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Efficient Processing of Deep Neural Networks (DNNs)

• DNNs are widely used for many artificial intelligence (AI) applications including
computer vision, speech recognition, natural language processing, robotics etc.

• DNNs achieve state-of-the-art accuracy on many AI tasks at the cost of high
computational complexity (tens of millions of operations for a single inference)

• energy efficiency of DNN implementations in low-power hardware operated
on batteries (e.g. cellphones, smartwatches, smart glasses) becomes crucial

−→ reducing the energy cost of DNNs:

1. approximate computing methods (e.g. low floating-point precision, approxi-
mate multipliers) in error-tolerant applications such as image classification

2. hardware design: energy-efficient implementations of DNNs on various hard-
ware platforms including GPUs, FPGAs, in-memory computing architectures
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Energy Consumption of DNNs

• the power consumption of a specific DNN hardware implementation can be
measured or calculated/estimated (using physical laws)

• a plethora of methods that minimize the energy consumption of a given DNN
on various hardware architectures
(Sze,Chen,Yang,Emer:Efficient Processing of Deep Neural Networks,2020)

• automated by software tools, for example, the Timeloop program maps a
convolutional layer specified by its parameters onto a given hardware archi-
tecture (e.g. Simba, Eyeriss) that is optimal in terms of power consumption
estimated by Accelergy tool which reports the energy statistics

• it has been empirically observed that the energy for DNN inference is mainly
consumed by
1. data movement inside a memory hierarchy (approx. 70%) corresponding to

the data energy Edata
2. multiply-and-accumulate (MAC) operations (approx. 30%): S ← S+wx

on floats S,w, x, corresponding to the computation energy Ecomp

−→ E = Edata + Ecomp
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Motivations for Energy Complexity Model of DNNs

• formal computational models are fundamental for defining robust complexity
measures and classes, e.g. Turing machine for efficient (polynomial-time)
computations characterized by the complexity class P (vs. NP)

• energy as a new computational resource alternative to computation time and
memory space which are quantified asymptotically using Big O notation

• lower bounds on computational complexity establish principal limits of efficient
algorithms

−→ Simplified Hardware-Independent Model of Energy Complexity for DNNs:

• abstracts from hardware implementation details, ignoring specific aspects and
parameters of real-world machine

• preserves the asymptotic energy of DNN inference

• focuses, for simplicity, on separate convolutional layers, avoiding global energy
optimization across multiple CNN (convolutional neural network) layers
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Energy Complexity Model for CNNs (Šı́ma,Vidnerová,Mrázek,2023)

• only two memory levels called DRAM (large, slow, and cheap memory) and
Buffer of limited capacity B bits (small, fast, and expensive memory)

• CNN weights and states are stored in DRAM

• arithmetic operations are performed over numerical data stored in Buffer

• the dataflow controls the transfer of data between DRAM and Buffer

• the main idea: the three arguments stored in DRAM, input x, weight w, and
accumulated output S of each MAC operation S ← S +wx performed for
evaluating a given convolutional layer, must occur in Buffer simultaneously
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Energy Complexity Measure E = Edata + Ecomp

for a given dataflow:

Edata is proportional to the number of DRAM accesses
Ecomp is proportional to the number of MACs over data in Buffer

Example: the dataflow with write-once outputs: each output of a single neuron
is completely evaluated at once in Buffer before writing to DRAM

its theoretical energy complexity Edata in terms of convolutional layer parameters:

Edata = O (d) where d is the layer depth (the number of feature maps)

Edata = O (h2) where h is the layer height=width (the size of feature maps)

Edata = O (r2) where r is the size of receptive fields

Edata = O (σ−2) where σ is the stride

fits very well (by linearity/quadraticity statistical tests) the real power consumptions
estimated by the Timeloop/Accelergy software platform that maps a convolutional
layer of given parameters onto the Simba and Eyeriss hardware architectures:
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Experimental Validation of Energy Complexity Model for Simba

Edata = O (d) Edata = O (h2)

Edata = O (r2) Edata = O (σ−2)
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Experimental Validation of Energy Complexity Model for Eyeriss

Edata = O (d) Edata = O (h2)

Edata = O (r2) Edata = O (σ−2)
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Energy Complexity of Fully-Connected (FC) Layers

yj = ReLU
(
wj0 +

n∑
i=1

wjixi

)
for every j = 1, . . . ,m

1. Computation Energy: each of the m outputs is initialized with bias wj0
and requires n MAC updates

−→ Ecomp = Cbmn

where Cb is a non-uniform constant specific to b-bit MAC circuit inside a micro-
processor
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Energy Complexity of Fully-Connected (FC) Layers

yj = ReLU
(
wj0 +

n∑
i=1

wjixi

)
for every j = 1, . . . ,m

2. Data Energy: we count DRAM accesses for weights, outputs, and inputs
separately −→ Edata = Eweights + Eoutputs + Einputs

• for each of the mn pairs of inputs xi and (accumulated) outputs yj (partial
sums) that occurs in Buffer, the corresponding unique weight wji is read once

• each output read into Buffer is later written to DRAM

−→ Edata = b (mn+ 2µ+ ν) (it thus suffices to minimize 2µ+ ν)

where b is the number of bits in the float representation;
µ and ν is the number of DRAM accesses to read outputs and inputs, respectively
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A Simple General Lower Bound on Data Energy Complexity

assumption: the Buffer capacity is B = b(β + 1) bits
where β > 1 floating-point numbers of size b bits are used for inputs and outputs
while the remaining one serves for weights

observation: we get at most β−1 input-output pairs by reading one input/output
into Buffer × all the mn pairs need to meet in Buffer

−→ µ+ ν ≥ mn
β−1 DRAM reads & we know µ ≥ m

the trivial lower bound on the data energy follows:

Edata = b (mn+ 2µ+ ν) ≥ b
(
mn+

mn

β − 1
+m

)
which can slightly be improved in general case:

Edata ≥ b
(
mn+

mn

β − 1
+m +

β − 2
(β − 1)2 min(m,n) + 1

)
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Meeting of All Pairs in a Limited-Capacity Room
popular formulation of the data energy problem for FC layers
(m outputs ≡ boys, n inputs ≡ girls, Buffer ≡ room of capacity β persons,
µ+ ν DRAM reads ≡ boy + girl entrances):

What is the smallest number µ + ν of person entrances in a room that can
hold at most β people, so that each of the m boys meets each of the n girls
in that room ? (only one person can enter the room at a time, replacing someone
inside if the room is full)
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An Upper Bound on Data Energy Complexity of FC layers
the dataflow by solving the problem of meeting pairs in a limited-capacity room
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An Upper Bound on Data Energy Complexity of FC layers
the dataflow by solving the problem of meeting pairs in a limited-capacity room

−→ µ = m boy entrances & ν =
m

β − 1

(
n− 1

)
+ 1 girl entrances
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An Upper Bound on Data Energy Complexity of FC layers
the dataflow by solving the problem of meeting pairs in a limited-capacity room

Edata = b (mn+ 2µ+ ν)

where 2µ+ ν =
m

β − 1

(
n− 1

)
+ 2m+ 1

−→ Edata ≤ b
(
mn+

m(n− 1)
β − 1

+ 2m+ 1
)

cf. Edata ≥ b
(
mn+

m(n− 1)
β − 1

+ 2m+ 1 −
β − 2
β − 1

(
m−

min(m,n)
β − 1

))
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Optimal Energy Complexity for Partitioned Buffer

Buffer is divided into two fixed parts separated for d inputs and β− d outputs

Example: d = 1 (similarly for arbitrary 1 ≤ d ≤ β − 1)

1. Linear Program formulation: find µ ≥ 0 and ν ≥ 0 that minimize 2µ+ν
subject to µ+ (β − 1) ν ≥ mn (at most 1 or β − 1 new pairs

by reading one output or input, respectively)
and µ ≥ m (at least m outputs are read)

2. Dual Linear Program: find φ ≥ 0 and ψ ≥ 0 that maximize mnφ+mψ

subject to φ+ ψ ≤ 2 and (β − 1)φ ≤ 1

which has a feasible solution φ0 = 1
β−1 and ψ0 = 2− 1

β−1

the matching lower bound by the weak duality theorem:
2µ+ ν ≥ mnφ0 +mψ0 = m(n−1)

β−1 + 2m

−→ optimal energy complexity Edata = b

(
mn+

m(n− 1)
β − 1

+ 2m+ 1
)

(can also be proven in some other special cases of contiguous Buffer)
14/15



A Summary

• In our previous work, we have introduced a machine-independent model
of energy complexity for CNNs, which fits very well the power consumption
estimates of various CNN hardware implementations.

• As a starting point for convolutional layers, we have theoretically analyze the
energy complexity model for FC layers proposing an energy-efficient dataflow
which provides an upper bound on energy complexity of FC layers.

• We have proven the optimal energy complexity of FC layers for partitioned
Buffer.

Open Problems

• the matching lower bound on energy of FC layers for contiguous Buffer ?

• the optimal energy complexity for convolutional layers ?
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