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Efficient Processing of Deep Neural Networks (DNNs)

e DNNs are widely used for many artificial intelligence (Al) applications including
computer vision, speech recognition, natural language processing, robotics etc.

e DNNs achieve state-of-the-art accuracy on many Al tasks at the cost of high
computational complexity (tens of millions of operations for a single inference)

o cnergy efficiency of DNN implementations in low-power hardware operated
on batteries (e.g. cellphones, smartwatches, smart glasses) becomes crucial

—— reducing the energy cost of DNNs:

1. approximate computing methods (e.g. low floating-point precision, approxi-
mate multipliers) in error-tolerant applications such as image classification

2. hardware design: energy-efficient implementations of DNNs on various hard-
ware platforms including GPUs, FPGAs, in-memory computing architectures
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Energy Consumption of DNNs

e the power consumption of a specific DNN hardware implementation can be
measured or calculated/estimated (using physical laws)

e a plethora of methods that minimize the energy consumption of a given DNN
on various hardware architectures
(Sze,Chen,Yang,Emer:Efficient Processing of Deep Neural Networks,2020)

e automated by software tools, for example, the Timeloop program maps a
convolutional layer specified by its parameters onto a given hardware archi-
tecture (e.g. Simba, Eyeriss) that is optimal in terms of power consumption
estimated by Accelergy tool which reports the energy statistics

e it has been empirically observed that the energy for DNN inference is mainly
consumed by

1. data movement inside a memory hierarchy (approx. 70%) corresponding to
the data energy E i,

2. multiply-and-accumulate (MAC) operations (approx. 30%): S <+ S+wx
on floats S, w, x, corresponding to the computation energy Ecomp

— FE = Edata + Ecomp 3/15



Motivations for Energy Complexity Model of DNNs

e formal computational models are fundamental for defining robust complexity
measures and classes, e.g. Turing machine for efficient (polynomial-time)
computations characterized by the complexity class P (vs. NP)

e ecnergy as a new computational resource alternative to computation time and
memory space which are quantified asymptotically using Big O notation

e lower bounds on computational complexity establish principal limits of efficient
algorithms

—— Simplified Hardware-Independent Model of Energy Complexity for DNNs:

e abstracts from hardware implementation details, ignoring specific aspects and
parameters of real-world machine

e preserves the asymptotic energy of DNN inference

e focuses, for simplicity, on separate convolutional layers, avoiding global energy
optimization across multiple CNN (convolutional neural network) layers
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Energy COI’I’IplEXity Model for CNNS (§ima,Vidnerové,Mrézek,2023)

Arithmetic Processor
(MAC operations)

[ Buffer: B bits
o

|

CNN': weights + current states of neurons

DRAM

e only two memory levels called DRAM (large, slow, and cheap memory) and
Buffer of limited capacity B bits (small, fast, and expensive memory)

e CNN weights and states are stored in DRAM
e arithmetic operations are performed over numerical data stored in Buffer
e the dataflow controls the transfer of data between DRAM and Buffer

e the main idea: the three arguments stored in DRAM, input @, weight w, and
accumulated output S of each MAC operation S <— S + wax performed for
evaluating a given convolutional layer, must occur in Buffer simultaneously
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Energy Complexity Measure E = Fgaa + Ecomp

for a given dataflow:

E ., is proportional to the number of DRAM accesses

Ecomp is proportional to the number of MACs over data in Buffer

Example: the dataflow with write-once outputs: each output of a single neuron
is completely evaluated at once in Buffer before writing to DRAM

its theoretical energy complexity F 4., in terms of convolutional layer parameters:
E4.i, = O (d) where d is the layer depth (the number of feature maps)
E,.., = O (h?) where h is the layer height=width (the size of feature maps)
E ., = O (%) where 7 is the size of receptive fields

Ej., = O (072) where o is the stride

fits very well (by linearity /quadraticity statistical tests) the real power consumptions
estimated by the Timeloop/Accelergy software platform that maps a convolutional
layer of given parameters onto the Simba and Eyeriss hardware architectures:
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Experimental Validation of Energy Complexity Model for Simba
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Experimental Validation of Energy Complexity Model for Eyeriss
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Energy Complexity of Fully-Connected (FC) Layers

Y; = RelLU (’lUjo -+ Z wﬂwz>

=1

forevery 3 =1,...,m

1. Computation Energy: each of the m outputs is initialized with bias w
and requires n MAC updates

— Ecomp — Cb mmn

where C} is a non-uniform constant specific to b-bit MAC circuit inside a micro-
processor
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Energy Complexity of Fully-Connected (FC) Layers

Y; = RelLU <wj0 -+ Z fwﬂwz>

=1

forevery 3 =1,...,m

2. Data Energy: we count DRAM accesses for weights, outputs, and inputs
separately S Edata — weights ‘|‘ Eoutputs ‘|‘ Einputs

e for each of the mmn pairs of inputs «; and (accumulated) outputs y; (partial
sums) that occurs in Buffer, the corresponding unique weight wj; is read once

® cach output read into Buffer is later written to DRAM
— Ey, =b(mn 4+ 2u + v) (it thus suffices to minimize 2 + v)

where b is the number of bits in the float representation;

p and v is the number of DRAM accesses to read outputs and inputs, respectively
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A Simple General Lower Bound on Data Energy Complexity

assumption: the Buffer capacity is B = b(8 + 1) bits

where 3 > 1 floating-point numbers of size b bits are used for inputs and outputs
while the remaining one serves for weights

observation: we get at most 3 — 1 input-output pairs by reading one input/output
into Buffer X all the mmn pairs need to meet in Buffer
— u+v> % DRAM reads & we know ;1 > m

the trivial lower bound on the data energy follows:

mn
Edata:b(mn—l—Zu—l—I/)Zb(mn—l— 1—|—m>

which can slightly be improved in general case:

mn +m 4+ B8 — 2
B —1 (B—1)2

Eyi, > b (mn + min(m,n) + 1)
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Meeting of All Pairs in a Limited-Capacity Room

popular formulation of the data energy problem for FC layers

(m outputs = boys, n inputs = girls, Buffer = room of capacity B persons,
p + v DRAM reads = boy + girl entrances):

What is the smallest number 1 + v of person entrances in a room that can
hold at most 3 people, so that each of the m boys meets each of the n girls
in that room ? (only one person can enter the room at a time, replacing someone
inside if the room is full)

m boys n girls

— /—M.

. ® o
|n||n|ln| capacity of 3 persons ***
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An Upper Bound on Data Energy Complexity of FC layers

the dataflow by solving the problem of meeting pairs in a limited-capacity room

B-1boys per group
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An Upper Bound on Data Energy Complexity of FC layers

the dataflow by solving the problem of meeting pairs in a limited-capacity room
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An Upper Bound on Data Energy Complexity of FC layers

the dataflow by solving the problem of meeting pairs in a limited-capacity room
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An Upper Bound on Data Energy Complexity of FC layers

the dataflow by solving the problem of meeting pairs in a limited-capacity room

0 girls waiting
for the 1st group of boys

n-1 girls already met
the 1st group of boys

(-1 boys per group '8-1 NEW pairs

12/15



An Upper Bound on Data Energy Complexity of FC layers

the dataflow by solving the problem of meeting pairs in a limited-capacity room
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An Upper Bound on Data Energy Complexity of FC layers

the dataflow by solving the problem of meeting pairs in a limited-capacity room
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An Upper Bound on Data Energy Complexity of FC layers

the dataflow by solving the problem of meeting pairs in a limited-capacity room
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An Upper Bound on Data Energy Complexity of FC layers

the dataflow by solving the problem of meeting pairs in a limited-capacity room
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An Upper Bound on Data Energy Complexity of FC layers

the dataflow by solving the problem of meeting pairs in a limited-capacity room

0 girls waiting
for the rth group of boys

n-1 girls already met
the rth group of boys

B-1boys per group

m
—— = m boy entrances & v = ﬁ (n — 1) + 1 girl entrances
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An Upper Bound on Data Energy Complexity of FC layers

the dataflow by solving the problem of meeting pairs in a limited-capacity room

Edata:b(mn+2“+y)

where 2u—|—u=ﬁ_1(n—1)—|—2m—|—1
m(n — 1)
— FEyu, < b|mn + 51 —|—2m—|—1>
m(n — 1) g — 2 min(m,n)
cf. Eq > b mn + 51 —|—2'm—|—1—ﬁ_1 m — 51
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Optimal Energy Complexity for Partitioned Buffer

Buffer is divided into two fixed parts separated for d inputs and 3 — d outputs
Example: d =1 (similarly for arbitrary 1 < d < g — 1)

1. Linear Program formulation: find ;4 > 0 and v > 0 that minimize 2u—+v

subjectto pu+ (B8 —1)v > mn (at most 1 or B — 1 new pairs
by reading one output or input, respectively)

and g > m (at least m outputs are read)

2. Dual Linear Program: find ¢ > 0 and 1 > 0 that maximize mn ¢p+m ¢
subjectto o+ <2 and (B—1)p <1

which has a feasible solution ¢y = ﬁ and Yy = 2 —

1
B—1

the matching lower bound by the weak duality theorem:
2u +v > mnoyg+ myy = mg"__ll) + 2m
m(n — 1)
B —1

(can also be proven in some other special cases of contiguous Buffer)

— optimal energy complexity Eq,1, = b (mn + + 2m + 1)
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A Summary

e In our previous work, we have introduced a machine-independent model
of energy complexity for CNNs, which fits very well the power consumption
estimates of various CNN hardware implementations.

e As a starting point for convolutional layers, we have theoretically analyze the
energy complexity model for FC layers proposing an energy-efficient dataflow
which provides an upper bound on energy complexity of FC layers.

e \We have proven the optimal energy complexity of FC layers for partitioned
Buffer.

Open Problems

e the matching lower bound on energy of FC layers for contiguous Buffer ?

e the optimal energy complexity for convolutional layers ?
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