
ICONIP’2008 Tutorial on

Computational Resources

in Neural Network Models

Jǐŕı Š́ıma

Institute of Computer Science
Academy of Sciences of the Czech Republic

(Artificial) Neural Networks (NNs):

1. mathematical models of biological neural systems

• constantly refined to reflect current neurophysiologi-
cal knowledge

• modeling the cognitive functions of human brain

already first computer designers sought their inspiration
in human brain (neurocomputer, Minsky,1951) −→

2. computational tools

• alternative to conventional computers

• learning from training data

• one of the standard tools in machine learning and data
mining

• used for solving artificial intelligence tasks: pattern
recognition, control, prediction, decision, signal anal-
ysis, fault detection, diagnostics, etc.

• professional software implementations (e.g. Matlab,

Statistica modules)

• successful commercial applications

Neural Networks as
Abstract (Formal) Computational Models

• mathematically defined computational machines

• idealized models of practical NNs from engineering
applications, e.g. analog numerical parameters are true
real numbers, the potential number of computational
units is unbounded, etc.

• investigation of computational potential and limits of
neurocomputing

special-purpose NNs: implementations of neural circuits
for specific practical problems (e.g. robot control, stock
predictions, etc.)

× general-purpose computation with NNs:

• the study of classes of functions (problems) that can
be computed (solved) with various NN models
(e.g. XOR cannot be computed by a single perceptron)

• what is ultimately or efficiently computable by
particular NN models?

analogy to computability and complexity theory of con-
ventional computers (PCs) with classical abstract com-
putational models such as Turing machines (recursive
functions), finite automata (regular languages), etc.

−→ Computability and Complexity Theory of
Neural Networks

• methodology: the computational power end efficiency
of NNs is investigated by comparing their various
formal models with each other and with more tradi-
tional computational models such as finite automata,
grammars, Turing machines, Boolean circuits, etc.

• NNs introduce new sources of efficient computation:
energy, analog state, continuous time, temporal cod-
ing, etc. (in addition to usual complexity measures
such as computation time and memory space)

−→ NNs may serve as reference models for analyzing
these non-standard computational resources

• NN models cover basic characteristics of biological
neural systems: plenty of densely interconnected
simple computational units

−→ computational principles of mental processes

Three Main Directions of Research:

1. learning and generalization complexity:
effective creation and adaptation of NN representation

e.g. how much time is needed for training? how many
training data is required for successful generalization?

2. descriptive complexity:
memory demands of NN representation

e.g. how many bits are needed for weights?

3. computational power:
effective response of NNs to their inputs

e.g. which functions are computable by particular NN
models?

Tutorial Assumptions:

• no learning issues, this would deserve a separate sur-
vey on computational learning theory, e.g. Probably
Approximately Correct (PAC) framework, etc.

• only digital computation: binary (discrete) I/O values,
may be encoded as analog neuron states and interme-
diate computation may operate with real numbers

× NNs with real I/O values are studied in the
approximation theory (functional analysis)

Technical Tools (5-slide discursion)

1. Formal Languages and Automata Theory

formal language = set of words (strings) over an alphabet,
for simplicity assume binary alphabet L ⊆ {0, 1}∗

L corresponds to a decision problem: L contains all
positive input instances of this problem,

e.g. for the problem of deciding whether a given natural
number is a prime, the corresponding language PRIME
contains exactly all the binary expressions of primes

(deterministic) finite automaton (FA) A recognizing a
language L = L(A):

• reads an input string x ∈ {0, 1}∗ bit after bit

• a finite set of internal states (including a start state
and accepting states)

• transition function (finite control):

qcurrent , xi 7−→ qnew

given a current internal state and the next input bit,
produces a new internal state

• x belongs to L if A terminates in an accepting state

FA recognize exactly regular languages described by
regular expressions (e.g. (0 + 1)∗000; × {0n1n ; n ≥ 1}
is not regular)

Turing machine (TM) = finite automaton (finite control)

+ external unbounded memory tape

• the tape initially contains an input string

• the tape is accessible via a read/write head which can
move by one cell left or right

• transition function (finite control):

qcurrent , xread 7−→ qnew , xwrite , head move

given a current internal state and a bit on the tape
under head, produces a new internal state, a rewriting
bit, and the head move (left or right)

e.g. TM (in contrast to FA) can read the input repeatedly
and store intermediate results on the tape

TMs compute all functions that are ultimately computable
e.g. on PCs (recursive functions)

−→ widely accepted mathematical definition of
“algorithm” (finite description)

2. Complexity Theory

• what is computable using bounded computational
resources, e.g. within bounded time and memory

−→ the time and space complexity

• the complexity is measured in terms of input length
(potentially unbounded)

• TM working in time t(n) for inputs of length n
performs at most t(n) actions (computational steps)

worst case complexity: also the longest computation
over all inputs of length n must end within time t(n)
(× average case analysis)

• TM working in space s(n) for inputs of length n uses
at most s(n) cells of its tape

“big-O” notation:
e.g. t(n) = O(n2) (asymptotic quadratic upper bound):
there is a constant r such that

t(n) ≤ r · n2

for sufficiently large n, i.e. the computation time grows
at most quadratically with the increasing length of inputs

similarly lower bound t(n) = Ω(n2) (t(n) ≥ r · n2): the
computation time grows at least quadratically

t(n) = Θ(n2) iff t(n) = O(n2) and t(n) = Ω(n2)

Famous Complexity Classes:

P is the class of decision problems (languages) that are
solved (accepted) by TMs within polynomial time,
i.e. t(n) = O(nc) for some constant c
−→ considered computationally feasible

NP is the class of problems solvable by nondeterministic
TMs within polynomial time

nondeterministic TM (program) can choose from e.g.
two possible actions at each computational step

−→ an exponential number of possible computational
paths (tree) on a given input (× a single deterministic
computational path)

definition: an input is accepted iff there is at least one
accepting computation

example: the class of satisfiable Boolean formulas SAT is
in NP: a nondeterministic algorithm “guesses” an assign-
ment for each occurring variable and checks in polyno-
mial time whether this assignment satisfies the formula

−→ NP contains all problems whose solutions (once non-
deterministically guessed) can be checked in polynomial
time

NPC is the class of NP-complete problems which are
the hardest problems in NP:

if A from NPC (e.g. SAT) proves to be in P then P=NP

i.e. by solving only one NP-complete problem in polyno-
mial time one would obtain polynomial-time solutions for
all problems in NP

−→ believed to be computationally infeasible

i.e. NP 6= P (finding the solutions is more difficult than
their checking)

coNP contains the complements of NP languages

PSPACE is the class of problems that are solved by TMs
within polynomial space; similarly PSPACE-complete
problems are the harderst problems in PSPACE

P ⊂ NP ⊂ PSPACE, P ⊂ coNP ⊂ PSPACE

the main open problem in the theory of computation
(mathematics) is to prove that these inclusions are proper

(end of discursion)

Definition of a Formal Neural Network Model
(sufficiently general to cover almost all practical NNs, will later be

narrowed to specific NNs)

• Architecture: s computational units (neurons) V =
{1, . . . , s} connected into a directed graph

−→ s = |V | is the size of the network

• Interface: n input and m output units, the remaining
ones are called hidden neurons

• each edge from i to j is labeled with a real weight wji

(wji = 0 iff there is no edge (i, j))

• Computational Dynamics: the evolution of network
state

y(t) = (y
(t)
1 , . . . , y(t)

s) ∈ <s

at each time instant t ≥ 0

1. initial state y(0) (includes an external input)

2. network state updates: neurons from a subset
αt ⊆ V collect their inputs from incident units via
weighted connections and transform them into their
new outputs (states)

3. a global output is read from the output neurons at
the end (or even in the course) of computation

Criteria of NN Classification

restrictions imposed on NN parameters and/or compu-
tational dynamics

• Unit Types: perceptrons, RBF, WTA gates, spiking
neurons, etc.

• Dynamics: discrete × continuous time

• Control: deterministic × probabilistic

• Architecture: feedforward × recurrent

• State Domain: binary (discrete) × analog

• Size (Input Protocol): finite × infinite families of
networks

•Weights: symmetric (antisymmetric) × asymmetric

•Mode: sequential × parallel

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State

ii. Analog State

(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron

Discrete-Time Perceptron Networks
(“perceptron” in a wider sense including sigmoid units)

network updates at discrete time instants t = 1, 2, . . .

at time t ≥ 0, each perceptron j ∈ V computes its
excitation

ξ
(t)
j =

s∑
i=0

wjiy
(t)
i j = 1, . . . , s

where wj0 is a bias (y0 ≡ 1)

at the next time instant t + 1, a subset of perceptrons
αt+1 ⊆ V update their states (outputs)

y
(t+1)
j =

σ
(
ξ

(t)
j

)
for j ∈ αt+1

y
(t)
j for j 6∈ αt+1

where σ : < −→ < is an activation function

1. Binary States yj ∈ {0, 1} (shortly binary networks)

the threshold gates employ the Heaviside activation
function

σ(ξ) =

{
1 for ξ ≥ 0
0 for ξ < 0

more general discrete domains (e.g. bipolar values {−1, 1})
can replace the binary values while preserving the size of
weights (Parberry,1990)

2. Analog States yj ∈ [0, 1] (shortly analog networks)

the sigmoidal gates employ e.g. the saturated-linear
activation function

σ(ξ) =

1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0

or the logistic sigmoid: σ(ξ) =
1

1 + e−ξ

Boolean interpretation of the analog states of output unit j

ξj =

{ ≤ h− ε outputs 0
≥ h + ε outputs 1

with separation ε > 0, for some fixed threshold h ∈ <

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron ←−
(b) Feedforward Architecture

i. Binary State

ii. Analog State

(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron

1.a Single Perceptron

computes an n-variable Boolean function

f : {0, 1}n −→ {0, 1}
called linearly separable or linear threshold function

Hn is the class of Boolean linear threshold functions over
n variables, parametrized by real weights (w0, w1, . . . , wn)

Bn is the class of all Boolean functions over n variables

• Hn contains basic logical functions such as AND, OR
excluding XOR (PARITY)

• Hn is closed under negation of both the input vari-
ables and/or the output value:

f ∈ Hn −→ f̄ ∈ Hn

f (x1, . . . , xn) ∈ Hn −→ f (x1, . . . , x̄i, . . . , xn) ∈ Hn

−→ “De Morgan’s law:”

for integer weights: (w0, w1, . . . , wn) defines f̄ iff
(w0−1−∑n

i=1 wi ; w1, . . . , wn) defines f (x̄1, . . . , x̄n)

• the number of n-variable linearly separable functions

|Hn| = 2Θ(n2) ¿ 22n
= |Bn| (Cover,1965; Zuev,1989)

−→ limn→∞
|Hn|
|Bn| = 0

• to decide whether a Boolean function given in (disjun-
ctive or conjunctive normal form) is linearly separable,
is coNP-complete problem (Hegedüs,Megiddo,1996)

• any n-variable linearly separable function can be
implemented using only integer weights (Minsky,
Papert,1969), each within the length of

Θ(n log n) bits

(Muroga et al.,1965; Håstad,1994)

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture ←−
i. Binary State

ii. Analog State

(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron

1.b Feedforward Perceptron Networks:

• acyclic architecture −→ minimal sequence of d + 1
pairwise disjoint layers α0∪α1∪ . . .∪αd = V so that
connections from αt lead only to αu for u > t

where d is the depth of network

1. input layer α0 contains n external inputs
(we assume α0 ∩ V = ∅)
2. α1, . . . , αd−1 are hidden layers

3. output layer αd consists of m output units

• computation:

1. initially the states of α0 represent an external input

2. computation proceeds layer by layer

3. the states of αd represent the result of computation

−→ the network function f : {0, 1}n −→ {0, 1}m
is evaluated in parallel time d

Boolean Threshold Circuits

(units are called gates, α0 may also include the negations of inputs)

• for universal computation infinite families {Cn} of
circuits, each Cn for one input length n ≥ 0

• the size S(n) and depth D(n) are expressed in terms
of input length n

uniform × nonuniform circuit families

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State ←−
ii. Analog State

(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron

1.b.i Binary-State Feedforward Networks:

computational universality: any vector Boolean
function

f : {0, 1}n −→ {0, 1}m
can be implemented using 4-layer perceptron network with

Θ

(√
m2n

n− log m

)
neurons (Lupanov,1961)

lower bound: most functions require this network size
(Horne,Hush,1994) and Ω(m2n/(n− log m)) connections
(Cover,1968) even for unbounded depth

−→ (nonuniform) infinite families of threshold circuits
with exponentially many gates are capable of computing
any I/O mapping in constant parallel time

polynomial weights: (each weight only O(log n) bits)
exponential weights can constructively be replaced with
polynomial weights (in terms of input length) by increas-
ing the depth by one layer while only a polynomial depth-
independent increase in the network size is needed
(Goldmann,Karpinski,1998)

N(s, d, wi = O(nn)) 7−→ N ′(O(sc1), d+1, wi = O(nc2))

−→ polynomial weights can be assumed in multi-layered
perceptron networks if one extra parallel computational
step is granted

positive weights: at the cost of doubling the size
(Hajnal et al.,1993)

N(s, d) 7−→ N ′(2s, d, wi ≥ 0)

unbounded fan-in:
(fan-in is the maximum number of inputs to a single unit)

conventional circuit technology with bounded fan-in

× the dense interconnection of neurons

in feedforward networks yields a speed-up factor of
O(log log n) (i.e. the depth is reduced by this factor)
at the cost of squaring the network size as compared to
the classical circuits with fan-in 2 (Chandra et al.,1984)

N(s, d, fan-in ≤ 2) 7−→ N ′
(

O(s2) ,
d

log log n

)

polynomial size & constant depth:

TC0
d (d ≥ 1) is the class of all functions computable by

polynomial-size and polynomial-weight threshold circuits
of depth d (L̂T d × LTd for unbounded weights)

−→ a possible TC0 hierarchy , TC0 =
⋃

d≥1 TC0
d

TC0
1 ⊆ TC0

2 ⊆ TC0
3 ⊆ · · ·

TC0 hierarchy

• TC0
1 $ TC0

2 : PARITY (XOR) ∈ TC0
2 \ TC0

1

• TC0
2 $ TC0

3 : IP ∈ TC0
3\TC0

2 (Hajnal et al.,1993)

Boolean inner product IP : {0, 1}2k −→ {0, 1}, k ≥ 1

IP (x1, . . . , xk, x
′
1, . . . , x

′
k) =

k⊕
i=1

AND(xi, x
′
i)

where
⊕

stands for the k-bit parity function

−→ polynomial-size and polynomial-weight three-layer
perceptron networks are computationally more
powerful than two-layer ones

• the separation of the TC0 hierarchy above depth 3 is

unknown × TC0
?⊆ TC0

3

it is still conceivable that e.g. NP-complete problems could be

solved by depth-3 threshold circuits with a linear number of gates

symmetric Boolean functions:

• the output value depends only on the number of 1s
within the input, e.g. AND, OR, PARITY

• any symmetric function f : {0, 1}n −→ {0, 1} can
be implemented by a polynomial-weight depth-3
threshold circuit of size O(

√
n) (Siu et al.,1991)

lower bound: Ω(
√

n/ log n) gates even for unbounded
depth and weights; Ω(

√
n) for depth 2 (O’Neil,1971)

× PARITY 6∈ AC0, i.e. the parity cannot be com-
puted by polynomial-size constant-depth AND-OR
circuits (Furst et al.,1984)

−→ perceptron networks are more efficient than
AND-OR circuits

• conjecture AC0
?⊆ TC0

3 : AC0 functions are com-
putable by depth-3 threshold circuits of subexponen-
tial size nlogc n, for some constant c (Allender,1989)

arithmetic functions:
can be implemented by polynomial-size and polynomial-
weight feedforward perceptron networks within small
constant depths:

Function Lower bound Upper bound

Comparison 2 2
Addition 2 2
Multiple Addition 2 2
Multiplication 3 3
Division 3 3
Powering 2 3
Sorting 3 3
Multiple Multiplication 3 4

any analytic function with its real argument represented
as an n-bit binary input can be implemented to high
precision by a perceptron network of polynomial size and
weights, using only a small constant number of layers
(Reif,Tate,1992)

−→ feedforward networks of polynomial size and
weights with few layers appear to be very powerful com-
putational devices

cf. the neurophysiological data indicate that quite com-
plicated functions are computed using only a few layers
of brain structure

VLSI implementation model:

• the gates are placed at the intersection points of a
2-dimensional grid (unit distance between adjacent
intersection points)

• the gates can be arbitrarily connected in the plane by
wires, which may cross

• k-input (threshold) gates as microcircuits with unit
evaluation time, each occupying a set of k intersec-
tion points of the grid which are connected by an
undirected wire in some arbitrary fashion

total wire length: (Legenstein,Maass,2001)

the minimal value of the sum of wire lengths taken over
all possible placements of the gates

• different approach to an optimal circuit design, e.g.
complete connectivity between two linear-size layers
requires a total wire length of Ω(n2.5)

• example: simple pattern detection prototype

P k
LR : {0, 1}2k −→ {0, 1}, k ≥ 2

P k
LR(x1, . . . , xk, x

′
1, . . . , x

′
k) = 1 iff

∃ 1 ≤ i < j ≤ k : xi = x′j = 1

can be computed by a 2-layer network with 2 log2 k+1
threshold gates and total wire length O(k log k)

Threshold Circuits with Sparse Activity

& Energy Complexity:

(Uchizawa,Douglas,Maass,2006)

in artificially designed threshold circuits usually 50% units
fire on average during a computation

× sparse activity in the brain with only about 1% neurons
firing

−→ energy complexity, e.g. maximal energy consumption
of threshold circuit C

ECmax(C) = max

s∑
j=1

yj(x) ; x ∈ {0, 1}n

the entropy of circuit C:

HQ = −
∑

a∈{0,1}s
P{y = a} · log P{y = a}

for some given distribution Q of circuit inputs

−→ Hmax(C) = max
Q

HQ(C)

• any function computable by polynomial-size threshold
circuit C with Hmax(C) = O(log n) can be computed
by polynomial-size threshold circuit C ′ of depth 3:

C(s = O(nc1), Hmax(C) = O(log n))

7−→ C ′(s = O(nc2), d = 3)

• any polynomial-size threshold circuit C with

Hmax(C) = O(log n)

(i.e. satisfied by all common functions) can be
replaced by equivalent polynomial-size threshold
circuit C ′ with low energy:

C(s = O(nc), d, Hmax(C) = O(log n))

7−→ C ′(2Hmax(C), s+1, ECmax(C
′) ≤ Hmax(C) + 1)

• the construction of low-energy threshold circuits is
reminiscent of cortical circuits of biological neurons
selecting different pathways in dependence of the
stimulus

• low-energy circuits can possibly be useful for future
VLSI implementations where energy consumption and
heat dissipation become critical factor

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State

ii. Analog State ←−
(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron

1.b.ii Analog-State Feedforward Networks:

e.g. the standard sigmoid (backpropagation learning)

can faithfully simulate the binary networks with the same
network architecture (Maass et al.,1991)

constant size: analog states may increase efficiency

e.g. the unary squaring function:

SQk : {0, 1}k2+k −→ {0, 1}, k ≥ 1

SQk(x1, . . . , xk, z1, . . . , zk2) = 1 iff (

k∑
i=1

xi)
2 ≥

k2∑
i=1

zi

• can be computed using only 2 analog units with
polynomial weights and separation ε = Ω(1)

• any binary feedforward networks computing SQk

requires Ω(log k) units even for unbounded depth and
weights (DasGupta,Schnitger,1996)

−→ the size of feedforward networks can sometimes be
reduced by a logarithmic factor when the binary units are
replaced by analog ones

polynomial size:

TC0
d(σ) (d ≥ 1) contains all the functions computable

by polynomial-size and polynomial-weight, analog-state
feedforward networks with d layers and separation ε =
Ω(1) employing activation function σ (e.g. the standard
sigmoid)

• TC0
d(σ) = TC0

d for all d ≥ 1 (Maass et al.,1991)

• this computational equivalence of polynomial-size
binary and analog networks is valid even for
unbounded depth and exponential weights if the depth
of the simulating binary network can increase by
a constant factor (DasGupta,Schnitger,1993)

Nanalog(s = O(nc1), d) 7−→ Nbinary(O(sc2), O(d))

• the Boolean functions computable with arbitrary small
separation ε by analog feedforward networks of
constant depth and polynomial size, having arbitrary
real weights and employing the saturated-linear
activation function, belong to TC0 (Maass, 1997)

Nanalog-sat-lin(s = O(nc1), d = O(1), wi ∈ <)

7−→ Nbinary(O(nc2), O(1), wi = O(nc3))

−→ for digital computations, the analog polynomial-size
feedforward networks are equivalent to binary ones

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State

ii. Analog State

(c) Recurrent Architecture ←−
i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron

1.c Recurrent Perceptron Networks:

the architecture is a cyclic graph

symmetric (Hopfield) networks

wij = wji for all i, j ∈ V

−→ undirected architectures

computational modes:

according to the choice of sets αt of updated units

• sequential mode: (∀ t ≥ 1) |αt| ≤ 1

• parallel mode: (∃ t ≥ 1) |αt| ≥ 2

• fully parallel mode: (∀ t ≥ 1) αt = V

• productive computation of length t? updates:

(∀ 1 ≤ t ≤ t?) (∃ j ∈ αt) y
(t)
j 6= y

(t−1)
j

• systematic computation:

e.g. ατs+j = {j} for j = 1, . . . , s

τ = 0, 1, 2, . . . is a macroscopic time during which all
the units in the network are updated at least once

• synchronous computation: αt are predestined deter-
ministically and centrally for each t ≥ 1

• asynchronous computation: a random choice of αt,
i.e. each unit decides independently when its state is
updated

asynchronous binary (asymmetric or symmetric)
networks can always be (systematically) synchronized
in sequential or parallel mode (Orponen,1997)

convergence

a productive computation terminates, converges, reaches
a stable state y(t?) at time t? ≥ 0 if

y(t?) = y(t?+k) for all k ≥ 1

(or for analog networks, at least ‖y(t?) − y(t?+k)‖ ≤ ε
holds for some small constant 0 ≤ ε < 1)

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State

ii. Analog State

(c) Recurrent Architecture

i. Finite Size ←−
A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron

1.c.i Finite Recurrent Networks:

as neural acceptors of languages L ⊆ {0, 1}? working
under fully parallel updates

an input string x = x1 . . . xn ∈ {0, 1}n of any length
n ≥ 0 is presented bit by bit via an input unit inp ∈ V

−→ the output unit out ∈ V signals whether x
?∈ L

1. Binary Networks:

y
(p(i−1))
inp = xi for i = 1, . . . , n with a period p ≥ 1

−→ y
(p(i−1)+k+1)
out = 1 iff x1 . . . xi ∈ L

with some time delay k ≥ 1

constant time delays k can be reduced to 1 with only
a linear-size increase (Šı́ma,Wiedermann,1998)

2. Analog Networks: (Siegelmann,Sontag,1995)

(a) Validation ival, oval ∈ V (p = 1, t? = T (n))

y
(t−1)
inp = xt y

(t)
ival =

{
1 for t = 0, . . . , n− 1
0 for t ≥ n

y
(t?)
out = 1 iff x ∈ L y

(t)
oval =

{
1 for t = t?

0 for t 6= t?

(b) Initial State, e.g.

y
(0)
inp =

n∑
i=1

2xi + 1

4i

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State

ii. Analog State

(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights ←−
B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron

1.c.i.A Finite Asymmetric Networks:

assume the saturated-linear activation function
(unless explicitly stated otherwise)

the computational power depends on the information
contents (Kolmogorov complexity) of real weights

1. Integer Weights:

binary networks ≡ finite automata (Kleene,1956)

the size of neural network implementation:

• a deterministic finite automaton with q states
−→ O(

√
q) units with a period of p = 4 of presenting

the input bits

lower bound: Ω(
√

q) for polynomial weights (Indyk,
1995) or for p = O(log q) (Horne,Hush,1996)

• regular expression of length `
−→ Θ(`) units (Šı́ma,Wiedermann,1998)

2. Rational Weights:

analog networks ≡ Turing machine

(step by step simulation)

−→ any function computable by a Turing machine in
time T (n) can be computed by a fixed universal analog
network of size:

• 886 units in time O(T (n)) (Siegelmann,Sontag,1995)

• 25 units in time O(n2T (n)) (Indyk,1995)

−→ polynomial-time computations by analog networks
correspond to the complexity class P

Turing universality for more general classes of sigmoid
activation functions (Koiran,1996) including the stan-
dard sigmoid (Kilian,Siegelmann,1996) but the known
simulations require exponential time overhead per each
computational step

3. Arbitrary Real Weights:

super-Turing computational capabilities
(Siegelmann,Sontag,1994)

finite analog neural networks working within time T (n)
≡

infinite nonuniform families of threshold circuits of
size S(n) = O(poly(T (n)))

• polynomial-time computations: the nonuniform com-
plexity class P/poly

P/poly: polynomial-size (nonrecursive) advice (the
same for one input length) is granted to TMs working
in polynomial time

(which is the threshold circuit for a given input length)

• exponential-time computations: implement any I/O
mapping

• polynomial time + increasing Kolmogorov complexity
of real weights: a proper hierarchy of nonuniform
complexity classes between P and P/poly
(Balcázar et al.,1997)

Analog Noise:

× the preceding results for analog computations assume
arbitrary-precision real number calculations

analog noise reduces the computational power of analog
networks to at most that of finite automata

• bounded noise: faithful simulation of binary networks
≡ finite automata (Siegelmann,1996)

• unbounded noise: unable to recognize all regular
languages (definite languages) (Maass,Orponen,1998)

The Complexity of Related Problems:

• the issue of deciding whether there exists a stable
state in a given binary network is NP-complete
(Alon,1987)

• Halting Problem of deciding whether a recurrent
network terminates its computation over a given input

– PSPACE-complete for binary networks
(Floréen, Orponen,1994)

– algorithmically undecidable for analog nets with
rational weights and only 25 units (Indyk,1995)

• the computations of recurrent networks of size s that
terminate within time t? can be “unwound” into feed-
forward networks of size st? and depth t? (Savage,1972)

Nrecurrent(s, t
?) 7−→ Nfeedforward(s · t?, d = t?)

−→ feedforward and convergent recurrent networks
are computationally equivalent up to a factor of t? in
size (Goldschlager,Parberry,1986)

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State

ii. Analog State

(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights ←−
ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron

1.c.i.B Finite Symmetric (Hopfield) Networks:

Convergence:

a bounded energy (Liapunov) function E defined on the
state space of the symmetric network decreases along
any productive computation

−→ the Hopfield network converges towards some stable
state corresponding to a local minimum of E

1. Binary Symmetric Networks:

• Sequential Mode: (Hopfield,1982)
semisimple networks wjj ≥ 0 for all j ∈ V

E(y) = −
s∑

j=1

yj

wj0 +

1

2

s∑

i=1;i 6=j

wjiyi + wjjyj

• Parallel Mode: the networks either converge (e.g.
when E is negative definite, Goles-Chacc et al.,1985),
or eventually alternate between two different states
(Poljak,Sůra,1983)

2. Analog Symmetric Networks: converge to a fixed
point or to a limit cycle of length at most 2 for parallel
updates (Fogelman-Soulié et al.,1989; Koiran,1994)

E ′(y) = E(y) +

s∑
j=1

∫ yj

0

σ−1(y)dy

Convergence Time: the number of discrete-time up-
dates before the (binary) network converges

• trivial upper bound: 2s different network states

• lower bound: a symmetric binary counter converging
after Ω(2s/8) asynchronous seq. updates (Haken,1989)
or Ω(2s/3) fully parallel steps (Goles,Martı́nez,1989)

• average-case: convergence of only O(log log s)
parallel update steps under reasonable assumptions
(Komlós,Paturi,1988)

• obvious upper bound of O(W) in terms of the
total weight W =

∑
j,i∈V |wji|

−→ polynomial-time convergence for binary symmet-
ric networks with polynomial weights

• 2Ω(M1/3)-lower and 2O(M1/2)-upper bounds where M
is the number of bits in the binary representation of
weights (Šı́ma et al.,2000)

• lower bound of 2Ω(g(M))for analog Hopfield nets where
g(M) is an arbitrary continuous function such that
g(M) = Ω(M 2/3), g(M) = o(M) (Šı́ma et al.,2000)

−→ an example of the analog Hopfield net converging
later than any other binary symmetric network of the
same representation size

Stable States = patterns stored in associative memory

• the average number of stable states: a binary Hopfield
net of size s whose weights are independent identically
distributed zero-mean Gaussian random variables has
on the average asymptotically

1.05× 20.2874s many stable states

(McEliece et al.,1987; Tanaka,Edwards,1980)

• counting the number of stable states: the issue of
deciding whether there are at least one (wjj < 0),
two, or three stable states in a given Hopfield network,
is NP-complete

the problem of determining the exact number of
stable states for a given Hopfield net is #P-complete
(Floréen,Orponen,1989)

• attraction radius: the issue of how many bits may be
flipped in a given stable state so that the Hopfield net
still converges back to it, is NP-hard
(Floréen,Orponen,1993)

MIN ENERGY Problem:

the issue of finding a state of a given Hopfield net with
energy less than a prescribed value

−→ the fast approximate solution of combinatorial
optimization problems, e.g. Traveling Salesman Problem
(Hopfield,Tank,1985)

• NP-complete for both binary (Barahona,1982) and
analog (Šı́ma et al.,2000) Hopfield nets

• polynomial-time solvable for binary Hopfield nets whose
architectures are planar lattices (Bieche et al.,1980)
or planar graphs (Barahona,1982)

• polynomial-time approximation to within absolute
error of less than 0.243W in binary Hopfield nets of
total weight W (Šı́ma et al.,2000)

for W = O(s2) (e.g. constant weights), this matches
the lower bound Ω(s2−ε) which is not guaranteed
by any approximate polynomial-time MIN ENERGY
algorithm for every ε > 0 unless P=NP
(Bertoni,Campadelli,1994)

The Computational Power of Hopfield Nets:

• tight converse to Hopfield’s convergence theorem for
binary networks: symmetric networks can simulate
arbitrary convergent asymmetric networks with only
a linear overhead in time and size (Šı́ma et al.,2000)

Nconvergent(s, t
∗) 7−→ Nsymmetric(O(s), O(t∗))

−→ convergence ≡ symmetry

• binary symmetric neural acceptors recognize a strict
subclass of the regular languages called Hopfield
languages (Šı́ma,1995)

• analog symmetric neural acceptors faithfully recognize
Hopfield languages (Šı́ma,1997)

• Turing machines ≡ analog asymmetric networks

≡ analog symmetric networks + external oscillator

external oscillator: produces an arbitrary infinite binary
sequence containing infinitely many 3-bit substrings of
the form bxb̄ ∈ {0, 1}3 where b 6= b̄
(Šı́ma et al.,2000)

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State

ii. Analog State

(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks ←−
2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron

1.c.ii Infinite Families of Binary Networks {Nn}:

• alternative input protocol:
one Nn for each input length n ≥ 0

• recognition of a language L ⊆ {0, 1}?:
an input x ∈ {0, 1}n is presented to the network Nn,
a single output neuron out is read after Nn converges
in time t?:

y
(t?)
out = 1 iff x ∈ L

• the size S(n) of {Nn} is defined as a function of n

• polynomial-size families of binary recurrent networks
(S(n) = O(nc)) recognize exactly the languages in the
complexity class PSPACE/poly (Lepley,Miller,1983)

Orponen,1996:

– symmetric weights: PSPACE/poly

– polynomial symmetric weights: P/poly

−→ polynomial-size infinite families of binary
symmetric networks with polynomial integer weights

≡
polynomial-time finite analog asymmetric networks
with arbitrary real weights

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State

ii. Analog State

(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation ←−
(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron

2 Probabilistic Perceptron Networks:

• a deterministic discrete-time perceptron network is
augmented with additional random binary input units
i ∈ Π with fixed real probabilities 0 ≤ pi ≤ 1:

∀ t ≥ 0 P{y(t)
i = 1} = pi for i ∈ Π(

−→ ∀ t ≥ 0 P{y(t)
i = 0} = 1− pi for i ∈ Π

)

• the reference model that is polynomially (in parame-
ters) related to neural networks with other stochastic
behavior, e.g. unreliable in computing states and con-
necting units (von Neumann,1956; Siegelmann,1999);
Boltzmann machines (Parberry,Schnitger,1989), etc.

• a language L ⊆ {0, 1}n is ε-recognized (0 < ε < 1
2)

if for any input x ∈ {0, 1}n the probability that the
network outputs 1 satisfies:

P{yout = 1}
{ ≥ 1− ε if x ∈ L
≤ ε if x 6∈ L

this symmetry in the probability of errors ε in accept-
ing and rejecting an input can always be achieved by
adding random input units (Hajnal et al.,1993)

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State

ii. Analog State

(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture ←−
(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron

2.a Probabilistic Binary Feedforward Networks:

• increasing the reliability: any language L ⊆ {0, 1}n
that is ε-recognized (0 < ε < 1/2) can be
λ-recognized for any 0 < λ < ε if one extra layer
is granted:

Nε(s, d) 7−→ Nλ

(
2s ·

⌈
ln λ

ln 4ε(1− ε)

⌉
+ 1, d + 1

)

• deterministic simulation: 1/4 < ε < 1/2

Nε(s, d) 7−→ Ndet

(⌈
8ε ln 2

(1− 2ε)2
+ 1

⌉
ns + 1, d + 1

)

(Parberry,Schnitger,1989)

•RTC0
d (d ≥ 1) is the class of all languages

ε(n)-recognized by the families of polynomial-size and
polynomial-weight probabilistic threshold circuits of
depth d with the probabilities of errors ε(n) = 1

2− 1
nO(1)

• Hajnal et al.,1993:

IP ∈ RTC0
2 (IP 6∈ TC0

2)

∀d ≥ 1 RTC0
d ⊆ TC0

d+1 (non-uniformly)

−→ at most one layer can be saved by introducing
stochasticity in threshold circuits

RTC1
0

XOR IP

TC2
0

TC0

TC1
0 TC0

3RTC0
2

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State

ii. Analog State

(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture ←−
3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron

2.b Probabilistic Analog Recurrent Networks

with the saturated-linear activation function
(Siegelmann,1999)

deterministic networks probabilistic networks
weights unbounded polynomial unbounded polynomial

time time time time

integer regular regular regular regular
rational recursive P recursive BPP
real arbitrary P/poly arbitrary P/poly

1. integer weights: the binary-state probabilistic net-
works ε-recognize the regular languages

2. rational parameters: analog probabilistic networks can
in polynomial time ε-recognize exactly the languages
from the complexity class BPP (polynomial-time
bounded-error probabilistic Turing machines)

or nonuniform Pref-BPP/log for rational weights
and arbitrary real probabilities

3. arbitrary real weights: polynomial-time computations
correspond to the complexity class P/poly

−→ stochasticity plays a similar role in neural networks
as in conventional Turing computations

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State

ii. Analog State

(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time ←−

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron

3 Continuous-Time Perceptron Networks:

• the dynamics of the analog state y(t) ∈ [0, 1]s is
defined for every real time instant t > 0 as the
solution of a system of s differential equations:

dyj

dt
(t) = −yj(t) + σ

(
s∑

i=0

wjiyi(t)

)
j = 1, . . . , s

with the boundary conditions given by y(0)
e.g. σ is the saturated-linear activation function

• symmetric networks (wji = wij): Liapunov function

E(y) = −
s∑

j=1

yj

(
wj0 +

1

2

s∑
i=1

wjiyi

)
+

s∑
j=1

∫ yj

0

σ−1(y)dy

−→ converge from any initial state y(0) to some sta-
ble state satisfying dyj/dt = 0 for all j = 1, . . . , s
(Cohen,Grossberg,1983)

which may take an exponential time in terms of s
(Šı́ma,Orponen,2003)

• simulation of finite binary-state discrete-time networks
by asymmetric (Orponen,1997) and symmetric (Šı́ma,
Orponen,2003) continuous-time networks:

Ndiscrete(s, T (n)) 7−→ Ncontinuous(O(s), O(T (n)))

−→ polynomial-size families of continuous-time (sym-
metric) networks recognize at least PSPACE/poly

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State

ii. Analog State

(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit ←−
5. Winner-Take-All Unit

6. Spiking Neuron

4 RBF Networks:

the units compute Radial Basis Functions:

“excitation” ξ
(t)
j =

∥∥∥x
(t)
j −wj

∥∥∥
wj0

> 0 of unit j ∈ V

where x
(t)
j is the input from the incident units,

the “weight” vector wj represent a center , and
a “bias” wj0 > 0 determines the width

−→ output y
(t+1)
j = σ

(
ξ

(t)
j

)

e.g. the Gaussian activation function σ(ξ) = e−ξ2

or the binary activation function

σ(ξ) =

{
1 if 0 ≤ ξ ≤ 1
0 if ξ > 1

the computational power of RBF networks:

• binary RBF units with the Euclidean norm compute
exactly the Boolean linear threshold functions
(Friedrichs,Schmitt,2005), i.e.

binary RBF unit ≡ perceptron

• digital computations using analog RBF unit: two
different analog states of RBF units represent the
binary values 0 and 1

• an analog RBF unit with the maximum norm can
implement the universal Boolean NAND gate over
multiple literals (input variables or their negations)

−→ a deterministic finite automaton with q states can
be simulated by a recurrent network with O(

√
q log q)

RBF units in a robust way (Šorel,Šı́ma,2000)

• the Turing universality of finite RBF networks is still
an open problem

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State

ii. Analog State

(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit ←−
6. Spiking Neuron

5 Winner-Take-All (WTA) Networks:

• competitive principle (e.g. Kohonen networks)

• efficient analog VLSI implementations

• the units compute k-WTAn : <n −→ {0, 1}n
defined as

yj = 1 iff |{i ; xi > xj, 1 ≤ i ≤ n}| ≤ k − 1

e.g. a WTAn gate (k = 1) indicates which of the
n inputs has maximal value

• a WTAn device (k = 1, n ≥ 3) cannot be imple-
mented by any perceptron network having fewer than
sufficient

(
n
2

)
+ n threshold gates (Maass,2000)

• any Boolean function from TC2
0 can be computed by

a single k-WTAr gate applied to r = O(nc) (for
some constant c) weighted sums of n input variables
with polynomial natural weights (Maass,2000)

• P k
LR (recall P k

LR(x1, . . . , xk, x
′
1, . . . , x

′
k) = 1 iff

∃ 1 ≤ i < j ≤ k : xi = x′j = 1) can be computed by
a two-layered network consisting of only 2 WTA units
(with weighted inputs) and 1 threshold gate, whose
total wire length reduces to O(k) as compared to
O(k log k) perceptrons (Legenstein,Maass,2001)

−→ the winner-take-all gates are more efficient than the
perceptrons

A Taxonomy of Neural Network Models

1. Perceptron

Discrete Time

Deterministic Computation

(a) Single Perceptron

(b) Feedforward Architecture

i. Binary State

ii. Analog State

(c) Recurrent Architecture

i. Finite Size

A. Asymmetric Weights

B. Symmetric Weights

ii. Infinite Families of Networks

2. Probabilistic Computation

(a) Feedforward Architecture

(b) Recurrent Architecture

3. Continuous Time

4. RBF Unit

5. Winner-Take-All Unit

6. Spiking Neuron ←−

6 Networks of Spiking Neurons:

(Artificial Pulsed Neural Networks, Spiking Networks)

• biologically plausible: the states are encoded as tem-
poral differences between neuron spikes (firing times),
e.g. an input binary string is presented bit after bit by
firing or nonfiring within given time intervals

• 0 ≤ y
(1)
j < y

(2)
j < · · · < y

(τ)
j < ... a sequence of

firing times of spiking neuron j ∈ V

Yj(t) = {y(τ)
j < t; τ ≥ 1} the set of spikes of unit j

preceding a continuous time instant t ≥ 0

yj(t) = max Yj(t) the last firing time (for Yj(t) 6= ∅)

• the next spike of neuron j:

y
(τ)
j = inf

{
t > y

(τ−1)
j ; ξj(t) ≥ 0

}

where excitation

ξj(t) = wj0(t− yj(t)) +

s∑
i=1

∑

y∈Yi(t)

wji · εji(t− y)

• response function εji : <+
0 −→ < of unit j to

presynaptic spikes from i in time t ≥ 0 models
either excitatory (EPSP) εji ≥ 0 or inhibitory (IPSP)
εji ≤ 0 postsynaptic potential, e.g. with a delay ∆ji:

• wji ≥ 0 for all j, i ∈ V while the bias function
wj0 : <+

0 −→ <−0 ∪ {−∞}, e.g.

wj0(t) =

{ −∞ for 0 < t < tref
−h < 0 for t ≥ tref

where tref is a refractory period

The Computational Power of Spiking Nets:

Lower Bounds: (Maass,1996)

• any binary feedforward perceptron network of size s
and depth d can be simulated by a neural network of
O(s) spiking neurons within time O(d)

• any deterministic finite automaton with q states can
be simulated by a spiking network with O(

√
q)

neurons

• any Turing machine can be simulated by a finite spik-
ing network with rational weights while any I/O map-
ping can be implemented using arbitrary real weights

Upper Bounds: (Maass,1994)

finite spiking networks with any piecewise linear response-
and bias-functions

≡
finite discrete-time analog perceptron networks with any
piecewise linear activations functions (e.g. the saturated-
linear and Heaviside functions)

≡
Random Access Machines with O(1) registers working
with unbounded arbitrary real numbers

(linear-time pairwise simulations, valid also for rational parameters)

Piecewise Constant Response Functions:

(Maass,Ruf,1999)

• easier to implement in hardware

• spiking networks with piecewise constant response
functions and piecewise linear bias functions with
rational parameters ≡ finite automata

• for arbitrary real parameters these networks simulate
any Turing machine but, in general, not within poly-
nomial number of spikes

−→ the computational power of spiking networks de-
pends on the shape of the postsynaptic potentials

Liquid State Machine (LSM)

& Online Computation:

inspired by experimental neuroscience and robotics (e.g.
walking for 2-legged robots in a terrain):

• online computation: input pieces arrive all the time,
not in one batch

• real-time computation: a strict deadline when the
result is required

• anytime algorithms: can be interrupted and still should
be able to provide a partial answer

× conventional computation theory and algorithm design
have focused on offline computation:

TMs compute the static outputs from the inputs which
are completely specified at the beginning

a machine M performing online computations maps
input streams onto output streams

these are encoded as functions u : < −→ <n of
(discrete or continuous) time, i.e. u(t) ∈ <n provides
the information at the time point t

M implements a filter (operator) F : U −→ << that
maps input functions u from domain U onto output
functions y

1. time-invariant: the output does not depend on any
absolute internal clock of M (input-driven):

(Fu(t + t0))(t) = (Fu)(t + t0) for any t, t0 ∈ <
−→ F is uniquely identified by the values y(0) =
(Fu)(0) (if U is closed under temporal shift) and
represents a functional (mapping the input functions
u ∈ U onto real values (Fu)(0) ∈ <n)

2. fading memory: for computing the most significant
bits of (Fu)(0) it suffices to know an approximate
value of input function u(t) for a finite time interval
back into the past (i.e. the continuity property of F)

Liquid State Machines can (under reasonable assump-
tions) approximate time-invariant fading memory filters

1. liquid filter (or circuit) L producing liquid states is
implemented by a sufficiently rich fixed bank of basis
filters or a general dynamical system, e.g. randomly
and sparsely connected spiking neurons

x(t) = (Lu)(t)

2. readout function f which is trained for a specific task,
e.g. f is linear

y(t) = f(x(t))

digital computations on LSM:

• if L has fading memory then LSM is even unable to
implement all FA

• LSM augmented with a feedback from a readout to
the liquid circuit is universal for analog computing,
e.g. LSM can simulate arbitrary TM

Summary and Open Problems

1. Unit Type:

• traditional perceptron networks are best understood

• similar analysis for other unit types still not
complete: their taxonomy should be refined for
different architectures, parameter domains, probabilis-
tic computation, etc.

• e.g. open problems:

– Turing universality of finite RBF networks

– the power of recurrent WTA networks

• RBF networks comparable to perceptron networks

•WTA gates may bring more efficient implementations

• networks of spiking neurons are slightly more efficient
than their perceptron counterparts; temporal coding
as a new source of efficient computation

2. Discrete vs. Continuous Time:

• continuous-time perceptron networks are at least as
powerful as the discrete-time models

• the simulation techniques unsatisfying: the continuous-
time computation is still basically discretized

• discrete-time mind-set of traditional complexity
theory provides no adequate theoretic tools (e.g. com-
plexity measures, reductions, universal computation,
etc.) for “naturally” continuous-time computations

• continuous-time neural networks as useful reference
models for developing such theoretical tools (Ben-Hur,
Siegelmann,Fishman,2002; Gori,Meer,2002)

3. Deterministic vs. Probabilistic Computation:

• stochasticity represents an additional source of
efficient computation in probabilistic perceptron
networks (e.g. IP can be computed efficiently using
only two-layered probabilistic networks while an effi-
cient deterministic implementation requires 3 layers)

• from the computational power point of view
stochasticity plays a similar role in neural networks
as in conventional Turing computations

• open problem: e.g. a more efficient implementation
of finite automata by binary-state probabilistic neural
networks than that by deterministic neural networks

4. Feedforward vs. Recurrent Architectures:

• feedforward networks≡ convergent recurrent networks
≡ symmetric networks

• common interesting functions (e.g. arithmetic opera-
tions) can be implemented efficiently with only a small
number of layers −→ the widely spread use of two-
or three-layered networks in practical applications

• two layers of perceptrons are not sufficient for an
efficient implementation of certain functions

• open problem: is the bounded-depth TC0 hierarchy
infinite? (the separation of three-layer and four-layer
networks is unknown)

• the computational power of finite recurrent networks
is nicely characterized by the descriptive complexity of
the weights, e.g. for rational weights these networks
are Turing universal

× more realistic models with fixed precision of real
parameters or analog noise recognize only regular
languages

• practical recurrent networks essentially represent
efficient implementations of finite automata

5. Binary vs. Analog States:

• analog-state neural networks prove to be at least as
powerful and efficient computational devices as their
binary-state counterparts

• for feedforward architectures the computational power
of binary and analog states is almost equal (× some-
times the size can be reduced by a logarithmic factor)

• open problem: e.g. the equivalence of sigmoidal and
threshold gates in polynomial-size networks for large
weights (i.e. TC0

d(σ) = TC0
d for exponential weights)

• for recurrent architectures infinite amounts of infor-
mation stored in the analog states drastically increases
the computational power of finite networks from finite
automata to Turing universality or even more

• analog models of computation may be worth
investigating more for their efficiency gains than for
their (theoretical) capability for arbitrary-precision real
number computation

• open problems: e.g.

– how efficient implementations of finite automata
by analog neural networks can be achieved?

– how this efficiency depends on the chosen
activation function?

6. Symmetric vs. Asymmetric Weights:

• for binary-state networks not only do all Hopfield nets
converge but all convergent computations can be
efficiently implemented using symmetric weights

• for analog networks an external oscillator is needed
to boost the power of symmetric networks to that of
asymmetric ones

• analog symmetric networks cannot perform arbitrary
unbounded computations, i.e. probably less powerful
than finite automata

• open problem: convergence conditions for neural
networks based on other types of units than
perceptrons

Literature on Complexity Theory

of Neural Networks

• Anthony, M. (2001). Discrete Mathematics of Neural
Networks: Selected Topics. Philadelphia, PA: Society
for Industrial and Applied Mathematics.

• Parberry, I. (1994). Circuit Complexity and Neural
Networks. Cambridge, MA: The MIT Press

• Roychowdhury, V. P., Siu, K.-Y., & Orlitsky, A. (Eds.)
(1994). Theoretical Advances in Neural Computation
and Learning. Boston: Kluwer Academic Publishers

• Siegelmann, H. T. (1999). Neural Networks and Ana-
log Computation: Beyond the Turing Limit. Boston:
Birkhäuser.

• Š́ıma, J., & Orponen, P. (2003). General-purpose
computation with neural networks: A survey of com-
plexity theoretic results. Neural Computation, 15 (12),
2727–2778. (covers most of this tutorial)

• Siu, K.-Y., Roychowdhury, V. P., & Kailath, T. (1995a).
Discrete Neural Computation: A Theoretical Founda-
tion. Englewood Cliffs, NJ: Prentice Hall.

