Parsing and Syntactic Analysis Seminar, Charles University, Prague, November 30, 2023

#### **Chomsky-Like Neural Network Hierarchy**

Jiří Šíma

www.cs.cas.cz/~sima



Institute of Computer Science The Czech Academy of Sciences

#### joint work with

Petr Savický (ICS, Czech Academy of Sciences) Petr Jančar (FSC, Palacký University Olomouc)

Martin Plátek (FMP, Charles University)

# References

This lecture surveys selected computability results of the project FoNeCo: Analytical Foundations of Neurocomputing (Czech Science Foundation, GA22-02067S, 2019-2021), published in the following papers (two won the Best ICS Paper Award):

- J. Šíma: Subrecursive neural networks. Neural Networks 116:208-223, 2019.
- J. Šíma: Analog neuron hierarchy. Neural Networks 128:199-218, 2020.
- J. Šíma, P. Savický: Quasi-periodic β-expansions and cut languages. Theoretical Computer Science 720:1-23, 2018.
- P. Jančar, J. Šíma: The simplest non-regular deterministic context-free language. *Proceedings of the MFCS 2021*, LIPIcs 202, pp. 63:1-63:18, Dagstuhl, 2021.
- J. Šíma: Stronger separation of analog neuron hierarchy by deterministic context-free languages. *Neurocomputing* 493:605-612, 2022.

# **Outline of Talk**

- 1. The Neural Network Model
- 2. The Computational Power of Neural Networks
- 3. A Chomsky-Like Neural Network Hierarchy
- 4. Periodic Numbers in Positional Systems with Non-Integer Base
- 5. C-Simple Problems

#### **The Neural Network Model – Architecture**

s computational units (neurons), indexed as  $V = \{1, \ldots, s\}$ , connected into a directed graph (V, E) where  $E \subseteq V imes V$ 



## **The Neural Network Model – Weights**

each edge  $(i,j) \in E$  from unit i to j is labeled with a real weight  $w_{ji} \in \mathbb{R}$ 



#### **The Neural Network Model – Zero Weights**

each edge  $(i,j) \in E$  from unit i to j is labeled with a real weight  $w_{ji} \in \mathbb{R}$   $(w_{ki} = 0 ext{ iff } (i,k) 
otin E)$ 



#### **The Neural Network Model – Biases**

each neuron  $j \in V$  is associated with a real bias  $w_{j0} \in \mathbb{R}$ (i.e. a weight of  $(0, j) \in E$  from an additional formal neuron  $0 \in V$ )



#### **Discrete-Time Computational Dynamics – Network State**

the evolution of global network state (output)  $y^{(t)} = (y_1^{(t)}, \dots, y_s^{(t)}) \in [0, 1]^s$  at discrete time instant  $t=0,1,2,\dots$ 



# **Discrete-Time Computational Dynamics – Initial State**

t=0 : initial network state  $\mathbf{y}^{(0)} \in \{0,1\}^s$ 



# **Discrete-Time Computational Dynamics:** t = 1

t=1 : network state  $\mathbf{y}^{(1)} \in [0,1]^s$ 



# **Discrete-Time Computational Dynamics:** t = 2

t=2 : network state  $\mathbf{y}^{(2)}\in[0,1]^s$ 



#### **Discrete-Time Computational Dynamics – Excitations**

at discrete time instant  $t \geq 0$ , an excitation is computed as



where unit  $0 \in V$  has constant output  $y_0^{(t)} \equiv 1$  for every  $t \geq 0$ 

12/54

#### **Discrete-Time Computational Dynamics – Outputs**

at the next time instant t + 1, every neuron  $j \in V$  updates its state in parallel (a so-called fully parallel mode):



# **The Computational Power of NNs – Motivations**

- the potential and limits of general-purpose computation with NNs: What is ultimately or efficiently computable by particular NN models?
- idealized mathematical models of practical NNs which abstract away from implementation issues, e.g. analog numerical parameters are true real numbers
- methodology: the computational power and efficiency of NNs is investigated by comparing formal NNs to traditional computational models such as finite automata, Turing machines, Boolean circuits, etc.
- NNs may serve as reference models for analyzing alternative computational resources (other than time or memory space) such as analog state, continuous time, energy, temporal coding, etc.
- NNs capture basic characteristics of biological nervous systems (plenty of densely interconnected simple unreliable computational units)

 $\longrightarrow$  computational principles of mental processes

#### **Neural Networks As Formal Language Acceptors**

a language  $L \subseteq \Sigma^*$  over finite alphabet  $\Sigma$  represents a decision problem



#### **The Computational Power of NNs – Integer Weights**

depends on the information content of weight parameters:

1. integer weights: finite automaton (FA) (Minsky, 1967)

$$egin{array}{rcl} w_{ji}\in\mathbb{Z}&\longrightarrow& ext{excitations}\;\;m{\xi}_j\in\mathbb{Z}&\longrightarrow& ext{states}\;\;m{y}_j\in\{0,1\}\ &\longrightarrow&2^s\; ext{global}\; ext{NN}\; ext{states}\; ext{y}\in\{0,1\}^s\;\;\sim& ext{FA}\; ext{states} \end{array}$$

#### size-optimal implementations:

- $\Theta(\sqrt{m})$  neurons for a deterministic FA with m states (Indyk, 1995; Horne, Hush, 1995)
- $\Theta(m)$  neurons for a regular expression of length m (Šíma, Wiedermann 1998)

## **The Computational Power of NNs – Rational Weights**

depends on the information content of weight parameters:

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

- $w_{ji} \in \mathbb{Q}$  are fractions  $rac{p}{q}$  where  $p \in \mathbb{Z}$  ,  $q \in \mathbb{N}$
- NNs compute algorithmically solvable problems
- real-time simulation of TMs  $\longrightarrow$  polynomial time  $\equiv$  complexity class P
- a universal NN with 25 neurons (Indyk, 1995)
  - $\longrightarrow$  the halting problem of whether a small NN terminates its computation, is algorithmically undecidable

#### **The Computational Power of NNs – Real Weights**

depends on the information content of weight parameters:

3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994)

- $w_{ji} \in \mathbb{R}$ , e.g. irrational weights  $\sqrt{2}$ ,  $\pi$
- infinite precision of ONE real weight (vs. an algorithm has a finite description) can encode any function f: 0.code(C<sub>1</sub>) code(C<sub>2</sub>) code(C<sub>3</sub>)...
   (code(C<sub>n</sub>) encodes the circuit C<sub>n</sub> computing f for inputs of length n)

$$\rightarrow$$
 exponential time  $\equiv$  any I/O mapping  
(including algorithmically undecidable problems)

• polynomial time  $\equiv$  nonuniform complexity class P/poly:

problems solvable by a polynomial-time (P) algorithm that for input  $x \in \Sigma^*$ of length n = |x|, receives an external advise: a string  $s(n) \in \Sigma^*$  of polynomial length  $|s(n)| = O(n^c)$  (poly), which depends only on n

# **The Computational Power of NNs – A Summary**

depends on the information content of weight parameters:

- 1. integer weights: finite automaton
- 2. **rational** weights: Turing machine polynomial time  $\equiv$  complexity class P
- 3. arbitrary **real** weights: "super-Turing" computation polynomial time  $\equiv$  nonuniform complexity class P/poly exponential time  $\equiv$  any I/O mapping

## **Neural Networks Between Rational and Real Weights**

1. integer weights: finite automaton

2. **rational** weights: Turing machine polynomial time  $\equiv \mathbf{P}$ 

polynomial time & increasing Kolmogorov complexity of real weights:

the length of the shortest program (in a fixed programming language) that produces a real weight,

e.g. 
$$K\left(``\sqrt{2}"
ight) = O(1)$$
,  $K(``random strings") = n + O(1)$ 

- ≡ a proper hierarchy of nonuniform complexity classes between P and P/poly (Balcázar, Gavaldà, Siegelmann, 1997)
- 3. arbitrary real weights: "super-Turing" computation polynomial time 
   P/poly

#### **Neural Networks Between Integer and Rational Weights**

from integer to rational weights

 $\alpha$ **ANN** = a **binary-state** NN with **integer** weights +  $\alpha$  **extra analog-state** neurons with **rational** weights

 $w_{ji} \in egin{cases} \mathbb{Q} & j=1,\ldots,lpha \ \mathbb{Z} & j=lpha+1,\ldots,s \end{cases}$ 1 - 1/2  $i\in\{0,\ldots,s\}$ 3 3/4 - 2/5 -4 4/5 -1 -1/8 lpha=22 5/8 -3 1 1/3 2/7 - 1/2

## **Neural Networks with Increasing Analogicity**

1

0

from binary ( $\{0,1\}$ ) to analog ([0,1]) states of neurons

 $\alpha$ **ANN** = a **binary-state** NN with **integer** weights +  $\alpha$  **extra analog-state** neurons with **rational** weights

$$y_{j}^{(t+1)} = \sigma_{j} \left( \sum_{i=0}^{s} w_{ji} y_{i}^{(t)} \right) \qquad j = 1, \dots, s \qquad \text{updating the states of neurons}$$

$$\sigma_{j}(\xi) = \begin{cases} \sigma(\xi) = \begin{cases} 1 & \text{for } \xi \geq 1 \\ \xi & \text{for } 0 < \xi < 1 \\ 0 & \text{for } \xi \leq 0 \end{cases} \qquad j = 1, \dots, \alpha \qquad \text{function} \end{cases}$$

$$H(\xi) = \begin{cases} 1 & \text{for } \xi \geq 0 \\ 0 & \text{for } \xi < 0 \end{cases} \qquad j = \alpha + 1, \dots, s \qquad \text{Heaviside function} \end{cases}$$

22/54

0

# The Chomsky Formal Language Hierarchy

from finite automata to Turing machines



## The Analog Neuron Hierarchy (ANH)

the computational power of  $\alpha$ ANNs increases with the number  $\alpha$  of extra analog-state neurons:

$$\begin{array}{c} \text{integer weights} & \text{rational weights} \\ \downarrow \\ \text{FA} \ \equiv \ \text{REG} \ = \ \text{OANN} \ \subseteq \ \text{1ANN} \ \subseteq \ \text{2ANN} \ \subseteq \ \text{3ANN} \ \subseteq \ \dots \ = \ \text{RE} \ \equiv \ \text{TM} \\ \uparrow & & \uparrow \\ \text{Type 3} & \text{Chomsky hierarchy} & \text{Type 0} \\ & & & \text{Type 1, 2 ?} \end{array}$$

(the notation  $\alpha ANN$  is also used for the class of languages accepted by  $\alpha ANNs$ )

## The Analog Neuron Hierarchy as a Chomsky-Like NN Hierarchy



the separation of the first two levels **OANN**  $\stackrel{L_1}{\subsetneq}$  **1ANN**  $\stackrel{L_{\#}}{\subsetneq}$  **2ANN** :

- LBA simulates 1ANN:  $1ANN \subset CSL$  (Type 1)
- 1ANN accepts a non-CFL  $L_1$ : 1ANN  $\not\subset$  CFL (Type 2)  $L_1 = \left\{ x_1 \dots x_n \in \{0,1\}^* \ \middle| \ \sum_{k=1}^n x_{n-k+1} \left(\frac{3}{2}\right)^{-k} < 1 \right\} \in 1$ ANN \ CFL
- 2ANN simulates deterministic PDA (DPDA  $\equiv$  DCFL): **DCFL**  $\subset$  **2ANN**
- 1ANN cannot count up to n (even with real weights): DCFL  $\not\subset$  1ANN  $L_{\#} = \left\{ 0^n 1^n \, \big| \, n \geq 1 \right\} \in \mathsf{DCFL} \setminus \mathsf{1ANN}$

the collapse to the third level  $3ANN = 4ANN = \ldots = RE \equiv TM$  (Type 0):

• 3ANN simulates TM

# The Chomsky Hierarchy vs. the Analog Neuron Hierarchy



the separation of some classes is still open, e.g. 2ANN  $\stackrel{?}{\subsetneq}$  3ANN, 1ANN  $\cap$  CFL  $\stackrel{?}{=}$  REG the intermediate levels of the ANH and the Chomsky hierarchy seem incomparable

# **Positional Numeral Systems With Non-Integer Base**

generalization of decimal expansions, which uses also non-integer numbers as the base and digits of a positional numeral system:

- $eta \in \mathbb{R}$  is a real base (radix) such that |eta| > 1
- $A \subset \mathbb{R}$  is a finite set of real digits such that  $|A| \geq 2$

a finite eta-expansion represents a number x in base eta with digits  $a_i$  from A as

$$x = (0 \, . \, a_1 \dots a_n)_eta = a_1 eta^{-1} + a_2 eta^{-2} + a_3 eta^{-3} + \dots + a_n eta^{-n} = \sum_{k=1}^n a_k eta^{-k}$$

#### **Examples:**

- 1.  $\beta = 10$ ,  $A = \{0, 1, 2, \dots, 9\}$ decimal expansion of  $\frac{3}{4} = (0.75)_{10} = 7 \cdot 10^{-1} + 5 \cdot 10^{-2}$
- 2.  $\beta = 2$ ,  $A = \{0, 1\}$

binary expansion of  $\frac{3}{4} = (0.11)_2 = 1 \cdot 2^{-1} + 1 \cdot 2^{-2}$ 

3.  $\beta = \frac{5}{2}$ ,  $A = \left\{\frac{5}{16}, \frac{7}{4}\right\}$  $\frac{5}{2}$ -expansion of  $\frac{3}{4} = \left(0 \cdot \frac{7}{4} \cdot \frac{5}{16}\right)_{\frac{5}{2}} = \frac{7}{4} \cdot \left(\frac{5}{2}\right)^{-1} + \frac{5}{16} \cdot \left(\frac{5}{2}\right)^{-2}$ 

# (Infinite) $\beta$ -Expansions

introduced by Rényi (1957) and studied by Parry (1960); still an active research field with applications in coding theory, algorithmic complexity of arithmetic operations, models of quasicrystals, etc. (e.g. a research group at FNSPE CTU, Prague)

an infinite  $\beta$ -expansion of number x over digits  $a_i$  from A:

$$x = (0\,.\,a_1a_2a_3\cdots)_eta = a_1eta^{-1} + a_2eta^{-2} + a_3eta^{-3} + \cdots = \sum_{k=1}^\infty a_keta^{-k}$$

which is a convergent power series due to  $|m{\beta}|>1$ 

Example:  $\beta = \frac{3}{2}, A = \{0, 1\}$   $\frac{3}{2}$ -expansion of  $\frac{16}{45}$ :  $(0.000\ 10\ 10\ 10\ 10\ 10\ 10\ \dots)_{\frac{3}{2}} = (0.000\ \overline{10})_{\frac{3}{2}}$  $= \left(\frac{3}{2}\right)^{-4} + \left(\frac{3}{2}\right)^{-6} + \left(\frac{3}{2}\right)^{-8} + \dots = \sum_{k=2}^{\infty} \left(\frac{3}{2}\right)^{-2k} = \sum_{k=2}^{\infty} \left(\frac{4}{9}\right)^k = \frac{16}{45}$ 

(a geometric series)

## **Existence of** $\beta$ **-Expansions**

Let  $\beta > 1$  and  $A = \{\alpha_1, \dots, \alpha_p\}$  where  $\alpha_1 < \alpha_1 < \dots < \alpha_p$ . Then every number in the interval  $\left[\frac{\alpha_1}{\beta-1}, \frac{\alpha_p}{\beta-1}\right]$  has a  $\beta$ -expansion iff  $\max_{1 < j \le p} (\alpha_j - \alpha_{j-1}) \le \frac{\alpha_p - \alpha_1}{\beta-1}$ . (Pendicini, 2005)

#### **Examples:**

1.  $\beta > 1$ ,  $A = \{0, 1, \dots, \lceil \beta \rceil - 1\}$  containing the standard integer digits every number in the interval  $D_{\beta} = \left(0, \frac{\lceil \beta \rceil - 1}{\beta - 1}\right)$  (even  $\overline{D_{\beta}}$ ) has a  $\beta$ -expansion, note that  $(0, 1) \subseteq D_{\beta}$ , e.g.  $D_{\beta} = (0, 1)$  for integer base  $\beta$ 

2. 
$$\beta = 3$$
,  $A = \{0, 2\}$  (i.e.  $2 \leq \frac{2-0}{3-1} = 1$ )

any number from the complement of the Cantor ternary set

$$igcup_{n=0}^{\infty}igcup_{k=0}^{3^n-1}\left(rac{3k+1}{3^n+1},rac{3k+2}{3^n+1}
ight)\subset (0\,,1)\,$$
 has no 3-expansion

(including iteratively the open middle third from a set of line segments, starting with (0,1))

#### Uniqueness of $\beta$ -Expansions for Integer Base $\beta$

for an integer base eta > 1 and the standard digits,  $A = \{0, 1, \dots, eta - 1\}$ ,

almost any number from the interval  $D_eta=(0,1)$  has a unique eta-expansion,

e.g. the unique decimal expansion of  $\ rac{\sqrt{2}}{2} = (0.70710678118\ldots)_{10}$  ,

**except** for numbers with a finite  $\beta$ -expansion, which have **two distinct** (infinite)  $\beta$ -expansions,

e.g. two (infinite) decimal expansions of

$$rac{3}{4} = (0.75)_{10} = (0.75000\dots)_{10} = (0.74999\dots)_{10}$$

#### Uniqueness of $\beta$ -Expansions for Non-Integer Base $\beta$

for a non-integer base, almost every number has infinitely (uncountably) many distinct  $\beta$ -expansions (Sidorov, 2003)

Example:  $1 < \beta < 2$ ,  $A = \{0, 1\}$ ,  $D_{\beta} = \left(0, \frac{1}{\beta - 1}\right)$ 

- 1 < eta < arphi where  $arphi = (1 + \sqrt{5})/2 pprox 1.618034$  is the golden ratio: every  $x \in D_{eta}$  has uncountably many distinct eta-expansions (Erdös et al.,1990)
- $\varphi \leq \beta < q$  where  $q \approx 1.787232$  is the Komornik-Loreti constant (i.e.  $\sum_{k=1}^{\infty} t_k q^{-k} = 1$  where  $t_k = \text{parity}(\text{bin}(k))$  is the Thue-Morse sequence): countably many  $x \in D_{\beta}$  have unique  $\beta$ -expansions (Glendinning,Sidorov,2001), e.g. the unique  $\frac{5}{3}$ -expansions of  $\frac{9}{16} \left(\frac{3}{5}\right)^{k-1} = \left(0 \cdot (0)^k \overline{10}\right)_{\frac{5}{3}}$  for  $k \geq 0$ vs. countably many distinct  $\varphi$ -expansions of  $1 = \left(0 \cdot (10)^k 0\overline{1}\right)_{\varphi}$  for  $k \geq 0$
- $q \leq eta < 2$ : uncountably many  $x \in D_eta$  have unique eta-expansions

partially generalizes to  $\beta > 2$  and arbitrary A: two critical bases  $1 < \varphi_A \leq q_A$ such that the number of unique  $\beta$ -expansions is finite if  $1 < \beta < \varphi_A$ , countable if  $\varphi_A < \beta < q_A$ , and uncountable if  $\beta > q_A$  (Komornik, Pedicini, 2016) 31/54

#### **Eventually Periodic** $\beta$ -Expansions

$$ig( 0\,.\,a_1a_2\dots a_{k_1}\,\overline{a_{k_1+1}a_{k_1+2}\dots a_{k_2}}ig)_eta = (0\,.\,a_1a_2\dots a_{k_1})_eta + eta^{-k_1} arrho$$

where

- $a_1a_2\ldots a_{k_1}\in A^{k_1}$  is a preperiodic part of length  $k_1\geq 0$ (purely periodic eta-expansions for  $k_1=0$ )
- $a_{k_1+1}a_{k_1+2}\ldots a_{k_2}\in A^m$  is a repetend of  $m=k_2-k_1>0$  repeating digits

• 
$$\varrho = (0 \cdot \overline{a_{k_1+1}a_{k_1+2}\dots a_{k_2}})_{eta} = rac{\sum_{k=1}^m a_{k_1+k}\,eta^{-k}}{1-eta^{-m}}$$
 is a periodic point

Example:  $\beta = \frac{3}{2}$ ,  $A = \{0, 1\}$ 

$$\frac{22}{15} = (0.1\overline{10})_{\frac{3}{2}} = (0.1)_{\frac{3}{2}} + \left(\frac{3}{2}\right)^{-1} \cdot \varrho = \left(\frac{3}{2}\right)^{-1} + \left(\frac{3}{2}\right)^{-1} \cdot (0.\overline{10})_{\frac{3}{2}}$$

where 
$$\varrho = (0.\overline{10})_{\frac{3}{2}} = \sum_{k=0}^{\infty} \left(\frac{3}{2}\right)^{-2k-1} = \frac{1 \cdot \left(\frac{3}{2}\right)^{-1} + 0 \cdot \left(\frac{3}{2}\right)^{-2}}{1 - \left(\frac{3}{2}\right)^{-2}} = \frac{6}{5}$$

#### **Eventually Quasi-Periodic** $\beta$ -Expansions

where

- $a_1a_2\ldots a_{k_1}\in A^{k_1}$  is a preperiodic part of length (purely quasi-periodic eta-expansions for  $k_1=0$ )
- $a_{k_i+1} \dots a_{k_{i+1}} \in A^{m_i}$  is a quasi-repetend of length  $m_i = k_{i+1} k_i > 0$ •  $\varrho = (0 \cdot \overline{a_{k_i+1}} \dots \overline{a_{k_{i+1}}})_{\beta} = \frac{\sum_{k=1}^{m_i} a_{k_i+k} \beta^{-k}}{1 - \beta^{-m_i}}$  is the same periodic point for every  $i \ge 1$

 $\longrightarrow$  quasi-repetends can be interchanged with each other arbitrarily

 $\bullet$  a generalization of eventually periodic  $\beta$ -expansions

$$a_{k_1+1}\ldots a_{k_2}=a_{k_2+1}\ldots a_{k_3}=a_{k_3+1}\ldots a_{k_4}=\cdots$$

Example:  $\beta \approx 1.220744$  satisfying  $\beta^4 - \beta - 1 = 0$  (\*),  $A = \{0, 1\}$  $1 = (0.0001010001000010...)_{\beta} = (0.00)_{\beta} + \beta^{-2}\varrho$ 

where 00 is a preperiodic part and 010, 1000 are two quasi-repetends with same periodic point  $\rho = (0.\overline{010})_{\beta} = \frac{\beta^{-2}}{1-\beta^{-3}} \stackrel{\star}{=} \beta^2 \stackrel{\star}{=} \frac{\beta^{-1}}{1-\beta^{-4}} = (0.\overline{1000})_{\beta}_{33/54}$ 

#### An Example of Repetends With Unbounded Length

base  $\beta = \frac{5}{2}$ , digits  $A = \{0, \frac{1}{2}, \frac{7}{4}\}$ for every  $n \ge 0$ , the quasi-repetends  $\frac{7}{4}$   $\underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n \text{ times}}$   $0 \in A^{n+2}$  have the same periodic point  $\varrho = \frac{3}{4}$ :

$$\left(0 \cdot \frac{\overline{7} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdots \frac{1}{2}}{n \text{ times}} 0\right)_{\frac{5}{2}} = \frac{\frac{7}{4} \cdot \left(\frac{5}{2}\right)^{-1} + \sum_{i=2}^{n+1} \frac{1}{2} \cdot \left(\frac{5}{2}\right)^{-i} + 0 \cdot \left(\frac{5}{2}\right)^{-n-2}}{1 - \left(\frac{5}{2}\right)^{-n-2}} = \frac{3}{4}$$

 $\longrightarrow \frac{3}{4}$  has uncountably many distinct quasi-periodic  $\frac{5}{2}$ -expansions:

$$\frac{3}{4} = \left(0 \cdot \frac{7}{4} \cdot \frac{1}{2} \cdots \frac{1}{2} \cdot 0 \cdot \frac{1}{2} \cdot \frac{1}{2}$$

where  $n_1, n_2, n_3, \ldots$  is any infinite sequence of nonnegative integers

(there are examples of exponentially many quasi-repetends in terms of their length) 34/54

#### Eventually Quasi-Periodic $\beta$ -Expansions and Tail Sequences

 $(r_n)_{n=0}^\infty$  is a tail sequence of eta-expansion  $arepsilon=ig(0\,.\,a_1\,a_2\,a_3\,\dotsig)_eta$  if

$$r_n = (0\,.\,a_{n+1}a_{n+2}\ldots)_eta = \sum_{k=1}^\infty a_{n+k}eta^{-k}$$
 for every  $n\geq 0$ 

denote by  $R_arepsilon = \{r_n \, | \, n \geq 0\}$  its range

**Lemma.** If  $R_{\varepsilon}$  is finite (i.e. the tail sequence contains a constant infinite subsequence), then the  $\beta$ -expansion  $\varepsilon$  is eventually quasi-periodic.

**Theorem.** Let  $\beta$  be a real algebraic number  $(|\beta| > 1)$  whose all conjugates  $\beta'$  (i.e. the other roots of minimal polynomial of  $\beta$ ) meet  $|\beta'| \neq 1$ . Then a  $\beta$ -expansion  $\varepsilon$  is eventually quasi-periodic iff  $R_{\varepsilon}$  is finite.

**Theorem.** Let  $\beta$  be a real algebraic number ( $|\beta| > 1$ ) whose conjugate  $\beta'$ meets  $|\beta'| = 1$ . Then there exists a finite set  $A \subset \mathbb{Z}$  of integer digits and a quasi-periodic  $\beta$ -expansion  $\varepsilon$  over A of the number 0 that has infinite  $R_{\varepsilon}$ .

(solves an important open problem in algebraic number theory)

# **Quasi-Periodic Numbers**

a real number  $x \in \mathbb{R}$  is  $\beta$ -quasi-periodic within A if every infinite  $\beta$ -expansion of x over A, is eventually quasi-periodic

#### **Examples:**

- x with no  $\beta$ -expansion at all, **is** formally quasi-periodic (e.g. any number from the complement of the Cantor ternary set is 3-quasi-periodic within  $A = \{0, 2\}$ )
- $x = \frac{3}{4}$  is  $\frac{5}{2}$ -quasi-periodic within  $A = \{0, \frac{1}{2}, \frac{7}{4}\}$ : all the  $\frac{5}{2}$ -expansions of  $\frac{3}{4}$  using the digits from A, are eventually quasi-periodic
- $x = \frac{40}{57} = (0.0\overline{011})_{\frac{3}{2}}$  is not  $\frac{3}{2}$ -quasi-periodic within  $A = \{0, 1\}$ : the greedy (i.e. lexicographically maximal)  $\frac{3}{2}$ -expansion  $(0.10000001...)_{\frac{3}{2}}$ of  $\frac{40}{57}$  is not eventually quasi-periodic

**Theorem.** Let  $\beta > 1$  be a Pisot number (i.e. a real algebraic integer whose all conjugates  $\beta'$  meet  $|\beta'| < 1$ ) and  $A \subset \mathbb{Q}(\beta)$ . Then any  $x \in \mathbb{Q}(\beta)$  is  $\beta$ -quasi-periodic within A.

• x = 1 is  $\beta$ -quasi-periodic within  $A = \{0, 1\}$  for the plastic constant  $\beta \approx 1.324718$  (i.e. the minimal Pisot number satisfying  $\beta^3 - \beta - 1 = 0$ )
# Quasi-Periodic 1ANN (QP-1ANN): for a 1ANN, denote:

• 
$$oldsymbol{eta}=1/w_{11}$$
 is the base  $(|eta|>1)$  where  $w_{11}$  is the self-loop weight of the one analog-state neuron (  $0<|w_{11}|<1)$ 

• 
$$A = \left\{ \sum_{i=0\,;\,i\neq 1}^s rac{w_{1i}}{w_{11}} y_i \ \Big| \ y_2,\ldots,y_s \in \{0,1\} 
ight\} \cup \{0,eta\}$$
 are the digits

• 
$$X = \left\{ \sum_{i=0\,;\,i
eq 1}^s rac{w_{ji}}{w_{j1}} \, y_i \, \Big| \, \, j 
eq 1 \, , \, w_{j1} 
eq 0 \, , \, y_2, \dots, y_s \in \{0,1\} 
ight\} \, \cup \, \{0,1\}$$

we say that 1ANN (even with real weights) is quasi-periodic and denote QP-1ANN if every  $x \in X$  is eta-quasi-periodic within A

**Example: 1ANN** with rational weights + the self-loop weight  $w_{11} = 1/\beta$  where  $\beta$  is an integer or the plastic constant or the golden ratio

#### Theorem. QP-1ANN = REG = 0ANN $\equiv$ FA (Type 3)



# **C-Hard Problems**

- *C* is a complexity class of decision problems (i.e. formal languages)
- $A \leq B$  is a reduction transforming a problem A to a problem B (a preorder), which is assumed not to have a higher computational complexity than C
- H is a  $\mathcal{C}$ -hard problem (under the reduction  $\leq$ ) if for every  $A \in \mathcal{C}$ ,  $A \leq H$



- If a *C*-hard problem has a (computationally) "easy" solution, then each problem in *C* has an "easy" solution (via the reduction).
- If a C-hard problem H is in C (a so-called C-complete problem), then H belongs to the hardest problems in the class C.

# The Most Prominent Example: NP-Hard Problems

C = NP is the class of decision problems solvable in polynomial time by a nondeterministic Turing machine

 $A \leq_m^P B$  is a polynomial-time many-one reduction (Karp reduction) from A to Bthe satisfiability problem SAT is NP-hard: for every  $A \in NP$ ,  $A \leq_m^P SAT$ 



- If an NP-hard problem is polynomial-time solvable, then each NP problem would be solved in polynomial time (i.e. P = NP)
- The NP-hard problem SAT is in NP (i.e. SAT is NP-complete), that is, SAT belongs to the hardest problems (NPC) in the class NP.

# **C-Simple Problems**

a conceptual counterpart to  $\mathcal{C}$ -hard problems:

S is a  $\mathcal{C}$ -simple problem (under the reduction  $\leq$ ) if for every  $A \in \mathcal{C}$ ,  $S \leq A$ 



• If a  $\mathcal{C}$ -simple problem S proves to be not "easy",

e.g. S is not solvable by a machine M that can compute the reduction  $\leq$ , then all problems in C are not "easy", i.e. C cannot be solved by M.

 $\longrightarrow$  New Proof Technique: a lower bound known for one  $\mathcal C$ -simple problem S extends to the whole class of problems  $\mathcal C$ 

• If a  $\mathcal{C}$ -simple problem S is in  $\mathcal{C}$ , then S is the simplest problem in the class  $\mathcal{C}$ .

**A Trivial Example:** SAT is simple for the class of NP-hard problems under  $\leq_m^P$ 

# A Nontrivial Example of a C-Simple Problem

## $\mathcal{C} = \mathsf{DCFL'} = \mathsf{DCFL} \setminus \mathsf{REG}$

is the class of non-regular deterministic context-free languages

 $L_1 \leq_{tt}^A L_2$  is a truth-table reduction (a stronger Turing reduction) from  $L_1$  to  $L_2$  implemented by a Mealy machine with the oracle  $L_2$ 

#### The Technical Result:

- the language  $L_{\#} = \{0^n 1^n \mid n \ge 1\}$  over the binary alphabet  $\{0, 1\}$  is DCFL'-simple under the reduction  $\leq_{tt}^A$ : for every  $L \in \mathsf{DCFL'}$ ,  $L_{\#} \leq_{tt}^A L$
- $\longrightarrow L_{\#} \in \mathsf{DCFL'}$  is the *simplest* non-regular deterministic context-free languages
- cf. the <code>hardest</code> context-free language  $L_0$  due to S. Greibach (1973) is CFL-hard



# **Mealy Machines**

 ${\cal A}$  is a Mealy Machine with an input/output alphabet  $\Sigma/\Delta$  i.e. a deterministic finite automaton with an output tape:



# **Mealy Machines**

 ${\cal A}$  is a Mealy Machine with an input/output alphabet  $\Sigma/\Delta$  i.e. a deterministic finite automaton with an output tape:



# **Mealy Machines**

 ${\cal A}$  is a Mealy Machine with an input/output alphabet  $\Sigma/\Delta$  i.e. a deterministic finite automaton with an output tape:



#### The Truth-Table Reduction by Oracle Mealy Machines

 $\mathcal{A}^{L_2}$  is a Mealy Machine  $\mathcal{A}$  with an oracle  $L_2 \subseteq \Delta^*$  :



# Why $L_{\#} = \{0^n 1^n \mid n \geq 1\}$ is the Simplest DCFL' language?

any reduced context-free grammar G generating a non-regular language  $L\subseteq \Delta^*$ is self-embedding: there is a self-embedding nonterminal A admitting the derivation

 $A \Rightarrow^* xAy$  for some non-empty strings  $x,y \in \Delta^+$  (Chomsky, 1959)

G is reduced 
$$\longrightarrow$$
  $S \Rightarrow^* vAz$  and  $A \Rightarrow^* w$  for some  $v, w, z \in \Delta^*$ 

$$\longrightarrow \quad S \Rightarrow^* v x^m w y^m z \in L \text{ for every } m \geq 0$$
 (1)

??? a conceivable (one-one) reduction from  $L_{\#}$  to L: for every  $m,n\geq 1$ , $0^m1^n\in\{0,1\}^*\longmapsto vx^mwy^nz\in\Delta^*$ 

(the inputs outside  $0^+1^+$  are mapped onto some fixed string outside L)

since  $0^m 1^n \in L_{\#}$  implies  $vx^m wy^n z \in L$  by (1)

**!!!** however, the opposite implication may not be true:

Why  $L_{\#}$  is the Simplest DCFL' language? (cont.) **!!!** however, the opposite implication may not be true: for the DCFL' language  $L_1 = \{a^m b^n \mid 1 \leq m \leq n\}$  over  $\Delta = \{a, b\}$ there are **no** words  $v, x, w, y, z \in \Delta^*$  such that for every  $m, n \geq 1$ ,  $vx^mwy^nz\in L_1$  would ensure m=nnevertheless, already **two** inputs  $a^m b^{n-1} \stackrel{?}{\in} L_1$  and  $a^m b^n \stackrel{?}{\in} L_1$  decides  $m \stackrel{?}{=} n$  $\longrightarrow$  the truth-table reduction from  $L_{\#}$  to  $L_1$  with two queries to the oracle  $L_1$ :  $0^m1^n\in\{0,1\}^* \hspace{0.2cm}\longmapsto \hspace{0.2cm} vx^mwy^{n-1}z\in\Delta^*, \hspace{0.2cm} vx^mwy^nz\in\Delta^*$ where x = a, y = b,  $v = w = z = \varepsilon$  is the empty string satisfying  $0^m1^n \in L_\#$  iff  $(vx^mwy^{n-1}z \notin L_1 \text{ and } vx^mwy^nz \in L_1)$ this can be generalized to any DCFL' language L:

### **The Main Technical Result**

**Theorem:** Let  $L \subseteq \Delta^*$  be a non-regular deterministic context-free language over an alphabet  $\Delta$ . There exist non-empty words  $v, x, w, y, z \in \Delta^+$  and a language  $L' \in \{L, \overline{L}\}$  (where  $\overline{L} = \Delta^* \setminus L$  is the complement of L) such that

1. either for all  $m,n\geq 0$ ,  $vx^mwy^nz\in L'$  iff m=n ,

2. or for all  $m, n \geq 0$ ,  $vx^mwy^nz \in L'$  iff  $m \leq n$ .

|       | 1.                  |             |                              |                     |     | 2.                 |              |              |                                                                                                |          |     |
|-------|---------------------|-------------|------------------------------|---------------------|-----|--------------------|--------------|--------------|------------------------------------------------------------------------------------------------|----------|-----|
| $m^n$ | 0                   | 1           | 2                            | 3                   | ••• | $\overline{m}^{n}$ | 0            | 1            | 2                                                                                              | 3        | ••• |
| 0     | ∈ <i>L</i> ′        | ∉ <i>L′</i> | ∉ <i>L′</i>                  | ∉ <i>L</i> ′        |     | 0                  | $\in L'$     | ∈ <i>L</i> ′ | ∈ <i>L</i> ′                                                                                   | $\in L'$ |     |
| 1     | ∉ <i>L</i> ′        | $\in L'$    | <b>∉</b> <i>L</i> ′          | ∉ <i>L′</i>         |     | 1                  | ∉ <i>L</i> ′ | ∈ <i>L</i> ′ | ∈ <i>L</i> ′                                                                                   | $\in L'$ |     |
| 2     | <b>∉</b> <i>L</i> ′ | ∉L′         | ∉ L'<br>∉ L'<br>€ L'<br>∉ L' | <b>∉</b> <i>L</i> ′ |     | 2                  | ∉ <i>L</i> ′ | ∉L′          | <ul> <li><i>E L'</i></li> <li><i>E L'</i></li> <li><i>E L'</i></li> <li><i>∉ L'</i></li> </ul> | $\in L'$ |     |
| 3     | <b>∉</b> <i>L</i> ′ | $\notin L'$ | $\notin L'$                  | $\in L'$            |     | 3                  | ∉ <i>L</i> ′ | $\notin L'$  | <b>∉</b> <i>L</i> ′                                                                            | $\in L'$ |     |
| ÷     |                     |             |                              |                     | ••. | :                  |              |              |                                                                                                |          | ••• |

In particular, for all  $m\geq 0$  and n>0,

 $(vx^mwy^{n-1}z
otin L' ext{ and } vx^mwy^nz\in L') ext{ iff } m=n$  .

48/54

# The Truth-Table Reduction From $L_{\#}$ to Any DCFL' Limplemented by a Mealy machine $\mathcal{A}^L$ with two queries to the oracle L:

For any DCFL' language  $L \subseteq \Delta^*$ , Theorem provides  $v, x, w, y, z \in \Delta^+$ and  $L' \in \{L, \overline{L}\}$ , say L' = L (analogously for  $L' = \overline{L}$ ), such that  $(vx^m wy^{n-1}z \notin L \text{ and } vx^m wy^n z \in L)$  iff m = n. (2)

 $\mathcal{A}^L$  transforms the input  $0^m 1^n$  to the output  $\mathcal{A}(0^m 1^n) = vx^m wy^{n-1} \in \Delta^+$ (the inputs outside  $0^+1^+$  are rejected), while moving to the state qwith  $r_q = 2$  suffixes  $s_{q,1}, s_{q,2}$  and the truth table  $T_q : \{0,1\}^2 \longrightarrow \{0,1\}$ 



It follows from (2) that  $\mathcal{L}(\mathcal{A}^L) = L_{\#}$ , i.e.  $L_{\#} \leq^A_{tt} L$ .

49/54

### Ideas of the Proof of the Theorem

(inspired by some ideas on regularity of pushdown processes due to Janar, 2020)

- any non-regular DCFL language  $L \subseteq \Delta^*$  is accepted by a deterministic pushdown automaton  $\mathcal M$  by the empty stack
- since  $L \notin \mathsf{REG}$ , there is a computation by  $\mathcal{M}$ , reaching configurations with an arbitrary large stack which is being erased afterwards, corresponding to  $v, x, w, y, z \in \Delta^+$  such that  $vx^mwy^mz \in L$  for all  $m \geq 1$
- in addition, we aim to ensure that for all  $m\geq 0$  and n>0,  $(vx^mwy^{n-1}z \notin L' ext{ and } vx^mwy^nz \in L')$  iff m=n



# Ideas of the Proof of the Theorem

(inspired by some ideas on regularity of pushdown processes due to Janar, 2020)

- any non-regular DCFL language  $L\subseteq \Delta^*$  is accepted by a deterministic pushdown automaton  $\mathcal M$  by the empty stack
- since  $L \notin \mathsf{REG}$ , there is a computation by  $\mathcal{M}$ , reaching configurations with an arbitrary large stack which is being erased afterwards, corresponding to  $v, x, w, y, z \in \Delta^+$  such that  $vx^mwy^mz \in L$  for all  $m \geq 1$
- in addition, we aim to ensure that for all  $m\geq 0$  and n>0,  $(vx^mwy^{n-1}z
  otin L'$  and  $vx^mwy^nz\in L')$  iff m=n
- we study the computation of  $\mathcal{M}$  on an infinite word that traverses infinitely many pairwise non-equivalent configurations
- we use a natural congruence property of language equivalence on the set of configurations (determinism of  $\mathcal{M}$  is essential)
- we apply Ramsey's theorem for extracting the required  $v,x,w,y,z\in\Delta^+$  from the infinite computation

# **Basic Properties of DCFL'-Simple Problems**

**DCFLS** is the class of DCFL'-simple problems

#### **Proposition:**

• REG  $\subsetneq$  DCFLS  $\subsetneq$  DCFL,

e.g.  $L_{\#} \in \mathsf{DCFLS}$ ,  $L_R = \{wcw^R \mid w \in \{a,b\}^*\} \notin \mathsf{DCFLS}$ 



- The class DCFLS is closed under complement and intersection with regular languages.
- The class DCFLS is not closed under concatenation, intersection, and union.

## **Application to the Analog Neuron Hierarchy**

- $L_{\#} \notin 1$ ANN by a nontrivial proof (based on the Bolzano–Weierstrass theorem) which can hardly be generalized to another DCFL' language
- $L_{\#}$  is DCFL'-simple under  $\leq_{tt}^{A}$
- the reduction  $\leq_{tt}^{A}$  to any  $L \in 1$ ANN can be implemented by 1ANN
- $\longrightarrow$  the known lower bound  $L_{\#} \notin 1$ ANN for a single DCFL'-simple problem  $L_{\#}$  is expanded to the whole class: DCFL'  $\cap 1$ ANN = Ø



## $\rightarrow$ **DCFL** $\cap$ **1ANN** = **0ANN**

