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Abstract: We introduce a new type of the deterministic
monotone restarting automaton that enables new types of
characterization of the class of deterministic context-free
languages (DCFL) based on pumping. The characteriza-
tion is obtained through new types of normalizations of
deterministic monotone restarting automata. This paper is
the first step to prepare notions for studying the relation
between restarting automata and analog neuron automata,
and for studying degrees of non-regularity of DCFL.

1 Introduction

Restarting automata were introduced in [3] as a linguisti-
cally motivated model of automata that enables to study
so-called analysis by reduction of a natural language. An
overview of several variants of the model can be found in
[6].

The original model of restarting automata denoted as
R-automaton is a finite state machine equipped with a
read/write window of a fixed length k that can move over a
flexible tape. The word on its tape is always delimited by
a pair of sentinels |c and $. The automaton works in cycles.
Each cycle starts in the initial state with the window on the
left end of the tape so it scans the left sentinel |c and the first
k−1 symbols of the current tape contents, or the rest of the
tape (when the word is shorter than k−2). Then the auto-
maton moves from left to right while changing states ac-
cording to its transition function until it decides to rewrite
the tape by deleting some symbols scanned by its window
together with removing the cells of the tape containing the
deleted symbols. Immediately after a rewrite the automa-
ton “restarts” the computation on its shortened tape, that
is, it enters its initial state and places the read/write win-
dow at the leftmost position again. A computation of an
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R-automaton ends when during scanning the tape it enters
a halting state that can be either accepting, in which case it
accepts the input word, or rejecting, in which case it rejects
the input word.

The first fundamental result on restarting automata was
a characterization of the class of deterministic context-free
languages (DCFL) by a subclass of deterministic mono-
tone R-automata. A computation of an R-automaton is
monotone if the distances between the places of rewriting
and the right sentinel are decreasing (maybe not strictly)
during the whole computation. An R-automaton is mono-
tone if all its computations are monotone.

An essential part of this paper is derived from [3] and
[5]. We study the so-called RP-automata that slightly dif-
fer from R-automata in [3] and RW-automata in [4]. One
restarting step by RW-automata is by RP-automata substi-
tuted by two consecutive steps: by a preparing step, and
by a restarting step. With such a modification it is easier
to present their so-called pumping properties.

The paper is structured as it follows. The next section
introduces the model of RP-automata and its deterministic
and monotone variant, and states some basic properties of
the model. Section 3 introduces pumping instructions and
pumping restarting automata. Pumping rewriting instruc-
tions correspond roughly to “pumping” used in the pump-
ing lemma for context-free languages (cf. [2]) and pump-
ing restarting automata are RP-automata that have only
pumping rewriting instructions. We show there that us-
ing a strong cyclic form of deterministic RP-automata, we
can check whether a given rewriting instruction is pump-
ing by inspecting only computations on words of length
limited by a constant. It follows new characterizations of
DCFL by deterministic pumping restarting automata. Fi-
nally, we show conditions ensuring that a pumping instruc-
tion causes that an RP-automaton accepts a non-regular
language.

2 Definitions and Results

A restarting automaton of type P, or an RP-automaton,
M = (Q,Σ, |c,$,q0,k,δ ,QA,QR) (with k-bounded looka-
head) is a device with a finite state control unit with the
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finite set of states Q containing two disjunctive subsets QA,
QR of accepting and rejecting states, respectively. The au-
tomaton is equipped with a head moving on a finite linear
flexible tape of items (cells). The first item of the tape
contains always the left sentinel symbol |c, the last one the
right sentinel symbol $, and each other item contains a
symbol from a finite alphabet Σ (not containing |c, $). The
head has a flexible read/write window of length at most k
(for some k ≥ 1) – M scans k consecutive items or the rest
of the tape when the distance to the right sentinel $ is less
than k. We say that M is of window size k. In the initial
configuration on an input word w ∈ Σ∗, the tape contains
the input word delimited by the sentinels |c and $, the con-
trol unit is in the initial state q0, and the window scans the
left sentinel |c and the first k−1 symbols of the input word
(or the rest of the tape if the tape contents is shorter than
k).

The computation of M is controlled by the transition
function

δ : (Q\ (QA∪QR))×PC≤(k)→

∪ P(Q×{MVR,PREPARE})
{RESTART(v) | v ∈PC≤(k−1)}.

Here P(S) denotes the powerset of the set S, PC (k) is
the set of possible contents of the read/write window of M,
where for i,n≥ 0

PC (i) := ({ |c} ·Σi−1)∪Σi∪ (Σ≤i−1 · {$})
∪ ({ |c} ·Σ≤i−2 · {$}),

Σ≤n :=
n⋃

i=0
Σi and PC≤(k) :=

k⋃
i=0

PC (i).

The transition function represents a finite set of four dif-
ferent types of instructions (transition steps). Let q,q′,qI
be states from Q, u∈PC (k), w∈PC≤(k), v∈PC≤(k−1)

and M be in state q with u be the contents of its read/write
window:

(1) A move-right instruction of the form (q,u) →δ

(q′,MVR) is applicable if u 6= $. It causes M to enter the
state q′ and to move its read/write head one item to the
right.

(2) A preparing instruction (q,u) →δ (qI ,PREPARE)
changes M’s state to a restarting state qI that determines
the next instruction, which must be a restarting instruction.

(3) A restarting instruction I is of the form (qI ,w)→δ

RESTART(v), where |v| < |w| and if w contains any sen-
tinel, v contains the corresponding sentinels, too. This in-
struction is applicable if w is a prefix of the contents of the
read/write window. When executed, M replaces w with
v (hereby it shortens its tape) and restarts – i.e. it enters
the initial state and places the window at the leftmost po-
sition so that the first item in the window contains |c. Note
that the pair (w,v) is unambiguously given by the state qI .
We can assume that all pairs (w,v) such that |v|< |w| and
the word w can be replaced with v by some RESTART in-
struction are ordered and that I is the index of (w,v) in
that sequence. Thus, although RP-automaton is in general
nondeterministic, each RESTART instruction of M corre-

sponds unambiguously to one restart state qI .
(4) A halting instruction of the form (q,u) →δ

(q′,HALT), where q′ ∈ QA or q′ ∈ QR, finishes the com-
putation and causes M to accept or reject, respectively, the
input word.

Thus, the set of states can be divided into three groups –
the halting states QA∪QR, the restarting states (involved
at left-hand side of restarting instructions) and the rest,
called the transition states.

A configuration of an RP-automaton M is a word αqβ ,
where q ∈ Q, and either α = λ and β ∈ { |c} ·Σ∗ · {$} or
α ∈ { |c} ·Σ∗ and β ∈ Σ∗ · {$}; here q represents the cur-
rent state, αβ is the current contents of the tape, and it
is understood that the read/write window contains the first
k symbols of β or all symbols of β if |β | < k. An ini-
tial (restarting) configuration is of the form q0 |cw$, where
w ∈ Σ∗. A rewriting configuration is of the form αqIβ ,
where qI is a restarting state.

A computation of M is a sequence C =C0,C1, . . . ,C j of
configurations of M, where C0 is a restarting configuration
and C`+1 is obtained from C` by a step of M, for all `,
0 ≤ ` < j, denoted as C` `M C`+1 and `∗M is the reflexive
and transitive closure of the single step relation `M .

In general, an RP-automaton can be nondeterministic,
i.e. there can be two or more instructions with the same
left-hand side. If that is not the case, the automaton is
deterministic. In what follows we are mostly interested in
deterministic RP-automata, denoted det-RP.

An input word w is accepted by M if there is a computa-
tion that starts in the initial configuration with w (bounded
by sentinels |c, $) on the tape and finishes in an accepting
configuration where the control unit is in one of the ac-
cepting states. L(M) denotes the language consisting of
all words accepted by M; we say that M accepts the lan-
guage L(M).

Restarting steps divide any computation of an RP-
automaton into certain phases that all start in the initial
state in restarting configurations with the read/write win-
dow in the leftmost position. In a phase called cycle, the
head moves to the right along the input list (with its read-
/write window) until a restart occurs – in that case the com-
putation is resumed in the initial configuration on a new,
shorter, word. The phase from the last restart to the halting
configuration is called tail. This immediately implies that
any computation of any RP-automaton is finite (ending in
a halting state).

The next proposition expresses certain lucidness of
computations of deterministic RP-automata. The notation
u⇒M v means that there exists a cycle of M starting in the
initial configuration with the word u on its tape and finish-
ing in the initial configuration with the word v on its tape;
the relation ⇒∗M is the reflexive and transitive closure of
⇒M .

The validity of the following proposition is obvious.

Proposition 1. (Correctness preserving property.) Let
M be a deterministic RP-automaton and u⇒∗M v for some
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words u, v. Then u ∈ L(M) iff v ∈ L(M).

By a monotone RP-automaton we mean an RP-
automaton where the following holds for all computations:
all items which appeared in the read/write window (and
remained still on the tape) during one cycle will appear in
the read/write window in the next cycle as well. It means,
that during any computation of monotone RP-automaton
the items from the read/write window of prepare configu-
rations do not increase their distances from the right end-
marker $.

Considering a deterministic RP-automaton M, it is for
us convenient to suppose it to be in the strong cyclic form;
it means that the words of length less than k, k being the
length of its read/write window, are immediately (hence in
the tail) accepted or rejected, and that M performs at least
one cycle (at least one restarting) on any longer word.

We use the following obvious notation. RP denotes
the class of all (nondeterministic) RP-automata. Prefix
det- denotes the deterministic version, similarly mon- the
monotone version. Prefix scf- denotes the version in the
strong cyclic form. L (A), where A is some class of au-
tomata, denotes the class of languages accepted by au-
tomata from A. E.g., the class of languages accepted
by deterministic monotone RP-automata is denoted by
L (det-mon-RP).

Since all computations of RP-automata are finite, the
following proposition is obvious.

Proposition 2. The classes L (det-mon-RP) and
L (det-RP) are closed under complement.

Rejected languages by det-RP-automata. Let M be a
det-RP-automaton, and L(M) = L. We say that the lan-
guage L (the complement of L) is rejected by M. We will
often use the fact that the language and its complement
can be recognized (distinguished) by the same det-RP-
automaton.

The natural question of the decidability of monotonicity
for a given RP-automaton is answered in the affirmative:

Theorem 1. There is an algorithm which, given an RP-
automaton M, decides whether M is monotone or not.

Proof: The proof is the same as the corresponding
proof from [4]. The only difference between RW- and
RP-automaton is that the RESTART operation of RW-
automaton is unambiguously split into two consecutive in-
structions PREPARE and RESTART . This splitting has no
influence on the decidability proof, since whenever the
RESTART operation of RW-automaton is used/simulated
in the original proof it can unambiguously be replaced by
PREPARE and RESTART operation of RP-automaton.

In what follows, we consider only deterministic RP-
automata. We write α ⇒I β , for words α,β ∈ Σ∗ when
α was shortened to β in one cycle consisting of several
MVR steps followed by a PREPARE instruction and the
restarting instruction I =(qI ,w)→δ RESTART(v) with the

restart state qI . Additionally, when |cxqIwy$ is the rewrit-
ing configuration corresponding to the reduction xwy⇒I
xvy, for some words x,y,v,w, we will underline the occur-
rence of w rewritten in the cycle. That is, we will write
xwy⇒I xvy. Analogously, α ⇒∗I β indicates a computa-
tion consisting of several such cycles that use the same
restarting instruction I with the restarting state qI .

3 Pumping Restarting Automata

Let M = (Q,Σ, |c,$,q0,k,δ ,QA,QR) be a det-mon-RP-
automaton, and ι = (qι ,w)→δ RESTART(v) a restarting
instruction of M. We say that ι is a pumping instruction of
M if w can be written as w = u1vu2, for some words u1,u2,
u1 6= λ , and, for all x,y ∈ Σ∗, xu1vu2y⇒ι xvy implies

xu j−1
1 u1vu2u j−1

2 y⇒ι xu j−1
1 vu j−1

2 y, for all j ≥ 1.

We say that ι has pumping words u1,u2. If u2 6= λ we say
that ι is a two-side pumping instruction. If u2 = λ we say
that ι is a one-side pumping instruction.

Note that a preparing instruction determines whether
a given restarting instruction can be executed and each
preparing instruction depends on move right instructions
that are executed before it. Hence, the property of being a
pumping instruction depends on the whole transition func-
tion of an RP-automaton.

Let M be a det-mon-RP-automaton and all restarting in-
structions of M are pumping instructions. Then we call
M a pumping RP-automaton. We denote the property of
pumping by the prefix pmp-.

Example 1. Let M1 = (Q,Σ, |c,$,q0,k, δ ,QA,QR) be the
RP-automaton with the set of states Q = {q0,q1,qA,qR},
the alphabet Σ = {a,b}, window size k = 2, the set of
accepting states QA = {qA}, the set of rejecting states
QR = {qR} and the transition function
δ (q0, |c$) = {(qA,HALT)}, δ (q0,bb) = {(q0,MVR)},
δ (q0, |ca) = {(q0,MVR)}, δ (q0,ab) = {(q1,PREPARE)},
δ (q0, |cb) = {(q0,MVR)}, δ (q1,ab) = {RESTART(λ )},
δ (q0,aa) = {(q0,MVR)}, δ (q0,a$) = {(qR,HALT)},
δ (q0,ba) = {(q0,MVR)}, δ (q0,b$) = {(qR,HALT)}.

The automaton has only one restarting instruction
ι = δ (q1,ab) →δ RESTART(λ ). This instruction is
two-side pumping instruction as w = ab can be writ-
ten as u1vu2, where u1 = a and u2 = b are nonempty,
v = λ . If q0 |cxu1vu2y$ = q0 |cxaby$ `∗ |cxq1u1vu2y$ `ι

q0 |cxvy$ = q0 |cxy$ for some x,y ∈ {a,b}∗, then it holds
that xu j

1vu j
2y = xa jb jy ⇒∗ι xy = xvy, for all j ≥ 0, and

xu j−1
1 u1vu2u j−1

2 y⇒ι xu j−1
1 vu j−1

2 y, for all j > 0. Evidently,
the automaton M accepts the Dyck language of correctly
paired parentheses, where a and b are the left and right
parenthesis, respectively.

Note that M1 is not in the strong cycling form.

Example 2. Consider the regular language L2 of even
length words over the alphabet {a}. This language can
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easily be accepted by the following RP-automaton M2,
M2 = (Q,Σ, |c,$,q0,k, δ ,QA,QR) with the set of states
Q = {q0,q1,qA,qR}, the alphabet Σ = {a}, window size
k = 2, the set of accepting states QA = {qA}, the set of
rejecting states QR = {qR} and the transition function
δ (q0, |c$) = {(qA,HALT)}, δ (q0,aa) = {(q1,PREPARE)},
δ (q0, |ca) = {(q0,MVR)}, δ (q1,aa) = {RESTART(λ )},
δ (q0,a$) = {(qR,HALT)}.
The automaton has only one restarting instruction
ι = δ (q1,aa) →δ RESTART(λ ). At first glance this
instruction seems to be pumping as it can be applied itera-
tively. The rewritten word w = aa can be written as u1vu2,
where either u1 = aa, v = λ , and u2 = λ , or u1 = a, v = λ ,
and u2 = a. If u1 = aa and xu1vu2y = xaay⇒ι xy = xvy
for some x,y ∈ {a}∗, then it does not hold
xu j−1

1 u1vu2u j−1
2 y ⇒ι xu j−1

1 vu j−1
2 y, for all j ≥ 1, as

the deleting realized by the corresponding PREPARE and
RESTART instructions is performed at the beginning of
the word and not around v, for j > 1.

Similarly, when u1 = a, v = λ , and u2 = a, it
can be shown that the condition xu j−1

1 u1vu2u j−1
2 y ⇒ι

xu j−1
1 vu j−1

2 y, for all j ≥ 1, does not hold.
To obtain a pumping RP-automaton accepting the same

language, we can change the automaton a bit so that it
realizes the RESTART operation at the end of the word.
For that we increase the window size to 3 and obtain RP-
automaton N2 = (Q,Σ, |c,$,q0,k,δ ,QA,QR) with the set of
states Q = {q0,q1,qA,qR}, the alphabet Σ = {a}, window
size k = 3, the set of accepting states QA = {qA}, the set
of rejecting states QR = {qR} and the transition function
δ (q0, |c$) = {(qA,HALT)}, δ (q0, |ca$) = {(qR,HALT)},
δ (q0,aaa) = {(q0,MVR)}, δ (q0,aa$) ={(q1,PREPARE)},
δ (q0, |caa) = {(q0,MVR)}, δ (q1,aa) = {RESTART(λ )}.
It is easy to see that the new automaton N2 is pumping
as it has single one-side pumping instruction that can be
applied only at the right end of its tape.

Note that N2 is in the strong cycling form.

The next lemma follows from the correctness preserving
property.

Lemma 1. Let M = (Q,Σ, |c,$,q0,k,δ ,QA,QR) be a det-
mon-RP-automaton of window size k, let p = |Q|, and
ι = (qι ,w) →δ RESTART(v) be a restarting instruction
of M. The instruction ι is a pumping instruction of M
with pumping words u1,u2 iff for all x,y ∈ Σ∗ such that
xu1vu2y⇒ι xvy and each j, 1≤ j≤ p+k+1 it holds that

xu j−1
1 u1vu2u j−1

2 y⇒ι xu j−1
1 vu j−1

2 y. (1)

Proof: Obviously, if ι is a pumping instruction then for
all x,y ∈ Σ∗ such that xu1vu2y⇒ι xvy the condition (1)
holds for each j ≥ 1.

To prove the opposite implication, let x,y be words such
that xu1vu2y⇒ι xvy and for each j, 1≤ j ≤ p+ k+1 the
condition (1) holds. We will show that the condition (1) is
true also for any j > p+k+1. Let w( j) = xu j

1vu j
2y, for all

j≥ 0. From (1) it follows that for each j, 1≤ j≤ p+k+1,
the computation on w( j) proceeds as follows:

q0 |cw( j)$ = q0 |cxu j
1vu j

2y$ `∗M |cxq j1 u j
1vu j

2y$
`∗M |cxu1q j2u j−1vu j

2y$
`∗M . . .

`∗M |cxu j−1q j j u1vu j
2y$

`∗M |cxu j−1qι u1vu j
2y$

`∗M q0 |cxu j−1vu j−1
2 y$

`∗M . . .

where q ji denotes the state in which the i-th copy of u1 is
the prefix of the read/write window contents in the first cy-
cle of the computation of M on w( j) and (q j j ,u1vu2ω)→δ

(qι ,PREPARE) is the preparing instruction followed by
the instruction ι in the cycle. Further, let C ji denote the
configuration of M corresponding to q ji during the first
cycle on the word w( j).

Consider the first cycle of the computation of M on
w( j), where j > p+ k + 1. While the whole read/write
window of M is inside the prefix xup+k+1

1 of w( j), M
executes the same instructions as in the first cycle on
w(p + k + 1). Moreover, the contents of the read/write
window of M is the same in all configurations C ji for all i,
1≤ i≤ p+1, because |uk

1| ≥ k. Since M has p states, there
are two positive integers r,d, 1 ≤ r < r+ d ≤ p+ 1 such
that q jr = q jr+d and M executes from the configuration
C jr+d the same sequence of instruction as between the con-
figurations C jr and C jr+d (on w( j), where j ≥ r+2d + k).

Now, we can prove that (1) holds for any j ≥ 1. The
base statement that the condition (1) holds for each j,
1 ≤ j ≤ p + k + 1 is trivially satisfied. Let us suppose
that (1) holds for each j, 1 ≤ j ≤ n, where n ≥ p+ k+ 1.
We will show that (1) holds also for j = n+ 1. During
the first cycle on w(n + 1), the automaton executes be-
tween the configurations C(n+1)r+d

and C(n+1)n+1 on the
word w(n+1) exactly the same sequence of instructions as
between the configurations C(n+1−d)r and C(n+1−d)(n+1−d)

on the word w(n+1−d). Therefore, it holds w(n+1) =
xun

1u1vu2un
2y⇒ι xun

1vun
2y and together with the assumption

of the induction step, it holds xu j−1
1 u1vu2u j−1

2 y, for all j,
1≤ j≤ n+1. This completes the proof of the lemma.

Note that Lemma 1 could be used for testing, whether a
given restarting instruction is pumping, if we were able to
bound the length of x,y in it. As a corollary of the follow-
ing proposition and lemma we get that it is the case.

Proposition 3. For any deterministic RP-automaton M of
window size k, there is a deterministic RP-automaton M′

of window size n, n≥ k, such that M′ is in the strong cyclic
form and L(M) = L(M′). In addition, when M is monotone
then M′ is monotone as well, and when M is pumping then
M′ is pumping as well, and if u⇒M v then u⇒M′ v.

Proof: An RP-automaton is in the strong cyclic form if
it only accepts and rejects in tail computations words of
bounded length. Thus, if the original RP-automaton was
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allowed to accept/reject in a tail computation on a word
longer than the window size, we have to force it to perform
one or more cycles so that in a tail computation it finally
accepts (rejects) a word that together with the end-markers
fits into the read/write window.

We can assume that M always accepts or rejects in a
configuration in which it scans the right sentinel $. Oth-
erwise, we can modify it so that instead of an “original”
accepting (rejecting) state, it would enter a special state
that causes moving to the right end and then accepting (re-
jecting). Since the language of words accepted (rejected)
in a tail computation is regular, there are finite automata A
and AC accepting these languages.

A new RP-automaton M′ will be of window size k′ =
max{nA + 1,nC + 1,nM}, where nA, nC and nM are the
numbers of states of A, AC and M, respectively. When
moving right, the automaton M′ simultaneously simulates
the computations of A, AC and M. The pumping lemma for
regular languages implies that if M accepts or rejects w of
length greater than k′ in a tail computation, then w ∈ L(A)
or w ∈ L(AC) and for some words x,y,z it holds: w = xyz,
|yz|< k′, |y|> 0 and xz ∈ L(A) or xz ∈ L(AC).

The above modification ensures that when M accepts or
rejects, it has already read the whole tape till the right sen-
tinel. If M would accept or reject but M′ does not have
also the left sentinel |c in its read/write window, the au-
tomaton M′, instead of accepting/rejecting, deletes y by
applying a suitable pair of preparing and restarting in-
struction of the form (qyz,yz$)→δ (qIyz,PREPARE) and
(qIyz,y) → RESTART(λ ), for some new states qyz,qIyz.
Obviously, M′ is in strong cyclic form, L(M′) = L(M) and
u⇒M v implies u⇒M′ v.

The described simulation preserves monotonicity and
also pumping property, because all added restart opera-
tions are pumping and performed at the right end of the
tape.

The next lemma enables extending Lemma 1 to det-
mon-RP-automata in the strong cyclic form.

Lemma 2. Let M = (Q,Σ, |c,$,q0,k, δ ,QA,QR) be a det-
mon-RP-automaton with window size k, let p = |Q|, and
let ι = (qι ,w)→δ RESTART(v) be a restarting instruction
of M. There exists a constant m such that ι is a pumping
instruction of M with pumping words u1,u2 iff for all x,y∈
Σ∗ satisfying |x| ≤ m, |y|< k, xu1vu2y⇒ι xvy it holds

for each j,1≤ j ≤ p+ k+1 :
xu j−1

1 u1vu2u j−1
2 y⇒ι xu j−1

1 vu j−1
2 y.

(2)

Proof: Obviously, if ι is a pumping instruction then
condition (2) is met for all words x,y such that xu1vu2y⇒ι

xvy and for each j ≥ 1.
Let m = d + k + 1, where d denotes the number of

possible pairwise different instructions of M. Evidently,
d = p · |PC (k)| ≤ p ·(|Σ|+3)k. We will show that if condi-
tion (2) is satisfied for all x,y∈ Σ∗ such that |x| ≤m, y < k,
xu1vu2y ⇒ι xvy, then condition (2) is satisfied also for

any x,y ∈ Σ∗ of arbitrary length such that xu1vu2y⇒ι xvy.
Then, by applying Lemma 1, we obtain that ι is a pumping
instruction. The proof will be split into two claims.

Claim 1. Assume that condition (2) holds for all words x,
y, |x| ≤ m, |y| < k such that xu1vu2y⇒ι xvy. Then condi-
tion (2) holds for all words x, y, |x| ≤ m and y of arbitrary
length, such that xu1vu2y⇒ι xvy.

Proof of claim: According to the assumptions of the
claim, for y of length at most k−1 the condition (2) holds
trivially. If |y| ≥ k and xu1vu2y⇒ι xvy then during the
corresponding cycle the automaton M visited at most k−
1 symbols to the right from u1vu2, i.e. at most the first
k− 1 symbols of y. Therefore, xu1vu2y′ ⇒ι xvy′ is true
for the prefix y′ of y such that y = y′y′′ and |y′| = k− 1
for some word y′′. Then, according to the assumption of
the claim, it holds xu j−1

1 u1vu2u j−1
2 y′⇒ι xu j−1

1 vu j−1
2 y′ and

also xu j−1
1 u1vu2u j−1

2 y′y′′⇒ι xu j−1
1 vu j−1

2 y′y′′, for all j, 1≤
j ≤ p+ k + 1, as no symbol of y′′ was visited in any of
the corresponding cycles. Hence, the condition (2) holds
when we do not restrict the length of y.

Claim 2. Assume that condition (2) holds for all words
x, y, |x| ≤ m, y of arbitrary length, such that xu1vu2y⇒ι

xvy. Then the condition (2) holds for all words x and y of
arbitrary lengths, such that xu1vu2y⇒ι xvy.

Proof of claim: We will show that the condition (2)
holds for arbitrary x by induction on the length of x.

Induction basis: For x of length at most m the condition
(2) is true trivially.

Induction step: Let the claim be true for x of length at
most n for some n ≥ m. We will show that the condition
(2) is true also for x of length n+ 1. Let x be a word of
length n+1.

In the first cycle of M on the word xu1vu2y, more than
d MVR steps were performed while the read/write window
was completely inside the word x. At least two of them
were according to the same MVR instruction in a state q.
Hence, we can write x = x1x2x3, for some words x1,x2,x3
such that |x2|> 0, |x3| ≥ k and

q0 |cx1x2x3u1vu2y$ `∗M |cx1qx2x3u1vu2y$
`∗M |cx1x2qx3u1vu2y$
`∗M |cx1x2x3qι u1vu2y$
`∗M q0 |cx1x2x3vy$,

where the prefix of length k of x2x3 is the same as the pre-
fix of length k of x3. That is, in both above configurations
with the state q the automaton executes the same MVR in-
struction.

Therefore, when we leave out x2 and the corresponding
steps of the cycle, we obtain a valid cycle of M on the
shorter word x1x3u1vu2y. Thus, it holds x1x3u1vu2y⇒ι

x1x3vy and we can apply the assumption of the induction
step that the condition (2) holds for words x of length at
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most n for the word x1x3 to obtain that

for each j,1≤ j ≤ p+ k+1 :
x1x3u j−1

1 u1vu2u j−1
2 y⇒ι x1x3u j−1

1 vu j−1
2 y.

Obviously, in each of the corresponding cycles we can
insert back x2 between x1 and x3 and the corresponding
sequence of steps to obtain that

x1x2x3u j−1
1 u1vu2u j−1

2 y⇒ι x1x2x3u j−1
1 vu j−1

2 y

is true for all j, 1 ≤ j ≤ p+ k + 1, which completes the
proof of the claim.

By combining Claim 2 and Lemma 1, it follows that the
instruction ι is pumping.

Corollary 1. Let M be a scf-det-mon-RP-automaton, and
ι a restarting instruction of M. It is decidable whether ι is
a pumping instruction or not.

The characterization of DCFL by R-automata was given
in [3].

Theorem 2 ([3]). DCFL = L (det-mon-R).

We show that DCFL can even be characterized by
pmp-RP-automata.

Theorem 3. DCFL = L (pmp-RP) = L (det-mon-RP)

Proof: The theorem is a consequence of the following
two lemmas.

Lemma 3. L (det-mon-RP)⊆ DCFL.

Proof: As the models of det-mon-R- and det-mon-RP-
automata differ only slightly, we can use here a
slightly modified proof of Lemma 8 in [3] stating that
L (det-mon-R) ⊆ DCFL. For a given det-mon-RP-
automaton M, a method from [3] can be used to construct
a deterministic push-down automaton P that accepts the
same language as M.

To show the opposite direction, we use the character-
ization of deterministic context-free languages by means
of LR(1)-grammars in Greibach Normal Form and LR(1)-
analyzers (cf., e.g., [1])1.

Lemma 4. DCFL⊆L (pmp-RP).

Proof: The inclusion follows from an analysis of the
det-mon-R-automaton M simulating a syntactic analysis
of a DCFL language L in [3]. Each det-mon-R-automaton
M can be easily converted into a det-mon-RP-automaton
M′ by splitting each restarting instruction of M into one
preparing instruction and one restarting instruction of M′.
To see, that the resulting det-mon-RP-automaton M′ is

1Recall that context-free grammar G = (N,T,P,S) is LR(k) for k≥ 0
if for any string α exists unique partition α = βγu, where α,β ,γ ∈ (N∪
T )∗, u ∈ T ∗, such that there is a rightmost derivation S⇒∗r βAu⇒r αβu
where A is a nonterminal.
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Figure 1: The structure of a derivation tree.

pumping we sketch the construction of M; the construc-
tion will also be helpful for better understanding of later
results and proofs.

It is well known that if L′ is a deterministic context-free
language and $ is a symbol not in the alphabet of L′, then
L′ · {$} is a deterministic prefix-free context-free language
that can be parsed by a LR(0)-analyzer P0. This fact was
used in [3]. Here, in order to construct a pmp-det-mon-RP-
automaton, we use a similar construction of an LR(1)-
analyzer P of L′ that is based on an LR(1)-grammar in
Greibach Normal Form. The existence of such analyzer
for any DCFL is proved in [1].

Based on the simulation of P on a word w we can con-
struct the derivation tree Tw (the inner vertices of which are
labeled with nonterminals and leaves correspond to termi-
nal symbols). Thus, for any word w ∈ L there is exactly
one derivation tree Tw. The standard pumping lemma for
context-free languages implies existence of two constants
p,q > 0 such that for any word w with length greater than
p there are (complete) subtrees T1 and T2 of Tw such that T2
is a subtree of T1 and roots of both subtrees have the same
label (cf. Fig. 1); in addition, T2 has fewer leaves than
T1, T1 has at most q leaves and |u1| > 0. The word u1 is
nonempty, because the right-hand side of the rule used to
rewrite the nonterminal A in the root of T1 must start with
a terminal (the grammar is in Greibach Normal form).

Obviously, replacing T1 with T2, we get the derivation
tree Tw(0) for a shorter word w(0) (if w = xu1vu2y then
w(0) = xvy). Analogously, replacing T2 with T1, we get the
derivation tree Tw(2) for a longer word w(2) where w(2) =
xu2

1vu2
2y. If we repeat this replacing of T2 with T1 i-times

we obtain the derivation tree Tw(i+1) for a word w(i+ 1)
where w(i+1) = xui+1

1 vui+1
2 y.

The key to a construction of the det-mon-R-automaton
M in [3] is the possibility to identify the leftmost subword
u1vu2 corresponding to subtrees T1 and T2 as shown in
Fig. 1 reading from left to right with the help of constant
size memory only. In its constant size memory M stores all
maximal subtrees of the derivation tree with all their leaves
in the buffer. When it identifies a subtree like T1 above, M
performs the corresponding deleting by a RESTART oper-
ation. Obviously, the read/write window of length k > q is
sufficient for that.

6



If that is not the case then M forgets the leftmost of
these subtrees with all its n ≥ 1 leaves, and reads n new
symbols to the right end of the buffer (performing MVR-
instructions). Then M continues constructing the maximal
subtrees with all leaves in the (updated) buffer (simulating
P). Short words of length less than k are accepted/rejected
in tail computations.

To obtain M′ it is sufficient to use instead of restart-
ing instructions of M the corresponding preparing and
restarting instructions of RP-automaton. The preparing
and restarting instructions can handle LR(1)-analysis in
the same way as M the LR(0)-analysis. The resulting RP-
automaton M′ preserves the determinism and monotonic-
ity of M; from the construction it is clear that M′ is pump-
ing as well.

Note. While the previous proof is based on the paper
[3], a similar proof can be based on the constructions from
paper [7] based on deterministic list automata.

The following corollary is a consequence of the previ-
ous theorem and Proposition 3.
Notation. In what follows, we will write pmsc- instead of
pmp-scf-.

Corollary 2.

DCFL = L (pmsc-RP) = L (scf-det-mon-RP).

In what follows, we aim to obtain some conditions
for a det-RP-automaton to accept a non-regular lan-
guage. At first, we conjecture, that each pmp-det-mon-RP-
automaton that does not have any two-side pumping in-
struction generates a regular language. On the other hand,
a pmp-det-mon-RP-automaton having a two-side pumping
instruction can still accept a regular language. This can be
seen in the following example.

Example 3. Let M3 = (Q,Σ, |c,$,q0,k,δ ,QA,QR)
be the RP-automaton with the set of states
Q = {q0,q1,qa,qb,qA}, the alphabet Σ = {a,b}, window
size k = 2, the set of accepting states QA = {qA}, the set
of rejecting states QR = /0 and the transition function
δ (q0, |c$) = {(qA,HALT)}, δ (q0,bb) = {(q0,MVR)},
δ (q0, |ca) = {(q0,MVR)}, δ (q0,ab) = {(q1,PREPARE)},
δ (q0, |cb) = {(q0,MVR)}, δ (q1,ab) = {RESTART(λ )},
δ (q0,aa) = {(q0,MVR)}, δ (q0,a$) = {(qa,PREPARE)},
δ (q0,ba) = {(q0,MVR)}, δ (q0,b$) = {(qb,PREPARE)}
δ (qa,a) = {RESTART(λ )}, δ (qb,b) = {RESTART(λ )}.

The automaton differs from the automaton M1 of Ex-
ample 1 only slightly. It has two new restarting states qa
and qb that enable to delete any symbol to the left from
the right sentinel $. Nevertheless, the first restarting in-
struction ι = (q1,ab)→δ RESTART(λ ) is still two-side
pumping instruction (see Example 1). The automaton M3
is deterministic and monotone. In contrast to M1, it is in
the strong cyclic form and accepts all words over the al-
phabet {a,b}.

Hence, we define a property of two-side pumping in-
structions which ensures that the resulting det-mon-RP-
automaton does accept a non-regular language.

Definition 4. Let M = (Q,Σ, |c,$,q0,k,δ ,QA,QR) be a
pmp-RP-automaton accepting the language L = L(M).
Let ι = (qr,u1vu2)→δ RESTART(v) be a two-side pump-
ing restarting instruction of M with pumping words
(strings) u1,u2 and xu1vu2y⇒ι xvy, for some x,y ∈ Σ∗.

Let p be a positive integer. We say that ι is a (p,x,y)-
distinguishing instruction for M if at least one of the fol-
lowing cases occurs:

(I) xum
1 vum

2 y ∈ L, and xum
1 vum

2 up· j
2 y /∈ L, for all j ≥ 1,

m≥ 0,
(II) xum

1 vum
2 y ∈ L, and xup· j

1 um
1 vum

2 y /∈ L, for all j ≥ 1,
m≥ 0,

(III) xum
1 vum

2 y /∈ L, and xum
1 vum

2 up· j
2 y ∈ L, for all j≥ 1,

m≥ 0,
(IV) xum

1 vum
2 y /∈ L, and xup· j

1 um
1 vum

2 y ∈ L, for all j ≥ 1,
m≥ 0.

We say that ι is a distinguishing instruction for M if
there are p,x,y such that ι is a (p,x,y)-distinguishing in-
struction for M.

We say that M is a distinguishing RP-automaton if there
is a distinguishing instruction ι for M. We write dist-RP-
automaton to denote a distinguishing pmp-RP-automaton.

Example 4. Let us consider the automaton M1 =
(Q,Σ, |c,$,q0,k,δ ,QA,QR) from Example 1. We will show
that M1 is a dist-RP-automaton. The automaton has only
one restarting instruction ι = (q1,ab)→δ RESTART(λ ).
This instruction is a two-side pumping instruction with
pumping strings u1 = a and u2 = b and ab = xu1vu2y⇒1
xvy = λ , for x = λ , v = λ , y = λ . The instruction ι

is a (p,x,y)-distinguishing instruction for M1 for p = 1.
Namely, for all j ≥ 1,m≥ 0 it holds

xum
1 vum

2 y = ambm ∈ L(M1) and
xum

1 vum
2 up· j

2 y = ambmb j /∈ L(M1),

and also

xum
1 vum

2 y = ambm ∈ L(M1) and
xum

1 up· j
1 vum

2 y = ama jbm /∈ L(M1).

Theorem 4. Let L = L(M) 6= /0 be a deterministic context-
free language accepted by a dist-RP-automaton M. Then
L is a non-regular language.

Proof. To obtain a contradiction, we suppose that M =
(Q,Σ, |c,$,q0,k,δ ,QA,QR) is a dist-RP-automaton accept-
ing a regular language L = L(M). Since M is a dist-RP-
automaton, it has a (p,x,y)-distinguishing instruction ι =
(qι ,u1vu2)→δ RESTART(v), for some x,y,v∈Σ∗, u1,u2 ∈
Σ+,qι ∈ Q and p ≥ 1. As L is regular, there exists a de-
terministic finite automaton A with nA states accepting the
language L(A) = L.

The proof follows by the analysis of the four possible
cases of (p,x,y)-distinguishing property of ι :

Case (I): From the definition, for all m≥ 0, j ≥ 1 it holds
xum

1 vum
2 y ∈ L and xum

1 vum
2 up· j

2 y /∈ L. Let qm j denote the

7



state of the automaton A in which it reads the first symbol
of the j-th copy of u2 to the right from v. That is, A is in the
state qm j after reading xum

1 vu j−1
2 , for j ≥ 1. For m > nA,

there exist integers r,s, 1≤ r < s≤ nA +1 such that qmr =
qms . Then, for all i≥ 0, it holds qmr = qmr+i·(r−s) and the au-

tomaton A accepts all words of the form xum
1 vum+i·(s−r)

2 y.
For i = p, we obtain that xum

1 vum+p·(s−r)
2 y ∈ L which con-

tradicts the assumption xum
1 vum

2 up· j
2 y /∈ L, for j = (s− r).

Case (II): From the definition, for all m≥ 0, j ≥ 1 it holds
xum

1 vum
2 y ∈ L, and xup· j

1 um
1 vum

2 y /∈ L. Let qm j denote the
state of the automaton A in which it reads the first symbol
of the j-th copy of u1 to the right from x. That is, A is in the
state qm j after reading xu j−1

1 , for j ≥ 1. For m > nA, there
exist integers r,s, 1≤ r < s≤ nA +1 such that qmr = qms .
Then, for all i ≥ 0, it holds qmr = qmr+i·(r−s) and the au-

tomaton A accepts all words of the form xum+i·(s−r)
1 vum

2 y.
For i = p, we obtain that xum+p·(s−r)

1 vum
2 y ∈ L which con-

tradicts the assumption xup· j
1 um

1 vum
2 y /∈ L, for j = (s− r).

Analysis of conditions (III) and (IV) from Definition 4
is analogous to the shown cases.

As each dist-RP-automaton is deterministic and mono-
tone (Definition 4), it accepts a deterministic context-free
language (Lemma 3). Hence, Lemma 3, Theorem 4 and
Proposition 3 imply the following corollary (⊂ denotes the
proper subset relation).

Corollary 3. L (dist-RP) = L (scf-dist-RP)⊂ DCFL.

Remark. We conjecture that L (scf-dist-RP) is equal
to the set of all non-regular DCFL. But it remains an open
problem.

4 Conclusions

We plan in the near future to show that any pmsc-RP-
automaton M which accepts a non-regular language can
be transformed in a scf-dist-RP-automaton, for which all
its two-side pumping instructions are distinguishing. Let
us denote such type of automata as strongly distinguishing
RP-automata (sdist-RP-automata). The sdist-RP-automata
will allow to extend the results from [8] achieved by de-
terministic context-free grammars. Further, it will allow
to introduce some types of degrees of non-regularity of
DCFL, e.g., according to the number of distinguishing in-
structions in a strongly distinguishing RP-automaton. The
combinations of this measure with other measures typi-
cal for restarting automata (e.g., the length of rewriting
windows) will give us natural measures for complexity of
DCFL.

Finally, sdist-RP-automata will create a nice tool for lo-
calization and measures for syntactic errors in determinis-
tic context-free languages.
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