
32nd International Conference on Artificial Neural Networks
September 26-29, 2023, Heraklion, Crete, Greece

Energy Complexity Model for Convolutional Neural Networks

Jǐŕı Š́ıma
sima@cs.cas.cz

Institute of Computer Science (ICS)
Czech Academy of Sciences, Prague, Czechia

joint work with

Petra Vidnerová
ICS, Czech Academy of Sciences, Prague, Czechia

Vojtěch Mrázek
Faculty of Information Technology

Brno University of Technology, Brno, Czechia



Efficient Processing of Deep Neural Networks (DNNs)

• DNNs are widely used for many artificial intelligence (AI) applications including
computer vision, speech recognition, natural language processing, robotics etc.

• DNNs achieve state-of-the-art accuracy on many AI tasks at the cost of high
computational complexity (tens of millions of operations for a single inference)

• energy efficiency of DNN implementations in low-power hardware operated
on batteries (e.g. cellphones, smartwatches, smart glasses) becomes crucial

−→ reducing the energy cost of DNNs:

1. approximate computing methods (e.g. low floating-point precision, approxi-
mate multipliers) in error-tolerant applications such as image classification

2. hardware design: energy-efficient implementations of DNNs on various hard-
ware platforms including GPUs, FPGAs, in-memory computing architectures

2/14



Energy Consumption of DNNs

• the power consumption of a specific DNN hardware implementation can be
measured or calculated/estimated (using physical laws)

• a plethora of methods that minimize the energy consumption of a given DNN
on various hardware architectures
(Sze,Chen,Yang,Emer:Efficient Processing of Deep Neural Networks,2020)

• automated by software tools, for example, the Timeloop program maps a
convolutional layer specified by its parameters onto a given hardware archi-
tecture (e.g. Simba, Eyeriss) that is optimal in terms of power consumption
estimated by Accelergy tool which reports the energy statistics

• it has been empirically observed that the energy for DNN inference is mainly
consumed by
1. data movement inside a memory hierarchy (approx. 70%) corresponding to

the data energy Edata
2. multiply-and-accumulate (MAC) operations (approx. 30%): S ← S + wx

on floats S,w, x, corresponding to the computation energy Ecomp

−→ E = Edata + Ecomp
3/14



Motivations for Energy Complexity Model of DNNs

• the evaluation of real power consumption for individual DNN implementations
varies for different hardware architectures depending on their specific parameters,
which prevents from machine-independent exploration of energy complexity

• a formal computational model for defining a robust energy measure for DNNs,
quantified asymptotically using Big O notation
(by analogy to computation time and memory space defined by Turing machines)

• lower bounds on energy complexity can establish principal limits of DNNs

−→ A Simplified Hardware-Independent Model of Energy Complexity for DNNs:

• abstracts from hardware implementation details, ignoring specific aspects and
parameters of real-world machine

• preserves the asymptotic energy of DNN inference

• is defined (for simplicity) for a separate layer of a convolutional neural network
(CNN), avoiding global energy optimization across multiple CNN layers

4/14



Energy Complexity Model for CNNs

• only two memory levels called DRAM (large, slow, and cheap memory) and
Buffer of limited capacity B bits (small, fast, and expensive memory)
• CNN weights and states are stored in DRAM

• arithmetic operations are performed over numerical data stored in Buffer

• the dataflow controls the transfer of data between DRAM and Buffer

• the main idea: the three arguments stored in DRAM, input x, weight w, and
accumulated output S of each MAC operation S ← S + wx performed for
evaluating a given convolutional layer, must occur in Buffer simultaneously

5/14



A Convolutional Layer

p feature maps f ∈ {1, . . . , p}
of size m×m neurons

(depth = p, height=width = m)

receptive fields
of size r × r neurons
with stride s

q input feature maps
g ∈ {1, . . . , q}

of size n× n neurons
m ≈ n

s

yf(k, `) is the state of neuron (k, `) ∈ {1, . . . ,m}2 in feature map f ∈ {1, . . . , p}

yf(k, `) = ReLU
(
bf +

q∑
g=1

r∑
i=1

r∑
j=1

wfg(i, j) · yg
(
(k − 1)s + i , (`− 1)s + j

))
where ReLU(x) = max(0, x), bf is the bias of f , and wfg(i, j) is the filter weight of neuron
(i, j) ∈ {1, . . . , r}2 in a receptive field of f over the input feature map g ∈ {1, . . . , q}

−→ the number of MAC operations (#MACs) is pm2 · q r2 ≈ p q n2 r2

s2

6/14



The Energy Complexity Measure for a Convolutional Layer

E = Edata + Ecomp

for a given dataflow used to evaluate a convolutional layer:

Edata is # DRAM accesses × # bits b in floating-point numbers

Ecomp = Cb · p q m2r2 ≈ p q n2 r2

s2 is proportional to # MACs (on data in Buffer)

where Cb is a non-uniform constant related to a b-bit floating-point MAC circuit

A Simple Lower Bound on the Data Energy

Edata ≥ b ·# MACs divided by
(
B−1

2
)2 = the maximum number of new triplets

(input, output, weight) (i.e. the MAC arguments) that can meet in Buffer of
capacity B bits after reading one number into Buffer (i.e. one DRAM access)

−→ Edata = Ω
(
p q n2 r2

s2

)
for constant Buffer capacity B

7/14



A Partition of the Input Feature Map
a partition of input feature map g ∈ {1, . . . , q} of n× n neurons,

g =
⋃

i0,j0∈{1,...,s}

g(i0 , j0) into s2 grid submaps

g(i0, j0) =
{(

(k − 1)s + i0 , (`− 1)s + j0
)
| k, ` ∈ {1, . . . ,m}

}
of m×m neurons

that share the same weights wfg(i0 + κs , j0 + λs) for every (admissible) integer κ, λ

in yf(k, `) = ReLU
(
bf +

q∑
g=1

r∑
i=1

r∑
j=1

wfg(i, j) · yg
(
(k − 1)s + i , (`− 1)s + j

))

8/14



A Dataflow with Write-Once Outputs (similarly for read-once inputs)

each output is completely evaluated at once in Buffer before it is written to DRAM
while each weights is read into Buffer only once:

for all feature maps f ∈ {1, . . . , p} do
read bias bf into Buffer;
for all k, ` ∈ {1, . . . ,m} do Sf(k, l)← bf enddo; {initialization of m×m weighted sums}
for all input feature maps g ∈ {1, . . . , q} do

for all i0, j0 ∈ {1, . . . , s} do {for all grid submaps g(i0, j0) from the partition of g}
for all (k, `) ∈ g(i0, j0) do read yg(k, `) into Buffer enddo; {reading m×m submap inputs}
for all admissible integer κ, λ do {for all the weights shared by submap g(i0, j0)}
i← i0 + κs; j ← j0 + λs; {1 ≤ i, j ≤ r}
read a single weight wfg(i, j) into Buffer;
for all k, ` ∈ {1, . . . ,m} do {all MACs with the weight wfg(i, j)}
Sf(k, l)← Sf(k, l) + wfg(i, j) · yg

(
(k − 1)s + i , (`− 1)s + j

)
enddo

enddo {next shared weight}
enddo {next submap}

enddo; {next input feature map}
for all k, ` ∈ {1, . . . ,m} do write yf(k, l) = ReLU

(
Sf(k, l)

)
to DRAM enddo {writing m×m outputs}

enddo {next feature map}
9/14



The Capacity of Buffer

the used Buffer memory: B = b · (2m2 + 1)
• m2 accumulated outputs of feature map f
• m2 inputs from grid submap g(i0, j0)
• 1 shared weight

−→ a realistic assumption on the Buffer capacity:

B ≥ b · (2m2 + 1)

e.g. Buffer capacities in kilobytes required for convolutional layers in AlexNet:

AlexNet layer 1 2 3 4 5
m 55 27 13 13 13

2m2 + 1 6051 1459 339 339 339
b = 8 bits 5.91 kB 1.42 kB 0.33 kB 0.33 kB 0.33 kB
b = 16 bits 11.82 kB 2.85 kB 0.66 kB 0.66 kB 0.66 kB
b = 32 bits 23.64 kB 5.7 kB 1.32 kB 1.32 kB 1.32 kB

10/14



An Upper Bound on Data Energy Edata

the data energy Edata in terms of #DRAM accesses for inputs, outputs, and weights:

Edata = Eweights + Eoutputs + Einputs where

Einputs = b ·p q n2 Eoutputs = b ·pm2 ≈ b ·p n2

s2 Eweights = b ·p(q r2 + 1)
−→ an upper bound:

Edata ≤ b · p
(
q n2 + m2 + q r2 + 1

)
= O

(
p

(
qn2 + n2

s2 + qr2
))

the asymptotic theoretical energy complexity in terms of individual convolutional
layer parameters (others are constant):

Edata = O (p) where p is the number of feature maps (i.e. depth)

Edata = O (n2) where n is the the size of input feature maps (i.e. height=width)

Edata = O (r2) where r is the size of receptive fields

Edata = O (s−2) where s is the stride

fits very well (by linearity/quadraticity statistical tests) the real power consumptions
estimated by the Timeloop/Accelergy software platform that maps a convolutional
layer of given parameters onto the Simba and Eyeriss hardware architectures:

11/14



Experimental Validation of Energy Complexity Model for Simba

Edata = O (p) Edata = O (n2)

Edata = O (r2) Edata = O (s−2)

12/14



Experimental Validation of Energy Complexity Model for Eyeriss

Edata = O (p) Edata = O (n2)

Edata = O (r2) Edata = O (s−2)

13/14



A Summary
• we have introduced a machine-independent model of energy complexity

for CNNs

• in this model, we have proposed a dataflow with write-once outputs (or
read-once inputs) and read-once weights for evaluating convolutional layers

• this provides an upper bound on the theoretical energy complexity of CNNs
which fits asymptotically very well the power consumption estimates of their
various hardware implementations

• we have shown a simple lower bound on energy of convolutional layers which
establishes the principal limit on energy efficiency of CNNs

Open Problems
• an experimental validation of the energy complexity model for combined

parameters of convolutional layer ?

• the matching lower bound on energy of convolutional layers for Buffer of
non-constant size ?

14/14


