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Jǐŕı Š́ıma
sima@cs.cas.cz

Institute of Computer Science (ICS)
Czech Academy of Sciences, Prague, Czechia

joint work with

Petra Vidnerová
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Efficient Processing of Deep Neural Networks (DNNs)

• DNNs are widely used for many artificial intelligence (AI) applications including
computer vision, speech recognition, natural language processing, robotics etc.

• DNNs achieve state-of-the-art accuracy on many AI tasks at the cost of high
computational complexity (tens of millions of operations for a single inference)

• energy efficiency of DNN implementations in low-power hardware operated
on batteries (e.g. cellphones, smartwatches, smart glasses) becomes crucial

−→ reducing the energy cost of DNNs:

1. approximate computing methods (e.g. low floating-point precision, approxi-
mate multipliers) in error-tolerant applications such as image classification

2. hardware design: energy-efficient implementations of DNNs on various hard-
ware platforms including GPUs, FPGAs, in-memory computing architectures
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Energy Consumption of DNNs

• the power consumption of a specific DNN hardware implementation can be
measured or calculated/estimated (using physical laws)

• a plethora of methods that minimize the energy consumption of a given DNN
on various hardware architectures
(Sze,Chen,Yang,Emer:Efficient Processing of Deep Neural Networks,2020)

• automated by software tools, for example, the Timeloop program maps a
convolutional layer specified by its parameters onto a given hardware archi-
tecture (e.g. Simba, Eyeriss) that is optimal in terms of power consumption
estimated by Accelergy tool which reports the energy statistics

• it has been empirically observed that the energy for DNN inference is mainly
consumed by
1. data movement inside a memory hierarchy (approx. 70%) corresponding to

the data energy Edata
2. multiply-and-accumulate (MAC) operations (approx. 30%): S ← S + wx

on floats S,w, x, corresponding to the computation energy Ecomp

−→ E = Edata + Ecomp
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Motivations for Energy Complexity Model of DNNs

• the evaluation of real power consumption for individual DNN implementations
varies for different hardware architectures depending on their specific parameters,
which prevents from machine-independent exploration of energy complexity

• a formal computational model for defining a robust energy measure for DNNs,
quantified asymptotically using Big O notation
(by analogy to computation time and memory space defined by Turing machines)

• lower bounds on energy complexity can establish principal limits of DNNs

−→ A Simplified Hardware-Independent Model of Energy Complexity for DNNs:

• abstracts from hardware implementation details, ignoring specific aspects and
parameters of real-world machine

• preserves the asymptotic energy of DNN inference

• is defined (for simplicity) for a separate layer of a convolutional neural network
(CNN), avoiding global energy optimization across multiple CNN layers
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Energy Complexity Model for CNNs

• only two memory levels called DRAM (large, slow, and cheap memory) and
Buffer of limited capacity B bits (small, fast, and expensive memory)
• CNN weights and states are stored in DRAM

• arithmetic operations are performed over numerical data stored in Buffer

• the dataflow controls the transfer of data between DRAM and Buffer

• the main idea: the three arguments stored in DRAM, input x, weight w, and
accumulated output S of each MAC operation S ← S + wx performed for
evaluating a given convolutional layer, must occur in Buffer simultaneously
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A Convolutional Layer

p feature maps f ∈ {1, . . . , p}
of size m×m neurons

(depth = p, height=width = m)

receptive fields
of size r × r neurons
with stride s

q input feature maps
g ∈ {1, . . . , q}

of size n× n neurons
m ≈ n

s

yf(k, `) is the state of neuron (k, `) ∈ {1, . . . ,m}2 in feature map f ∈ {1, . . . , p}

yf(k, `) = ReLU
(
bf +

q∑
g=1

r∑
i=1

r∑
j=1

wfg(i, j) · yg
(
(k − 1)s + i , (`− 1)s + j

))
where ReLU(x) = max(0, x), bf is the bias of f , and wfg(i, j) is the filter weight of neuron
(i, j) ∈ {1, . . . , r}2 in a receptive field of f over the input feature map g ∈ {1, . . . , q}

−→ the number of MAC operations (#MACs) is pm2 · q r2 ≈ p q n2 r2

s2
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The Energy Complexity Measure for a Convolutional Layer

E = Edata + Ecomp

for a given dataflow used to evaluate a convolutional layer:

Edata is # DRAM accesses × # bits b in floating-point numbers

Ecomp = Cb · p q m2r2 ≈ p q n2 r2

s2 is proportional to # MACs (on data in Buffer)

where Cb is a non-uniform constant related to a b-bit floating-point MAC circuit

A Simple Lower Bound on the Data Energy

Edata ≥ b ·# MACs divided by
(
B−1

2
)2 = the maximum number of new triplets

(input, output, weight) (i.e. the MAC arguments) that can meet in Buffer of
capacity B bits after reading one number into Buffer (i.e. one DRAM access)

−→ Edata = Ω
(
p q n2 r2

s2

)
for constant Buffer capacity B
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A Partition of the Input Feature Map
a partition of input feature map g ∈ {1, . . . , q} of n× n neurons,

g =
⋃

i0,j0∈{1,...,s}

g(i0 , j0) into s2 grid submaps

g(i0, j0) =
{(

(k − 1)s + i0 , (`− 1)s + j0
)
| k, ` ∈ {1, . . . ,m}

}
of m×m neurons

that share the same weights wfg(i0 + κs , j0 + λs) for every (admissible) integer κ, λ

in yf(k, `) = ReLU
(
bf +

q∑
g=1

r∑
i=1

r∑
j=1

wfg(i, j) · yg
(
(k − 1)s + i , (`− 1)s + j

))
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A Dataflow with Write-Once Outputs (similarly for read-once inputs)

each output is completely evaluated at once in Buffer before it is written to DRAM
while each weights is read into Buffer only once:

for all feature maps f ∈ {1, . . . , p} do
read bias bf into Buffer;
for all k, ` ∈ {1, . . . ,m} do Sf(k, l)← bf enddo; {initialization of m×m weighted sums}
for all input feature maps g ∈ {1, . . . , q} do

for all i0, j0 ∈ {1, . . . , s} do {for all grid submaps g(i0, j0) from the partition of g}
for all (k, `) ∈ g(i0, j0) do read yg(k, `) into Buffer enddo; {reading m×m submap inputs}
for all admissible integer κ, λ do {for all the weights shared by submap g(i0, j0)}
i← i0 + κs; j ← j0 + λs; {1 ≤ i, j ≤ r}
read a single weight wfg(i, j) into Buffer;
for all k, ` ∈ {1, . . . ,m} do {all MACs with the weight wfg(i, j)}
Sf(k, l)← Sf(k, l) + wfg(i, j) · yg

(
(k − 1)s + i , (`− 1)s + j

)
enddo

enddo {next shared weight}
enddo {next submap}

enddo; {next input feature map}
for all k, ` ∈ {1, . . . ,m} do write yf(k, l) = ReLU

(
Sf(k, l)

)
to DRAM enddo {writing m×m outputs}

enddo {next feature map}
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The Capacity of Buffer

the used Buffer memory: B = b · (2m2 + 1)
• m2 accumulated outputs of feature map f
• m2 inputs from grid submap g(i0, j0)
• 1 shared weight

−→ a realistic assumption on the Buffer capacity:

B ≥ b · (2m2 + 1)

e.g. Buffer capacities in kilobytes required for convolutional layers in AlexNet:

AlexNet layer 1 2 3 4 5
m 55 27 13 13 13

2m2 + 1 6051 1459 339 339 339
b = 8 bits 5.91 kB 1.42 kB 0.33 kB 0.33 kB 0.33 kB
b = 16 bits 11.82 kB 2.85 kB 0.66 kB 0.66 kB 0.66 kB
b = 32 bits 23.64 kB 5.7 kB 1.32 kB 1.32 kB 1.32 kB

10/14



An Upper Bound on Data Energy Edata

the data energy Edata in terms of #DRAM accesses for inputs, outputs, and weights:

Edata = Eweights + Eoutputs + Einputs where

Einputs = b ·p q n2 Eoutputs = b ·pm2 ≈ b ·p n2

s2 Eweights = b ·p(q r2 + 1)
−→ an upper bound:

Edata ≤ b · p
(
q n2 + m2 + q r2 + 1

)
= O

(
p

(
qn2 + n2

s2 + qr2
))

the asymptotic theoretical energy complexity in terms of individual convolutional
layer parameters (others are constant):

Edata = O (p) where p is the number of feature maps (i.e. depth)

Edata = O (n2) where n is the the size of input feature maps (i.e. height=width)

Edata = O (r2) where r is the size of receptive fields

Edata = O (s−2) where s is the stride

fits very well (by linearity/quadraticity statistical tests) the real power consumptions
estimated by the Timeloop/Accelergy software platform that maps a convolutional
layer of given parameters onto the Simba and Eyeriss hardware architectures:
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Experimental Validation of Energy Complexity Model for Simba

Edata = O (p) Edata = O (n2)

Edata = O (r2) Edata = O (s−2)
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Experimental Validation of Energy Complexity Model for Eyeriss

Edata = O (p) Edata = O (n2)

Edata = O (r2) Edata = O (s−2)
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A Summary
• we have introduced a machine-independent model of energy complexity

for CNNs

• in this model, we have proposed a dataflow with write-once outputs (or
read-once inputs) and read-once weights for evaluating convolutional layers

• this provides an upper bound on the theoretical energy complexity of CNNs
which fits asymptotically very well the power consumption estimates of their
various hardware implementations

• we have shown a simple lower bound on energy of convolutional layers which
establishes the principal limit on energy efficiency of CNNs

Open Problems
• an experimental validation of the energy complexity model for combined

parameters of convolutional layer ?

• the matching lower bound on energy of convolutional layers for Buffer of
non-constant size ?
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