpness of the view, or instruments used for discrimination)
- (b) Binary real-valued functions (eg, metrics, pseudometrics, ...), representing the 'distance' of objects as regards their distinguishability $d: A^2 \rightarrow [0, +\infty]$

Note: the reflexivity and symmetry of indistinguishability then correspond to the conditions d(x, x) = 0 and d(x, y) = d(y, x)

(c) Dually to the latter (and slightly more generally), fuzzy relations $R: A^2 \rightarrow L$ (for suitable structures of degrees L) satisfying appropriate conditions (of fuzzy reflexivity, symmetry, and transitivity)

Fuzzy indistinguishability relations

Some merits of fuzzy relations as models of indistinguishability:

- They are fuzzily transitive (in fact, are fuzzy equivalences), but still avoid the Poincaré paradox
- They can be handled in first-order fuzzy logic similarly to classical equivalence relations
- When formalized in fuzzy logic, they admit more general degrees of indistinguishability besides reals (incl. abstract non-numerical degrees, hyperreal degrees, non-linearly ordered degrees, etc)
- Formalized in fuzzy logic, they interpret (graded) binary *predicates* ⇒ no type-mismatch ("is indistinguishable from" is a binary predicate
 rather than a binary function)
- They are well and long studied (Zadeh 1971, Valverde 1985, ...)
- Their standard [0,1]-valued models are dual to (pseudo)metrics via simple functions (1 - x, -log x and such), so option (b) is included

Fuzzy logics (Łukasiewicz and others)

Axiomatics of Łukasiewicz logic (primitive language: &, \rightarrow , 0):

Defined connectives:

 $\begin{array}{ll} \neg \varphi \equiv_{df} \varphi \to 0 & 1 \equiv_{df} \neg 0 \\ \varphi \oplus \psi \equiv_{df} \neg (\neg \varphi \And \neg \psi) & \varphi \leftrightarrow \psi \equiv_{df} (\varphi \to \psi) \land (\psi \to \varphi) \\ \varphi \land \psi \equiv_{df} \varphi \And (\varphi \to \psi) & \varphi \lor \psi \equiv_{df} ((\varphi \to \psi) \to \psi) \land ((\psi \to \varphi) \to \varphi) \end{array}$

Libor Běhounek (Ostrava) A Vopěnka-style principle for fuzzy math. Czech Gathering 2022 8/22

Łukasiewicz fuzzy logic

Standard semantics on [0, 1]:

$$\begin{split} \|\varphi \& \psi\| &= \max(0, \|\varphi\| + \|\psi\| - 1) & \|\varphi \wedge \psi\| = \min(\|\varphi\|, \|\psi\|) \\ \|\varphi \oplus \psi\| &= \min(1, \|\varphi\| + \|\psi\|) & \|\varphi \vee \psi\| = \max(\|\varphi\|, \|\psi\|) \\ \|\varphi \rightarrow \psi\| &= \min(1, 1 - \|\varphi\| + \|\psi\|) & \|\varphi \leftrightarrow \psi\| = 1 - \left|\|\varphi\| - \|\psi\|\right| \\ \|\neg \varphi\| &= 1 - \|\varphi\| \end{split}$$

General semantics: MV-algebras (modulo signature) = involutive divisible semilinear commutative bounded integral residuated lattices

(eg, Chang's algebra on $\{-\frac{1}{n} \mid n \in \mathbb{N}^+\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}^+\}$)

Optional expansion: $\mathbf{L}_{\triangle} = \mathbf{L} + \mathbf{the}$ unary connective \triangle

- $\| \bigtriangleup \varphi \| = 1$ if $\| \varphi \| = 1$, otherwise 0 (in linear MV_\scale algebras)
- Axiomatized by adding 5 axioms + 1 rule (of necessitation) to Ł

Further fuzzy logics (of continuous t-norms)

Further fuzzy logics are obtained by changing the standard semantics of:

- & to another continuous commutative order-preserving monoidal operation (a continuous t-norm)
- \rightarrow to its residuum, $x \rightarrow y =_{df} \sup\{z \mid z \& x \le y\}$
- $\neg, \leftrightarrow, \oplus$ accordingly

Prominent examples (besides Ł):

• Product fuzzy logic ∏:

•
$$x \& y = x \cdot y$$

- $x \to y = y/x$ if x > y, otherwise 1
- Gödel fuzzy logic G = intuitionistic + $(\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi)$:
 - $x \& y = \min(x, y)$
 - $x \rightarrow y = y$ if x > y, otherwise 1

Axiomatized by changing the axiom (L) appropriately

First-order fuzzy logics

Semantics: A model M over an L-algebra \mathcal{A} :

- $\|Px_1,\ldots,x_n\|, \|\varphi(x_1,\ldots,x_n)\|: M^n \to \mathcal{A}$
- Constants and functions as usual, $\|f(x_1,\ldots,x_n)\| \colon M^n \to M$
- $\|(\forall x)\varphi(x)\| =_{df} \inf_{a \in M} \|\varphi\|(a), \quad \|(\exists x)\varphi(x)\| =_{df} \sup_{a \in M} \|\varphi\|(a)$

M is safe \equiv_{df} the inf, sup exist in \mathcal{A} for all φ (\mathcal{A} need not be lattice-complete)

Axiomatics of all safe *L*-models:

(models over a single L-algebra \mathcal{A} typically not axiomatizable)

$$\begin{array}{ll} (\forall 1) & (\forall x)\varphi(x) \rightarrow \varphi(t) & (t \text{ free for } x \text{ in } \varphi) \\ (\exists 1) & \varphi(t) \rightarrow (\exists x)\varphi(x) & (t \text{ free for } x \text{ in } \varphi) \\ (\forall 2) & (\forall x)(\chi \rightarrow \varphi) \rightarrow (\chi \rightarrow (\forall x)\varphi) & (x \text{ not free in } \chi) \\ (\exists 2) & (\forall x)(\varphi \rightarrow \chi) \rightarrow ((\exists x)\varphi \rightarrow \chi) & (x \text{ not free in } \chi) \\ (\forall 3) & (\forall x)(\varphi \lor \chi) \rightarrow (\forall x)\varphi \lor \chi & (\text{optional, completness wrt lin L-alg}) \\ (\text{gen}) & \varphi / (\forall x)\varphi & (\forall 1)-(\exists 2)+(\text{gen}) = \text{Rasiowa's axioms}) \end{array}$$

Fuzzy indistinguishability relations

Fuzzy indistinguishability =

- \bullet a binary predicate \sim in first-order fuzzy logic,
- ie, semantically, a binary fuzzy relation $R\colon M^2 o \mathcal{A}$,

satisfying the following conditions:

Condition	Axiom	Semantics
	$(\forall x)(\forall y)(\forall z)$	For all $a, b, c \in M$
Fuzzy reflexivity	<i>x</i> ~ <i>x</i>	Raa = 1
Fuzzy symmetry	$x \sim y \leftrightarrow y \sim x$	Rab = Rba
Fuzzy transitivity	$(x \sim y \& y \sim z) \rightarrow x \sim z$	${\sf Rab}\&^{\mathcal A}{\sf Rbc}\leq{\sf Rac}$
Optional (indistinguishabilities separating points):		
Separation	$\triangle(x \sim y) \rightarrow x = y$	Rab = 1 only if $a = b$

Fuzzy indistinguishability relations

Examples:

- The Euclidean indistinguishability on \mathbb{R} : $Exy =_{df} \max(1 |x y|, 0)$ (over the standard MV-algebra $[0, 1]_{L}$)
- $Rxy =_{df} 2^{-|x-y|}$ (over $[0,1]_{\Pi}$)
- All classical ('crisp') equivalence relations are fuzzy indistinguishability relations too
- Terminology: Fuzzy indistinguishability relations are also known as (fuzzy) indistinguishability operators, (fuzzy) similarity relations, fuzzy equivalences, or fuzzy equalities

Classical references:

- L. Zadeh: Similarity relations and fuzzy orderings. Inf Sci 1971
- L. Valverde: On the structure of F-indistinguishability operators. FSS 1985
- J. Recasens: Indistinguishability Operators. Springer 2010

Libor Běhounek (Ostrava) A Vopěnka-style principle for fuzzy math. Czech Gathering 2022 13/22

Overcoming the Poincaré paradox

Fuzzy indistinguishability relations are fuzzy transitive ($Rxy \& Ryz \le Rxz$), but in most fuzzy logics (except G), & is not idempotent (eg, .99 & .99 = .98 in [0, 1]_t)

 $\Rightarrow ||x_0 \sim x_i||$ can decrease along the Poincaré sequence

 $x_0 \sim x_1 \sim x_2 \sim \cdots \sim x_{N-1} \sim x_N,$

even if $||x_i \sim x_{i+1}|| > 1 - \varepsilon$ for all *i* and a very small value $\varepsilon > 0$ (ie, even if the neighboring elements are practically indistinguishable)

⇒ For sufficiently large N, the guaranteed value $||x_0 \sim x_N||$ gets very small (eg, $||x_0 \sim x_N|| = 0$ for $N \ge 1/\varepsilon$ in $[0,1]_{t}$)

Libor Běhounek (Ostrava) A Vopěnka-style principle for fuzzy math. Czech Gathering 2022 14/22

Duality to (pseudo)metrics

Fuzzy indistinguishability relations valued in the standard algebras of a broad class of t-norm fuzzy logics are dual to (pseudo)metrics:

(Valverde 1985)

- If R is a fuzzy indistinguishability valued in
 - $[0,1]_{\Pi}$, then $d(x,y) = -\log(Rxy)$ is an (extended) pseudometric
 - $[0,1]_{L}$, then d(x,y) = 1 Rxy is a bounded pseudometric
 - [0,1]_G, then d(x,y) = 1 Rxy is a bounded pseudoultrametric $(d(x,z) \le \max(d(x,y), d(y,z)))$

(In all of these cases, d is a metric if R is separated)

The distance measures dissimilarity (so, distinguishability) of the objects

Duality to (pseudo)metrics

Vice versa, (pseudo)metrics give rise to fuzzy indistinguishability relations, namely, $Rxy = e^{-d(x,y)}$ over $[0,1]_{\Pi}$ and Rxy = 1 - d(x,y) over $[0,1]_{L,G}$

This correspondence can be generalized to a broad class of continuous t-norms (Archimedean = with no idempotent elements) by means of their additive generators (ie, functions f such that $x \& y = f^{(-1)}(f(x) + f(y))$):

R generates $d_R(x, y) = f(Rxy)$ and d generates $R_d xy = f^{(-1)}(d(x, y))$

⇒ Metric notions are applicable to fuzzy indistinguishability eg, betweenness and one-dimensionality (Boixader–Jacas–Recasens 2017)

Another principle for perception-based indistinguishability

Arguably, perception-based indistinguishability satisfies another property, caused by the physical agents' limited ability of discernment:

One can never distinguish all elements of an infinite set from each other

Formally:
$$\neg \operatorname{Fin}(X) \rightarrow (\exists x, y \in X)(x \neq y \& x \sim y)$$

Trivial in classical logic (equivalences with only finitely many equivalence classes), but less so for a fuzzy indistinguishability R on M:

If
$$A \subseteq M$$
 is infinite, then $\bigvee_{\substack{a,b \in A \\ a \neq b}} Rab = 1$

Corresponds to the precompactness (ie, total boundedness) of the corresponding pseudometric

Relation to Vopěnka's treatment of infinity in AST

In his Alternative Set Theory (AST), Vopěnka equates infinity with unsurveyability:

In his approach, finite sets are those in which we can clearly discern all of their elements

"[Finite sets] can be construed as having the multitude of their elements present before the horizon that limits the clarity of the view." (Vopěnka 1989, p. 138)

A set is considered infinite by Vopěnka iff some of its elements are not clearly distinguishable

 \Rightarrow Vopěnka's conception of infinity involves a kind of unavoidable indiscernibility between some elements

Infinity as indiscernibility

AST (which uses classical logic) treats the notions of infinity and indistinguishability in specific ways (left aside here):

- Infinity by means of semisets = proper subclasses of sets
- Indistinguishability along the lines of $R = \bigcap_{d \in D} R_d$ mentioned earlier

Observe:

If R is a precompact fuzzy indistinguishability on M and $A \subseteq M$ an infinite set, then for all $\alpha < 1$ there are $a, b \in A$ such that $Rab > \alpha$

 \Rightarrow In every infinite set, there can only be finitely many (n_{α}) elements indistinguishable from each other at most to degree α (ie, distinguishable at least to degree $\varepsilon = 1 - \alpha$), for each $\alpha < 1$ (n_{α} can increase with $\alpha \nearrow 1$)

Example: The Euclidean indistinguishability is not precompact on \mathbb{R} (although it is precompact on bounded intervals)

Rather, α -cuts (for $\alpha < 1$) of a precompact indistinguishability relation on \mathbb{R} must equate all elements in some half-bounded intervals

 $(\alpha$ -cut $R_{\alpha} = \{\langle x, y \rangle \mid Rxy \geq \alpha\})$

Existence of fuzzy minima

The precompactness of a fuzzy indistinguishability relation brings about many properties analogous to those of compact metric spaces (closedness is often non-essential under fuzzification)

Theorem (cf B., 2016): In an ordering fuzzified by a compatible precompact fuzzy indistinguishability relation, every fuzzy set has a non-empty fuzzy minimum

 $\begin{array}{l} R \text{ is compatible with an ordering } \leq \text{ on } A \ \equiv_{\mathsf{df}} \\ a \leq b \leq c \text{ implies } Rab \geq Rac \text{ and } Rbc \geq Rac, \text{ for all } a, b, c \in A \end{array}$

S fuzzifies \leq by a fuzzy relation $R \equiv_{\sf df} Sab = (a \leq b) \lor Rab$

Fuzzy minimum of a fuzzy set A in a fuzzy ordering S: $(Min_S A)a =_{df} Aa \land \bigwedge_b (Ab \rightarrow^{\mathcal{A}} Sab)$

An application: The non-triviality of fuzzy counterfactuals

The existence of fuzzy minima can be used in the recently proposed fuzzy semantics for counterfactuals (B.-Majer, Synthese 2021):

Lewis' Analysis 2: $A \square \rightarrow B$ is true in a possible world w if all A-worlds most similar to w are C-worlds (classically relies on the implausible Limit Assumption that there are closest A-worlds \Rightarrow rejected)

Fuzzifying the similarity ordering of possible worlds (acknowledging its vagueness) by a precompact fuzzy indistinguishability on the distances of possible worlds from the actual world (precompact, since our ability to discern distances of worlds is not infinite \Rightarrow a natural assumption),

we can show that the fuzzified semantics of $A \square \rightarrow C$ can retain Lewis' (simpler and intuitive) Analysis 2 (all of the closest *A*-worlds are *C*-worlds) without the implausible Limit Assumptions

(In particular, precompactness guarantees the existence of minimal *A*-worlds to non-zero degrees by the previous theorem)