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Efficient Processing of Deep Neural Networks (DNNs)

e DNNs are widely used for many artificial intelligence (Al) applications including
computer vision, speech recognition, natural language processing, robotics etc.

e DNNs achieve state-of-the-art accuracy on many Al tasks at the cost of high
computational complexity (tens of millions of operations for a single inference)

o cnergy efficiency of DNN implementations in low-power hardware operated
on batteries (e.g. cellphones, smartwatches, smart glasses) becomes crucial

— reducing the energy cost of DNNs:

1. approximate computing methods (e.g. low floating-point precision, approxi-
mate multipliers) in error-tolerant applications such as image classification

2. hardware design: energy-efficient implementations of DNNs on various hard-
ware platforms including GPUs, FPGAs, in-memory computing architectures
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Energy Consumption of DNNs

e the power consumption of a specific DNN hardware implementation can be
measured or calculated/estimated (using physical laws)

e a plethora of methods that minimize the energy consumption of a given DNN
on various hardware architectures
(Sze,Chen,Yang,Emer:Efficient Processing of Deep Neural Networks,2020)

e automated by software tools, for example, the Timeloop program maps a
convolutional layer specified by its parameters onto a given hardware archi-
tecture (e.g. Simba, Eyeriss) that is optimal in terms of power consumption
estimated by Accelergy tool which reports the energy statistics

e it has been empirically observed that the energy for DNN inference is mainly
consumed by

1. data movement inside a memory hierarchy (approx. 70%) corresponding to
the data energy Fyat,

2. multiply-and-accumulate (MAC) operations (approx. 30%): S < S + wx
on floats S, w, x, corresponding to the computation energy Fcomp

H E = Edata —|_ Ecomp 3/14



Motivations for Energy Complexity Model of DNNs

e the evaluation of real power consumption for individual DNN implementations
varies for different hardware architectures depending on their specific parameters,
which prevents from machine-independent exploration of energy complexity

e a formal computational model for defining a robust energy measure for DNNs,
quantified asymptotically using Big O notation

(by analogy to computation time and memory space defined by Turing machines)

e lower bounds on energy complexity can establish principal limits of DNNs

— A Simplified Hardware-Independent Model of Energy Complexity for DNNss:

e abstracts from hardware implementation details, ignoring specific aspects and
parameters of real-world machine

e preserves the asymptotic energy of DNN inference

e is defined (for simplicity) for a separate layer of a convolutional neural network
(CNN), avoiding global energy optimization across multiple CNN layers
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Energy Complexity Model for CNNs

Arithmetic Processor
(MAC operations)

[ Buffer: B bits
o

|

CNN': weights + current states of neurons

DRAM

e only two memory levels called DRAM (large, slow, and cheap memory) and
Buffer of limited capacity B bits (small, fast, and expensive memory)

e CNN weights and states are stored in DRAM
e arithmetic operations are performed over numerical data stored in Buffer
e the dataflow controls the transfer of data between DRAM and Buffer

e the main idea: the three arguments stored in DRAM, input x, weight w, and
accumulated output S of each MAC operation S < S + wx performed for
evaluating a given convolutional layer, must occur in Buffer simultaneously
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A Convolutional Layer
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with stride s
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ys(k, ) is the state of neuron (k,¢) € {1,...,m}* in feature map f € {1,...,p}

ys(k,£) = RelLU (bf YOO wpi )y (= 1)s+i, (€ —1)s +j)>

g=1 i=1 j=1

where RelLU(z) = max(0,x), by isthe biasof f, and wy,(7,7) is the filter weight of neuron

(4,7) € {1,...,7}% in a receptive field of [ over the input feature map g € {1,...,q}

—  the number of MAC operations (#MACs) is pm”-qr* ~ pgn’5

2
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The Energy Complexity Measure for a Convolutional Layer

E = Fqata + Ecomp

for a given dataflow used to evaluate a convolutional layer:

FEgata 1S # DRAM accesses X # bits b in floating-point numbers

r2

Ecomp = C} .pqgmPr® = pgn? — is proportional to # MACs (on data in Buffer)

where (, is a non-uniform constant related to a b-bit floating-point MAC circuit

A Simple Lower Bound on the Data Energy

E > b-## MACs divided by (- ® — the maximum number of new triplets
data Y \

(input, output, weight) (i.e. the MAC arguments) that can meet in Buffer of
capacity B bits after reading one number into Buffer (i.e. one DRAM access)

2

— Eio=Q(pgn*5 for constant Buffer capacity B
data S y
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A Partition of the Input Feature Map

a partition of input feature map g € {1,...,q} of n X n neurons,
g= |J glio.jo) intos* grid submaps
17()./,]'06{17...,5’}

glio, jo) = {((k = )s+ido, (L —1)s+jo) | k,£ € {1,...,m}} of m X m neurons
that share the same weights wy,(ig + ks, jo + As) for every (admissible) integer x, A\

in y(k,0) = ReLU (bf Y DN wrglig) - yg((k—Ds+i, (0 —1)s +j)>
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A Dataflow with Write-Once Qutputs (similarly for read-once inputs)

each output is completely evaluated at once in Buffer before it is written to DRAM
while each weights is read into Buffer only once:

for all feature maps f € {1,...,p} do
read bias by into Buffer;
forall k£, 0 € {1,...,m} do S¢(k,l) < b; enddo; {initialization of m x m weighted sums}
for all input feature maps g € {1,...,¢} do
for all iy, jo € {1,...,s} do {for all grid submaps g(i¢, jo) from the partition of ¢}
for all (k,7) € g(io, jo) do read y,(k, () into Buffer enddo; {reading m x m submap inputs}
for all admissible integer kK, A do  {for all the weights shared by submap ¢(iy, jo)}
i< g+ kS, Jjot+As; {1 <ig<r}
read a single weight wy,(7, j) into Buffer;
forall £,/ € {1,....,m} do  {all MACs with the weight w,(i, )}
Sp(k, 1) < Sp(k, 1) +wpy(i,5) - yy (k= s+, (€ —1)s + j)
enddo
enddo  {next shared weight}
enddo {next submap}
enddo; {next input feature map}
for all k,¢ € {1,...,m} do write ys(k,l) = ReLU(S{(k,[)) to DRAM enddo {writing m x m outputs}

enddo  {next feature map}
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The Capacity of Buffer

the used Buffer memory: B =b- (2m? + 1)

e m? accumulated outputs of feature map f

e m? inputs from grid submap ¢(ig, jo)

e 1 shared weight

— a realistic assumption on the Buffer capacity:

B>b-(2m*+1)

e.g. Buffer capacities in kilobytes required for convolutional layers in AlexNet:

AlexNet layer 1 2 3
m 55 27 13
2m? + 1 6051 1459 339

b = 8 bits 5.91kB 1.42kB 0.33kB 0.33kB 0.33kB
b= 106 bits 11.82kB 2.85kB 0.66 kB 0.66 kB 0.66 kB
b=32bits 23.64kB 5.7kB 1.32kB 1.32kB 1.32kB
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An Upper Bound on Data Energy FEyata

the data energy F/y.:, in terms of #DRAM accesses for inputs, outputs, and weights:
Edata — Eweights + Eoutputs -+ Einputs where

2
Linputs = b-pqn2 Loutputs = b-pm2 ~ b'pZ_Q Eweights =b-plq o+ 1)
— an upper bound:
2
n
Eyata < b-p(qn2+m2+qr2+ 1) =30, (p <qn2+?+qr2>)

the asymptotic theoretical energy complexity in terms of individual convolutional
layer parameters (others are constant):
Fyata = O (p) where p is the number of feature maps (i.e. depth)
FEyata = O (n*) where n is the the size of input feature maps (i.e. height=width)
Eyaa = O (r?) where 1 is the size of receptive fields

Eyaa = O (s72) where s is the stride

fits very well (by linearity /quadraticity statistical tests) the real power consumptions
estimated by the Timeloop/Accelergy software platform that maps a convolutional

layer of given parameters onto the Simba and Eyeriss hardware architectures:
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Experimental Validation of Energy Complexity Model for Simba
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Experimental Validation of Energy Complexity Model for Eyeriss
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A Summary

e we have introduced a machine-independent model of energy complexity

for CNNs

e in this model, we have proposed a dataflow with write-once outputs (or
read-once inputs) and read-once weights for evaluating convolutional layers

e this provides an upper bound on the theoretical energy complexity of CNNs
which fits asymptotically very well the power consumption estimates of their
various hardware implementations

e we have shown a simple lower bound on energy of convolutional layers which
establishes the principal limit on energy efficiency of CNNs
Open Problems

e an experimental validation of the energy complexity model for combined
parameters of convolutional layer ?

e the matching lower bound on energy of convolutional layers for Buffer of
non-constant size ?
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