The Power of Max Pooling Layer

and Jérémie Cabessal ,2[0000—0002—5394 —5249]

Jiri Sl’mal [0000—0001—8248—9425] (lg)
! Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
sima@cs.cas.cz

2 DAVID Laboratory, UVSQ — University Paris-Saclay, Versailles, France
jeremie.cabessa@uvsq.fr

Abstract. Max pooling layers are the basic building blocks of convo-
lutional neural networks. The theoretical characterization of their com-
putational power is therefore a question of central interest. This paper
deals with the representability of the max pooling layer by neural net-
works (NNs) employing the ReL.U activation function. We provide two
upper bounds on the size (number of ReLU neurons) and depth (number
of layers) of the NNs that implement the maximum MAX,, of n nonnega-
tive numbers. We show that the MAX,, function can be computed either
by a NN of size n and logarithmic depth, or by a NN of quadratic size and
constant depth for bounded input numbers of limited precision, where
the constant depth depends on the magnitude of the weights. As a lower
bound, we prove that no NN of depth 2 can compute the maximum of
more than two nonnegative numbers. This confirms that the max pooling
layer cannot be replaced by just two convolutional layers.

Keywords: Convolutional neural network - Max pooling - ReLU - Com-
putational power

1 Introduction

Convolutional neural networks (CNNs) have revolutionized the field of computer
vision and have since been applied to various other domains [8]. A critical compo-
nent within these architectures are pooling layers that progressively downsample
the spatial dimensions of feature maps. The pooling layers primarily enhance ef-
ficiency in terms of computation and memory, improve the network’s robustness
to variations, distortions and noise in input data, remove redundant information,
and mitigate overfitting [3]. Among various pooling strategies, max pooling is
the most widely used. The practical effectiveness and theoretical benefits of max
pooling have been investigated in numerous studies, e.g. [11,4,9].

A natural question arises whether pooling layers can be expressed using the
same unified mathematical formulation as ReLU neurons in convolutional layers
(with fully connected layers as a special case) [9]. Such a formulation would make
the computation of CNNs as well as their theoretical analysis more uniform. For
average pooling, this is straightforward: the average of n real-valued inputs can
be computed as a weighted sum, with each input assigned a weight of 1/n. In
this paper, we focus on whether max pooling layers can be expressed similarly.

2 J. Sima7 J. Cabessa

Specifically, we investigate whether the maximum MAX,, of n nonnegative real
numbers can be computed by a neural network (NN) that employs the ReLU
(rectified linear unit) activation function. A formal definition of NNs which allow
layer-skipping connections [12], is introduced Section 2. Note that the inputs to
max pooling in CNNs are nonnegative reals since they represent the outputs from
the previous convolutional layer produced by the nonnegative ReLLU function.

We present two upper bounds on the depth (number of layers) and size (num-
ber of ReLU neurons) of the NNs that implement MAX,, (Section 3), providing
a basic estimate of the computational complexity of max pooling. We show that
MAX,, can be computed either by a NN of size n and depth [log, n] + 1 (The-
orem 1), or by a NN of quadratic size and constant depth for bounded input
numbers of limited precision (Theorem 2), where the constant depth depends on
the magnitude of the weights. By using Theorem 2, we present examples of NNs
that compute MAX,, with decreasing weights for different b-bit unsigned inte-
ger and floating-point data types (specified in the IEEE 754 standard). These
constructions have already been employed in the practical AppMax method of
estimating the error of energy-efficient CNNs (with reduced bitwidth) based
on linear programming where max pooling layers are replaced by convolutional
ones [15]. As a lower bound (Section 4), we prove that no NN of depth 2 can
compute the maximum of more than two nonnegative numbers (Theorem 3).
This confirms that the max pooling layer cannot be replaced even by two con-
volutional layers.

Recent work has extensively studied the expressivity and approximation
power of deep neural networks with ReLU activations (DNNs), both in theory [1,
2,7,9,14] and in practical settings with floating-point arithmetic [13]. Arora et
al. [1] showed that DNNs which compute exactly continuous piecewise linear
functions, can represent any such function on R™, including MAX,, extended
to negative inputs, using a DNN of depth [log,(n + 1)] + 1. In Theorem 1, we
derive a similar upper bound using a compact formula for MAXs that involves
only one ReLU, improving formally previous constructions [1, Lemma D.3|, [7,
Theorem 1.1], and [9, Theorem 2|, by reducing the required network size from
4(2n — 1) to n for nonnegative inputs and with skip-layer connections.

Hertrich et al. 7] conjecture that the classes of functions computable by
neural networks (NNs) for increasing number of layers, form a strict hierarchy
up to the mentioned logarithmic upper bound which would thus be tight. They
show this conjecture to be equivalent to the logarithmic lower bound on the
depth of NNs that has to be greater than k + 1 to implement the maximum
max(zy,...,2n,0) of n = 2F real numbers z1,...,z, (including negative ones)
and zero. This lower bound is known only for & = 1 [10] (i.e. max(z1,x2,0) can-
not be computed in depth 2) which is closely related to our Theorem 3 providing
a lower bound for MAXj5 restricted to three nonnegative reals (more relevant
to CNNs) and thus representing a stronger result. The lower bound was im-
proved to k = 2 (i.e. max(z1, x2, 3, 4,0) cannot be implemented in depth 3) by
a computer-based proof [7], but only for the so-called H-conforming NNs whose
neurons realize linear functions when restricted to input numbers x1, z2, 3, 4,0

The Power of Max Pooling Layer 3

with a fixed ordering. This result for H-conforming NNs was achieved also by
a combinatorial proof not requiring excessive computational verification and fur-
ther strengthened to nonconstant depth 2(loglogn) [5]. Finally, the matching
lower bound [logy(n 4+ 1)] + 1 was achieved for integer weights [6] whereas the
depth [logs(n+1)]+1 is required for NNs whose weights are decimal fractions [2].

2 A Formal Model of NNs with the Rectifier

In this section, we define a formal model of (artificial) feedforward neural net-
works (NNs) with the ReLU (rectified linear unit) activation function. From
a formal point of view, this model covers any CNN without max pooling layers,
which consists of ReLU neurons.

The architecture of a NN A is thus a general connected directed acyclic graph
(V,E), where V is a set of computational units, called (ReLU) neurons, and
E C V xV is aset connections (edges). The set V' can be partitioned in a unique
minimal way into a sequence of d 4 1 pairwise disjoint layers counted from zero
so that neurons in any layer are connected only to neurons in subsequent layers,
where d is the depth of N. The zeroth input layer X = {1,...,n} C V is
composed of n = | X| input neurons which are not counted in the size s = |[V'\ X|
of N. For our purposes of computing the maximum of inputs we assume that
the dth output layer contains only one output neuron m € V. Each connection
(i,j) € E is labeled with a real weight parameter wj; € R and each neuron
J € V is associated with a real bias wjo € R. We define the weight of N as
max(; jyeg |wji|. For any neuron j € V, we denote by j. = {i € V' | (i,j) € E}
the set of units in A from which connections lead to j, which represent the
inputs to j. Thus, j. =0 for every j € X, and m ¢ j._ for all j € V.

The NN N computes a function N : RZ, — R>(from a set of n-tuples
of nonnegative real numbers to nonnegative reals by evaluating the nonnegative
real states (outputs) y; € R>¢ of neurons j € V layer by layer. At the beginning,
the argument (21,...,2,) € RZ, is presented as an external input to N via its
input neurons, that is, y; = x; for every j € X. The real excitation ¢; € R of
a non-input neuron j € V' \ X in the next layer is computed as a weighted sum
of its inputs including its bias:

§ = wjo + Z WyjiYi 5 (1)
i€5

provided that the states y; have already been determined for all units 7 € j._ in
previous layers. Then the output y; from neuron j is computed by applying the
ReLU activation function (rectifier) R : R — R to its excitation &,

y; = R(&;) = max(0,§;). (2)

By the connectivity of A, the state y,,, of the output neuron m € V is eventually
evaluated, which provides the output y,, = N'(z1,...,x,) from N, for the input
(@1,).

4 J. Sima7 J. Cabessa

3 Upper Bounds

In the following theorem, we show a simple construction of a NN that computes
the MAX,, function returning the maximum of n nonnegative real numbers. It is
based on a observation that the MAX, function can be easily calculated by ReLU
neurons, which is recursively used to implement MAX,, MAXg, MAX;g, etc.
This results in a logarithmic number of layers and linear number of neurons
having unit weights, which provides a basic upper bound on the computational
complexity of max pooling.

Theorem 1. The mazimum of n > 2 nonnegative real numbers x1,...,T, €
R>¢ can be computed by a unit-weight NN of size n and depth [logyn] + 1.

Proof. For simplicity of notation, assume that n = 2* is the power of two for
some integer k > 1, while the argument is similar if it is not the case. The idea
of the proof is based on the fact that the maximum of two nonnegative real
numbers x,y > 0 can be simply calculated by the ReLU function R as

max(x,y) = R(x —y) +y (3)

according to (2). This is used in the NN N to compute the maximum of n nonneg-
ative reals x,...,x, > 0, which form the leaves of a binary tree of logarithmic
depth. Its internal nodes recursively determine the maximum of two numbers by
(3) over pairs, fours, eights, etc., as illustrated in Figure 1 for n = 8. We also
provide a precise formal specification of N, including complex index formulas

suitable for computer implementation [15]. Let xg; = z; for ¢ € {1,...,n} and
Ty; = Max (:L‘g_LQi_l,l‘g_LQ,j) fOI‘ E € {1, ey k’}, ’L S {17 ey 2% (4)
which ensures xp; = max(x1,...,2,). By plugging (3) into (4), we obtain y; =

Yoi = T; fOI‘?;EX:{la""n}7

-1
Yei =R Z(yj,(Qi*1)227j71 _yj’iQZ—j) fOI’[E {1,...7k}, 1€ {17,2%}7(5>

3=0

k k
and Yy, = ZijQk—j =R Zyj,Qk—j = max(z1,...,%n) . (6)
3=0 3=0

For each ¢ € {0,...,k}, this establishes 5; neurons (£,7) € V in the /th layer
of N for i € {1,..., 3}, and one output neuron m € V, which provides the
maximum y,, = N (z1,...,2,) = max(zy,...,z,) according to (6). Clearly, the

size of unit-weight A is 2221 3¢ +1 = n (excluding the inputs) and its depth is
k 4+ 1 =logyn + 1, which completes the proof. O

The main drawback of the NN in Theorem 1 is its logarithmic depth and
sparse connections, making it inefficient for evaluation, e.g. via matrix opera-
tions. A natural question is whether the depth can be reduced to a constant

The Power of Max Pooling Layer 5

Fig.1. An example of a depth-4 NN of 8 (non-input) neurons, that computes the
maximum of n = 8 nonnegative real numbers according to Theorem 1, where the solid
and dashed arrows depict the connections with the weights 1 and —1, respectively.

number of layers. The following theorem shows this is indeed possible with
a quadratic number of neurons, but only under an additional assumption that
the maximum value and the gap between the largest and second largest num-
bers are bounded. These bounds then control the tradeoff between the depth
and weight of NNs implementing the MAX,, function.

Theorem 2. Let z1,...,z, € R>g be n > 2 nonnegative real numbers. Denote

by p1 = max{z1,...,z,} and pp = max ({0}U({z1,...,2n}\{p1})) their largest
and second largest (or zero) values, respectively. Then for any integer r > 0, the

mazimum [of x1,...,%, can be computed by a NN N, of size rn?> +n + 1,
depth 2r + 2, and weight max(1, /w) such that
(w+1)" > - if u1 >0, or w=1 otherwise. (7)
M1 — M2

Proof. Let y; = yo; = x; fori € X ={1,...,n},

ye; = R(&y;) where & =yo—1; —Vw Z R(Vw (ye-1,i — ye-15)), (8)

i€X\{j}

for every £ € {1,...,r} and j € {1,...,n}, and

n k—1
Ym = Z R Yrk — Z Yrj . (9)
k=1 j=1

We will show that the formulas (8) and (9) including the rectifier (2), implement
the maximum y,, = max(x1,...,x,).
We first prove that

M1 S {yrla-”ayrn} g {Oa,ul} (10)

6 J. Sima, J. Cabessa

For 1y = 0, we have {x1,...,2,} = {0} implying {y,1,...,yrn} = {0} by (8),
which ensures (10). Thus, let g3 > 0. For r = 0, condition (7) entails ps = 0,
which proves (10). Moreover, let r > 1. For notational simplicity, we assume the
index notation that meets

H1=Tp =Tp_1 =" =XTj, > o =1Tjo_1=>--2>2112>0 (11)

for some jo € {2,...,n}, without loss of generality as the following argument
for (10) holds for any ordering of the inputs. By induction on ¢, we extend the
assumption (11) to

B = Yen = Yeon—1 = " = Yt jo > Yejo—1 = - = Ye1 = 0. (12)

for every £ € {0,...,r}. Clearly, (11) implies (12) for £ = 0.
Further assume that (12) holds for £ — 1 where 0 < ¢ < r, that is,

Bl = Yoim =Yoo n—1=" " =Yo—1,jo > Ye—1,jo—1 > - > Yo—1,1 > 0. (13)

Then equation in (8) reduces to

&= (wn—g)+ Dy —w Z Ye—1, forje{l,...,n}, (14)
i=j+1

since
0 forie{1,...,5—1}
VW (Ye—1,; — Ye—1,;) forie{j+1,...,n}

by induction hypothesis (13) according to (2). It follows from (14) and (13) that
§j = (w(n —j) + Dp1 —w(n — j)pu = for j € {jo,jo +1,...,n} and

ROV (ora — g 1)) = { (15)

§oj—&j1=(wn—3+1)+1)(yr—1;—Ye-1,-1) =20 forje{2,...,n}, (16)

which implies that (12) holds for ¢, due to the rectifier (2) is nondecreasing. This
completes the induction.
It follows from (16) for jo < n that for each £ € {1,...,r},

o — Stgo—1 = (W+ 1) (Ye—14o — Ye—1,4o-1) (17)

which reduces to
$ojo—1 < (wW+1)ye—1j,-1 — wis (18)

due to yojo = Yej, = Eejo = 1 > 0 for all £ € {1,...,r}, according to (12).
Suppose first there is ¢y € {1,...,r} such that yg,—1 j,—1 = 0. Then & j,—1 <
—wpr < 0 by (18), which ensures yg, jo—1 = R(&ey.50—1) = 0. By applying
this argument inductively, we obtain y j,—1 = 0 for all £ € {{y,...,r}, which
implies (10) according to (12).

On the other hand, if y,_1 j,—1 > 0 for each ¢ € {1,...,r}, then y,_1 j,—1 =
fe—l,jo—l due to (2) This means Ye—1,50 — Ye—-1,5j0—1 = gé—l,jo — ff—ldo—l for all

The Power of Max Pooling Layer 7

Az A NV
X i) 3

Fig. 2. An example of a depth-6 NN N> (r = 2) of 22 (non-input) neurons, that
computes the maximum of n = 3 nonnegative real numbers according to Theorem 2,
where the solid and dashed, thick or thin arrows depict the connections with the weights
vw and —y/w, or 1 and —1, respectively.

¢ € {2,...,r}, which entails &, — & jo—1 > (w + 1)" (w1 — p2) according to
(17) and (11). Hence, & jo—1 < p1 — (w + 1)"(pt1 — p2) < 0 due to (7), implying
Yr.jo—1 = 0 which ensures (10) by (12) also in this case. This completes the proof
of (10) and terminates the validity of notational assumption (11).

According to (10), there exists kg = min{k € {1,...,n} | yrr = p1} and
yrj = 0 for all j € {1,...,ko — 1}, which means y,, — Zf;ll yr; < 0 for all
ke {l,...,n}\ {ko}, whereas y,x, — Zf‘;l Yri = Yrko = M1 > 0. This shows
that formula (9) provides the correct maximum y,,, = p1 due to (2).

Finally, the formulas (8) and (9) can be evaluated by a NN N, of depth
2r + 2 with the input layer X C V and one output m € V implementing the
outer sum in (9) so that y, = N.(z1,...,2,) = p1. Namely, for each ¢ €
{1,...,7}, the (2¢ — 1)th layer in N, contains n?> — n neurons that implement
R(Vw (ye—1,i — ye—1,5)) from (8) for every j € {1,...,n} and i € X \ {j}, which
are used by n neurons in the (2¢)th layer for computing y, ; according to (8)
for j € {1,...,n}. The (2r 4+ 1)th layer of N, is composed of n neurons that
evaluate the summands R(y,. — Ef;ll Yrj) in (9) for k € {1,...,n}. Figure 2

8 J. Sima, J. Cabessa

depth of A, | 4 (M) 6 (N2)| 8 (N3)[10 (Na)[12 (N5)]|22 (N10)[32 (Nis)
16-bit ushort 256.00] 15.97| 6.28] 3.88] 2.87 1.43 1.05
32-bit uint 65536.00] 256.00| 40.31| 15.97| 9.14| 2.87 1.85

64-bit ulong [4294967296.00(65536.00/1625.50| 256.00| 84.45 9.14 4.28

Table 1. The weights (rounded up to hundredths) of A, that computes MAX,, by
Theorem 2, in terms of its depth, for different b-bit unsigned integer data types.

depth of N;. |8 (NV5)]22 (N10) |44 (N2o)| 102 (N50)[302 (N1s0)|1002 (N00)
16-bit half (e = 4) 101.59 3.88 1.74 1 1 1
32-bit single (e = 7) | 7.90E13|14766.09| 121.52 6.75 1.62 1
64-bit double (e = 10)|1.83E105| 3.79E31| 6.16E15|2068279.89 127.41 417

Table 2. The weights (rounded up to hundredths or to three significant digits) of N/,
that computes MAX,, according to Theorem 2, in terms of its depth, for different b-bit
floating-point data types with e-bit exponents.

shows an example of Ny (r = 2) for n = 3 inputs. Altogether, the size of N, is
r(n® —n+mn)+n+1=rn?+n+1 and its weight is max(1, /w) according to
(8) and (9), which completes the proof. O

For example, Theorem 2 provides a depth-4 NN N; of size n? +n + 1 that
computes the MAX,, function and has the weight max (1, /u2/(u1 — p2)) due
to (7). In general, however, the assumption (7) of Theorem 2 cannot be guaran-
teed in advance. This means that the NN N, in Theorem 2 can fail to compute
the maximum for large numbers or very close numbers violating this assumption
under which N, was constructed. Nevertheless, the condition (7) can be ensured
when the input real values to A, are represented in the computer using data
types within a constant number b of bits. Tables 1 and 2 show the tradeoffs
between the weight and depth of A, for increasing r when the unsigned integer
and floating-point data types, respectively, are used with different usual b-bit
precision where b = 16, 32,64 (including e = 4,7, 10 bits, respectively, for the
floating-point exponent). Namely, for the b-bit unsigned integer data types, we
know that 1 < 2°—1 and g3 — 2 > 1, which means that the weight max(1, v/w)
of NV, in Theorem 2 meets its assumption (7) for w = /26 — 1 — 1. For the b-bit
floating-point data types in the IEEE 754 standard, including e bits for the ex-
ponent, we have iy < 22°(1 -2+ and py — pp > 9-2"=b+et4 which ensures
that the weight max(1,/w) of NV, in Theorem 2 satisfies its assumption (7) for
w = {/22°71=3(20=¢=1 — 1) — 1. For even lower bitwidths employed in approx-
imate energy-efficient DNNs [15], max pooling can be implemented using only
a few convolutional layers with small weights. For example, for b = 4 bits using
either integer or microfloat data types, Theorem 2 provides a four-layer NN N
with the weight w < 4.

The Power of Max Pooling Layer 9

4 Lower Bound

In this section, we present a lower bound on the depth of NNs computing the
MAX,, function. In the following theorem, we will prove that two layers of ReLU
neurons are not enough to implement MAXj3, which means that the maximum
pooling layer cannot be replaced in CNNs even with two convolutional layers.

Theorem 3. There is no depth-2 NN that computes the mazimum of more than
two nonnegative real numbers.

Proof. On the contrary, suppose there is a depth-2 NN A which contains three
input neurons X = {1,2,3} C V reading nonnegative real inputs x; > 0 for
1 € X, one hidden layer U C V, and one output neuron in the second layer, that
computes

max(z1, 72, 73) = N (21, 22,73) = R [wo + Y _ w;R(&;) (19)
Jjeu

including the excitation

gj = Wjo + Z WjiTs for] S U, (20)
ieX
where wg, wjo € R and wj,w;; € R for j € U and i € X, are real biases and
weights, respectively. For simplicity of initial notation, formula (19) assumes
without loss of generality that there is no direct connection in N leading from
its input to its output (this case will be resolved later anyway), because otherwise
such an edge could be split into two connections by a hidden neuron added to U,
one with the original weight and the other with the unit weight. Clearly, U # ().
In addition, let w; # 0 and {wj; | ¢ € X} # {0} for all j € U. Moreover,
we assume that 1,29, x5 are positive reals since if (19) cannot be achieved for
x1,x2,x3 > 0, then even more so for xy, xo, x5 > 0. Hence, formula (19) reduces
to
max(zy, T2, T3) = wo + Z w; R(&5) (21)
jevu
due to (2), N(x1, z2,23) € {x1, 2,73}, and z1, 2, T3 > 0.
In the three-dimensional Euclidean space E?, the planes wjo+ Y, y wji; =
0 for every j € U, cut its positive octant (z; > 0 for all ¢ € X) into p open
convex polytopes P, C E? for r € {1,...,p}. Each such a polytope P, is thus an
intersection of open half-spaces

>0 ifjeU,
w10+zwjixi{<o ifj e U\U, (22)
ieX "
for some U, C U. For each r € {1,...,p}, equation (21) can be rewritten by (2),
(20), and (22) as max(z1, v, x3) = Wro + >_;c x Wri; for all (z1,22,23) € P,

where W,o = wg + Z wjw;o and W = Z w;w;; forie X. (23)
jeu, jeu,

10 J. Sima7 J. Cabessa

Since P, is open and max(x1,za,23) € {1,x2, 23}, there is ¢, € X such that

x;, = max(x1,xe,x3) for all (z1,x2,x3) € P, which means
W= L= i e X U{0} (24)
" =10 otherwise ' ‘

Consider that one moves from a polytope P, to an adjacent polytope Ps
for some 7,5 € {1,...,p}, through a single plane wyo + >, x wrsx; = 0 where
k € U belongs to the symmetric difference U, AU; due to (22), say k € U, \ Us
(possibly after exchanging the indices r and s). This plane can be represented by
more neurons j € U,.AUs whose weights differ by multiplicative real constants

Cji # 0:

Wj; = CjpWry forie XU {0} . (25)
We know by (22) that
(>0 ifjeUN\U,
CJ’“{<0 ifj €U\ U,. (26)

It follows from (23) and (25) that

Wm‘—WSiZ E ijji— E ijji

jeU, jeUs
= E ij’jkwki - E ij’jkwki == C’kwki (27)
JEUN\Us JEUNU,

for i € X U {0}, where
Ok = Z chjk — Z chjk- (28)
JEUNUs JEUNU-

First suppose that i, # is, then W,; — W =1 due to (24), which ensures
Ck # 0 by (27). Thus,

& ifi=i
WM' - Wsi Ch 1 . .T .
wki:Tz _C% if i =i for i € X U{0}, (29)
0 otherwise
according to (27) and (24). Hence, wy;, = —wy;, and wio = wy; = 0 for i €

N o) i e gy = o £ X\ o),
for every j € U, AUs, due to (25). By (20) and (2), this gives
N Jwii Rz, —) ifwg, >0)
)= {wjirR(ﬂﬂz'S —xi,) ifwj, <0 for j € UrAU; - (30)

On the other hand, for i, = is, we know W,.; — W; = 0 for i € X U {0}, due
to (24), which means Cj = 0 by (27), since {wy; | i € X} # {0}. Hence,

C],C: Z chjk: Z ’LUjCjk (31)

J€UNUs JEUNU,

The Power of Max Pooling Layer 11
follows from (28). We have

> wiR(E) = Y wiCiR(&) — Y wiCixR(—&)
JjeU,.AUg JEUN\U; JEU\U,
= O}, (R(&) — R(=&k)) = Cr&k = Crwko + Z Crwyiz; (32)
i€ X
according to (20), (25), (26), (2), and (31).
Finally, for the remaining neurons j € U which represent the planes w;o +

> iex Wjir; = 0 that do not intersect the positive octant, we have either §; < 0
for all inputs to N, which means R({;) = 0, or £; > 0 for all inputs, implying

R(&) =& = wjo+ > _ wjia; (33)

i€X

We plug (30), (32), and (33) into (21) which reduces to

max(xl,xg,xg) = Z a;T; + Z ain(a:i - Z‘j) (34)
ieX i,jEX
i#£]

for some nine real constants a1, as, as, a1, as, a3, asi, aes, asz € R, due to (24).
Now, consider the following seven inputs (1,1,2), (1,1,3), (2,2,1), (2,3,2),
(2,3,3), (3,1,3), and (3,2,2) to NV, which must satisfy (34). This generates the
following system of seven linear equations in the nine real variables a1, as, as, a2,

asi, ais, asi, ags, azz € R:

a1 + as + 2a3 + agy + age = 2 2a1 + 3as + 3az + az1 +az1 =3
a1 + as + 3as + 2as1 +2a32 =3 3a; +az + 3az + 2a12 + 2a32 =3 (35)
2a1 +2a3 +az + a3z +axz =2 3a; +2ax +2a3+az +az3 =3
2a1 + 3az + 2a3 + a2, + a3 =3

that can be checked by the Rouché-Capelli theorem to have no solution, which
provides a contradiction and completes the proof. a

5 Conclusion

We investigated the computational power of max pooling in CNNs by express-
ing the MAX,, function using ReLLU-based NNs. Theorem 1 constructs a NN of
size n and depth [log, n] + 1 that implements MAX,,, successfully used in the
practical AppMax method [15]. Theorem 2 shows that for bounded input num-
bers with limited precision (constant-bit data types), MAX,, can be computed
with quadratic size and constant depth which decreases as weight magnitude
increases, quantifying a depth-weight trade-off in CNNs. This construction can
also be applied to approximate, energy-efficient DNNs with reduced bitwidths
for floating-point numbers [15]. Furthermore, Theorem 3 proves that no NN of

12 J. Sima7 J. Cabessa

depth 2 can compute the maximum of 3 nonnegative numbers. Extending this re-
sult to constant depth is the main open problem, which would establish the strict
depth hierarchy of NNs [7]. Overall, these findings address whether max pooling
layers offer greater computational power and efficiency than convolutional ones.

Acknowledgments. This research was institutionally supported by RVO: 67985807,
J. Sima was partially supported by the research programme of the Strategy AV21 “Al:
Artificial Intelligence for Science and Society,” and J. Cabessa was partially supported
by the Czech Science Foundation grant GA25-15490S. J. Sima thanks his son Dominik
for implementing computer calculations to create Tables 1, 2, and system (35).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural net-
works with rectified linear units. In: Proc. ICLR 2018. OpenReview.net (2018)

2. Averkov, G., Hojny, C., Merkert, M.: On the expressiveness of rational ReLU neural
networks with bounded depth. In: Proc. ICLR 2025. OpenReview.net (2025)

3. Boureau, Y., Ponce, J., LeCun, Y.: A theoretical analysis of feature pooling in
visual recognition. In: Proc. ICML 2010. pp. 111-118. Omnipress (2010)

4. Christlein, V., Spranger, L., Seuret, M., Nicolaou, A., Kral, P., Maier, A.: Deep
generalized max pooling. In: Proc. ICDAR 2019. pp. 1090-1096. IEEE (2019)

5. Grillo, M., Hertrich, C., Loho, G.: Depth-bounds for neural networks via the braid
arrangement. CoRR, arXiv:2502.09324 [cs.LG] (2025)

6. Haase, C., Hertrich, C., Loho, G.: Lower bounds on the depth of integral ReLLU
neural networks via lattice polytopes. In: Proc. ICLR 2023. OpenReview.net (2023)

7. Hertrich, C., Basu, A., Summa, M.D., Skutella, M.: Towards lower bounds on the
depth of ReLU neural networks. SIAM J. Discret. Math. 37(2), 997-1029 (2023)

8. Li, Z., Liu, F.; Yang, W., Peng, S., Zhou, J.: A survey of convolutional neural
networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn.
Syst. 33(12), 6999-7019 (2022)

9. Matoba, K., Dimitriadis, N., Fleuret, F.: Benefits of max pooling in neural net-
works: Theoretical and experimental evidence. Trans. Mach. Learn. Res. (2023)

10. Mukherjee, A., Basu, A.: Lower bounds over Boolean inputs for deep neural net-
works with ReLU gates. CoRR, arXiv:1711.03073 [cs.CC] (2017)

11. Murray, N., Perronnin, F.: Generalized max pooling. In: Proc. CVPR 2014. pp.
2473-2480. IEEE (2014)

12. Oyedotun, O.K., Ismaeil, K.A., Aouada, D.: Why is everyone training very deep
neural network with skip connections? IEEE Trans. Neural Netw. Learn. Syst.
34(9), 5961-5975 (2023)

13. Park, Y., Hwang, G., Lee, W., Park, S.: Expressive power of ReLLU and step net-
works under floating-point operations. Neural Networks 175, 106297 (2024)

14. Safran, I., Reichman, D., Valiant, P.: How many neurons does it take to approxi-
mate the maximum? In: Proc. SODA 2024. pp. 3156-3183. SIAM (2024)

15. Sima, J., Vidnerova, P.: Weight-rounding error in deep neural networks. (To appear
at ECML PKKD 2025), https://www.cs.cas.cz/sima/rnderr.pdf

