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Abstract

The energy efficiency of hardware implementations of convolutional neural networks
(CNNs) is critical to their widespread deployment in low-power mobile devices. Re-
cently, a plethora of methods have been proposed providing energy-optimal mappings
of CNNs onto diverse hardware accelerators. Their estimated energy consumption is
related to specific implementation details and hardware parameters, which does not al-
low for machine-independent exploration of CNN energy measures. In this paper, we
introduce a simplified theoretical energy complexity model for CNNs, based on only
two-level memory hierarchy that captures asymptotically all important sources of en-
ergy consumption for different CNN hardware implementations. In this model, we
derive a simple energy lower bound and calculate the energy complexity of evaluating
a CNN layer for two common dataflows, providing corresponding upper bounds. Ac-
cording to statistical tests, the presented theoretical energy upper and lower bounds fit
asymptotically very well the real energy consumption of CNN implementations on the
Simba and Eyeriss hardware platforms, estimated by the Timeloop/Accelergy program,
which validates the proposed energy complexity model for CNNs.

1 Introduction
Deep neural networks (DNNs) represent a cutting-edge machine learning technology
with countless applications in artificial intelligence (AI), including computer vision,
speech recognition, natural language processing, robotics, etc. In many cases such as



smart glasses, smartwatches, and mobile phone apps, DNNs have to be implemented in
low-power hardware operated on batteries. In contrast, the inference process of already
trained DNNs which typically consist of tens of layers, hundreds of thousands of neu-
rons, and tens of millions of weight parameters, is computationally very demanding and
highly-energy consuming. Thus, it is often accelerated efficiently in hardware employ-
ing massive parallelism in order to meet real-time requirements and energy constraints,
which is critical to the widespread deployment of DNNs in mobile AI applications.

Basically, there are two main approaches how to reduce the energy cost of DNNs.
The first approach is suitable for error-tolerant applications such as image classification
where enormous amount of energy can be saved at the cost of only a small loss in ac-
curacy by using approximate computing methods (Armeniakos, Zervakis, Soudris, &
Henkel, 2023; Mittal, 2016), e.g. low float precision (Gupta, Agrawal, Gopalakrishnan,
& Narayanan, 2015), approximate multipliers (Ansari et al., 2020), etc. The second
approach is related to recent major advances in techniques (Sze, Chen, Yang, & Emer,
2017, 2020) that enable energy-efficient DNN processing on a variety of hardware plat-
forms such as GPUs, FPGAs (Mittal, 2020), in-memory computing architectures, which
reduce the computational cost of DNNs through hardware design.

For a given hardware implementation of DNN, the actual energy consumption of
its inference process can be measured or analytically estimated using physical laws.
However, it depends on parameters and constants related to the specific hardware archi-
tecture and its evaluation varies for different hardware implementations, which prevents
from machine-independent exploration of DNN energy measures. Nevertheless, there
are software tools that can optimize the energy consumption for a particular DNN on
various hardware platforms using different dataflow mapping methods. For example,
the Timeloop program (Parashar et al., 2019) maps a convolutional layer specified by
its parameters onto a given hardware architecture that is optimal in terms of energy
consumption estimated by Accelergy tool (Wu, Emer, & Sze, 2019) which reports the
energy statistics.

It has been empirically observed that the energy cost of evaluating DNNs mainly
consists of two components, the computation energy and the data energy where the
later can be 70% of the total cost (Yang, Chen, Emer, & Sze, 2017). The compu-
tation energy is needed for performing arithmetic operations, especially the so-called
multiply-and-accumulate (MAC) operations (S ← S +wy on floats S,w, y), which are
used for computing weighted sums of inputs in neurons. The data energy is required for
moving data inside a memory hierarchy (i.e. the dataflow) in hardware implementations
of DNNs, which is related to the number of memory accesses.

The aim of this study is to introduce a theoretical hardware-independent model of
energy complexity for DNNs that abstracts from their hardware implementation de-
tails and ignores specific aspects and constants of real machines, while preserving the
asymptotic energy complexity of DNN inference. The use of abstract computational
models (such as Turing machines) is fundamental to the field of computational com-
plexity theory to define robust complexity measures, e.g. commonly associated with the
usage of the big O notation. Namely, this hardware-independent model will allow to
design energy-efficient dataflows providing asymptotic upper bounds on their energy
consumption and to establish the principal energy limits that any hardware accelerator
must consume by proving corresponding lower bounds. We will validate the universal-

2



ity of this model by comparing the derived theoretical bounds to the empirical estimates
of optimal energy consumptions by particular hardware architectures.

In this paper, we define an energy complexity measure for convolutional neural
networks (CNNs) which are widely used DNN models. The computation energy is
naturally determined by the number of MACs during the CNN inference, multiplied by
a non-uniform circuit constant related to the number of bits in floating-point operations.

To define the data energy of CNN, we introduce an abstract computational model
which is composed of only two memory levels called DRAM and Buffer. The CNN
parameters and states are stored in DRAM while arithmetic operations are executed
only over numerical data stored in Buffer which is of a limited capacity. The main idea
behind this model is that the three arguments of each MAC operation (i.e. float values
of an input, weight, and accumulated output) carried out in evaluating a given CNN,
must occur together at one time in the arithmetic processor Buffer. This requirement
is common to all conceivable hardware implementations of CNNs, making the model
universal. The CNN inference thus requires a certain number of data transfers between
DRAM and Buffer, which defines the data energy measure.

The proposed model can be used for proving lower bounds on energy complexity of
CNNs in order to establish asymptotic limits on energy efficiency of any CNN hardware
accelerators. Optimal energy bounds have already been proven for fully-connected lay-
ers as a special case of convolutional layers (Šı́ma & Cabessa, 2023). In this paper,
we derive a simple lower bound on the data energy of evaluating general convolutional
layers.

Furthermore, we calculate the theoretical energy complexity in this model for two
common energy-efficient dataflows under realistic Buffer capacity constraints. For the
first dataflow, an output value of each neuron is accumulated in Buffer and written to
DRAM only once, and for the second one, any input to each neuron is read into Buffer
only once. In both cases, each weight of the CNN is read into Buffer only once. The
two dataflows provide upper bounds on energy complexity of the inference process for
each convolutional layer separately in terms of its parameters.

These upper bounds on energy complexity are compared to the actual energy con-
sumption of evaluating CNNs on the Simba (Shao et al., 2019) and Eyeriss (Chen, Emer,
& Sze, 2016) hardware platforms which is estimated by using the Timeloop/Accelergy
software tool. The program optimizes the energy over dataflow mappings onto a given
hardware platform. It turns out that the theoretical upper bounds fit asymptotically very
well the estimated empirical energy consumption, when the depth, feature map size,
filter size, and stride of convolutional layers are varied each separately, which is vali-
dated by the statistical linearity and quadraticity tests. Moreover, let us note that these
individual upper bounds are optimal for constant Buffer capacity since they match the
corresponding lower bounds in this case.

In addition, the minimum real energy consumption of CNN implementations on
Simba estimated by Timeloop/Accelergy fits asymptotically the simple energy lower
bound also in the case where all the parameters of convolutional layers change simul-
taneously. Hence, the simplified energy complexity model captures asymptotically all
important sources of energy consumption that are common to diverse hardware imple-
mentations of CNNs.

A related line of study concerns another energy complexity measure counting the
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maximum number of simultaneously active neurons in the course of computation taken
over all possible inputs (Šı́ma, 2014; Uchizawa, Douglas, & Maass, 2006). This is
inspired by the fact documented by the fMRI that in biological neural networks the
energy cost to transmit a spike is relatively high while the oxygen (energy) supplied to
the brain is limited. Hence, the activity of neurons in the brain is quite sparse, with only
about 1% of neurons firing at the same time. This is in contrast to a typical design of
artificial neural circuits where on average, half of the neurons fire.

The paper is organized as follows. After a formal definition of CNNs in Section 2,
the energy complexity model for CNNs is introduced in Section 3 where the computa-
tion energy is calculated. In Section 4, a simple lower bound on the data complexity is
shown, while Section 5 presents two common energy-efficient dataflows which provide
upper bounds on the data energy. Section 6 validates the energy complexity model by
comparing the theoretical energy upper and lower bounds for a convolutional layer to
its energy consumption estimated by the Timeloop/Accelergy program for the Simba
and Eyeriss hardware platforms. Section 7 summarizes the results. A preliminary
conference version (Šı́ma, Vidnerová, & Mrázek, 2023) of this paper is substantially
expanded here to include a detailed description of dataflows, a general lower bound on
energy complexity, and its experimental validation.

2 Convolutional Neural Networks
In order to define an energy complexity measure, we first formalize and introduce no-
tations for a convolutional neural network (CNN) N . The network N is composed
of so-called macro-units which are matrices of neurons, representing feature maps.
The macro-units are grouped into a sequence of D + 1 disjoint layers Nλ, indexed by
λ = 0, . . . , D, starting with the input layerN0, followed by convolutional layers, which
are at times interlaced with (max) pooling layers, and ending with fully-connected lay-
ers including the last output layer ND. We assume a multi-layered architecture of N in
which directed macro-connections are between adjacent layersNλ−1 andNλ so that for
λ ≥ 1, any macro-unit g ∈ Nλ−1 can only be connected through macro-connections to
macro-units f ∈ Nλ in the subsequent layer.

Thus, layer Nλ is composed of dλ = |Nλ| > 0 macro-units which are mλ × nλ
matrices of neurons arranged in mλ > 0 rows and nλ > 0 columns. The parameters
mλ, nλ, and dλ are usually called the height, width, and depth of layer Nλ for λ ∈
{0, . . . , D}, respectively. For example, an m0 × n0-pixel image with three RGB color
channels can be presented to N through d0 = 3 maps in the input layer N0 of size
m0 × n0 neurons, each encoding one pixel of the respective channel in the RGB color
model.

For λ ≥ 1, a macro-connection from g ∈ Nλ−1 to f ∈ Nλ is a bundle of connections
leading from neurons in macro-unit g that form so-called receptive fields, to individual
neurons in macro-unit f . The receptive fields are rectangular (usually square) local
regions of size rλ×sλ, which serve as a scanning window to the feature map represented
by macro-unit g in the previous layer Nλ−1. This scanning window is shifted vertically
or horizontally by a so-called stride σλ > 0 in terms of the number of rows or columns
in g, respectively. Namely, to each neuron in macro-unit f , located on the kth row and
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Figure 1: A convolutional layer Nλ.

`th column where 1 ≤ k ≤ mλ and 1 ≤ ` ≤ nλ, the connections lead from all neurons
in an rλ× sλ submatrix of g with the upper left corner on the row (k− 1)σλ + 1 and the
column (`−1)σλ+1. This is illustrated on a convolutional layer which is schematically
depicted in Figure 1. Note that the parameters rλ, sλ, σλ are unique to layer Nλ.

In order to compensate for underrepresenting the neurons that are located at the
edge of feature maps, the macro-units in convolutional layers are usually padded by
several rows and columns of neurons both from above and below, and to the left and
right, respectively. For simplicity, we assume no padding which is sufficient for our
energy considerations. It follows that the size mλ × nλ of feature maps in the λth layer
can be calculated as

mλ =

⌈
mλ−1 − rλ

σλ

⌉
+ 1 , nλ =

⌈
nλ−1 − sλ

σλ

⌉
+ 1 (1)

in terms of the size mλ−1 × nλ−1 of feature maps in the preceding layer Nλ−1.
In the definition of energy complexity, we will consider only the convolutional lay-

ers in N whose indices are collected in Γ ⊂ {1, . . . , D} (including the fully-connected
layers as a special case), which are densely interconnected. Namely, for any index
λ ∈ Γ of convolutional layer, every macro-unit g ∈ Nλ−1 is connected to each macro-
unit f ∈ Nλ which thus has dλ−1 incoming macro-connections. On the other hand, we
neglect the sparsely interconnected pooling layers Nλ with λ /∈ Γ, whose macro-units
f have only one unique incoming macro-connection from a corresponding macro-unit
in Nλ−1 (i.e. dλ = dλ−1), which represents a feature map that is partitioned into square
non-overlapping receptive fields of f (i.e. σλ = rλ = sλ). The fully-connected layers
Nλ with λ in Γ are composed of single neurons f that constitute trivial feature maps
of size 1 × 1 (i.e. mλ = nλ = σλ = 1) satisfying rλ = sλ = 1 except for the first
fully-connected (so-called flattening) layerNλ1 which collects outputs from all neurons
in the previous layer Nλ1−1, that is, rλ1 = mλ1−1 and sλ1 = nλ1−1.

Every macro-unit f ∈ Nλ for λ ∈ Γ, is associated with a real bias bf ∈ R, and
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any macro-connection leading from macro-unit g ∈ Nλ−1 to f is labeled with a so-
called filter (or kernel) Wfg ∈ Rrλ×sλ which is an rλ × sλ matrix with real entries
wfg(i, j) called weights, for every i = 1, . . . , rλ and j = 1, . . . , sλ. The state (output)
Yf ∈ Rmλ×nλ of any macro-unit f ∈ Nλ is an mλ×nλ matrix with real entries yf (k, `)
which are states (outputs) of individual neurons in f , for every k = 1, . . . ,mλ and
` = 1, . . . , nλ.

For a convolutional layer Nλ where λ ∈ Γ, the states Yf of f ∈ Nλ are evaluated
using the following weighted sums

Sf (k, `) = bf +
∑

g∈Nλ−1

rλ∑
i=1

sλ∑
j=1

wfg(i, j) yg

(
(k − 1)σλ + i , (`− 1)σλ + j

)
(2)

for every k = 1, . . . ,mλ and ` = 1, . . . , nλ. Note that the weight wfg(i, j) in (2)
is associated with a connection incoming to a neuron located on the kth row and `th
column in macro-unit f ∈ Nλ for any 1 ≤ k ≤ mλ and 1 ≤ ` ≤ nλ, that lead from
a neuron located in the receptive field of f on the row (k − 1)σλ + i and the column
(`− 1)σλ + j in macro-unit g ∈ Nλ−1. This means that the receptive fields of f ∈ Nλ
in g ∈ Nλ−1 share the same filter Wfg associated with the macro-connection from g
to f .

Furthermore, for a non-output layer Nλ with λ < D, the rectified linear activation
function ReLU is employed as

yf (k, `) = ReLU(Sf (k, `)) = max
(
0, Sf (k, `)

)
, (3)

while for the output layer ND, the state Yf = (yf (1, 1)) = yf of trivial macro-unit
f ∈ ND with mD = nD = 1 neuron, is computed by the softmax function as yf =
eSf/(

∑
h∈ND e

Sh) ∈ (0, 1) where Sh = Sh(1, 1) for every h ∈ ND. For completeness
note that for a max pooling layer Nλ where λ /∈ Γ, which satisfies σλ = rλ = sλ,
the state Yf of f ∈ Nλ with a single incoming macro-connection from g ∈ Nλ−1,
is computed as yf (k, `) = maxi,j∈{1,...,rλ} yg

(
(k − 1)rλ + i , (` − 1)rλ + j

)
for every

k = 1, . . . ,mλ and ` = 1, . . . , nλ.

3 Energy Complexity Model
In this section, we introduce a simplified hardware-independent energy complexity
model for evaluating a CNN formalized in Section 2, which captures the main sources
of energy consumption in practical hardware implementations of CNNs. This model has
a memory hierarchy with only two levels, called DRAM and Buffer, as schematically
depicted in Figure 2.

The DRAM memory has an unlimited capacity (corresponding to a large, slow, and
cheap memory) which is used for storing the entire CNN N including its filters Wfg

and current states Yf for all macro-units f, g. In contrast, the Buffer memory has
a limited capacity of B bits (corresponding to a small, fast, and expensive memory)
over which arithmetic operations are executed, especially the multiply-and-accumulate
(MAC) operations S ← S+wy for evaluating the weighted sums (2) where w is a filter
weight, y is a neuron state from a previous-layer feature map, and S is a partial sum
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Figure 2: The energy complexity model.

accumulating an output of a current-layer neuron. Thus, in order to perform a MAC
operation, the respective float values of its three arguments must simultaneously occur
in Buffer which means they must be read from DRAM into Buffer at some point. On
the other hand, the results of MACs are later written to DRAM due to the limited Buffer
capacity. This requires (read/write) accesses to DRAM memory, which are energy con-
suming.

As has been discussed in Section 1, the energy complexity of evaluatingN consists
of the computation energy and the data energy (Yang et al., 2017):

E = Ecomp + Edata (4)

which are related to the number of MACs and the number of DRAM accesses, respec-
tively. For simplicity, we do not consider the energy optimization across multiple layers
(Alwani, Chen, Ferdman, & Milder, 2016), which means energy complexity (4) is de-
fined as a simple sum of energy costs only over separate convolutional layers in N
(including fully-connected layers), while the less energy-intensive max pooling layers
are omitted:

E =
∑
λ∈Γ

(
Eλ

comp + Eλ
data

)
(5)

where Eλ
comp is the computation energy and Eλ

data is the data energy for evaluating a
convolutional layer Nλ for λ ∈ Γ. Hereafter, for brevity, the states of single neurons in
macro-units in Nλ−1 are called the inputs of layer Nλ, the states of single neurons in
macro-units in Nλ are called the outputs of layer Nλ, and the individual filter weights
associated with connections between neurons in layers Nλ−1 and Nλ according to (2),
are called the weights of Nλ.

The computation energy Eλ
comp is defined as the number of MACs in layer Nλ for

λ ∈ Γ, multiplied by a parameter Cb that depends on the number of bits b in floating-
point MAC operations. This dependence is apparently not uniform (e.g. not linear)
since the design of a MAC circuit inside a microprocessor differs for each b, which
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means there is no program generating a MAC circuit for each b (i.e. a nonuniformity
assumption known from circuit complexity theory).

The number of MACs in the λth layer equals to the number dλmλnλ of weighted
sums Sf (k, `) in (2) for all f ∈ Nλ (where |Nλ| = dλ), k ∈ {1, . . . ,mλ}, and ` ∈
{1, . . . , nλ} (i.e. the number of outputs of Nλ), multiplied by the number dλ−1rλsλ of
inputs yg((k− 1)σλ + i , (`− 1)σλ + j) ofNλ for all g ∈ Nλ−1 (where |Nλ−1| = dλ−1),
i ∈ {1, . . . , rλ}, and j ∈ {1, . . . , sλ}, that contribute to each of these sums, which gives

Eλ
comp = Cb dλmλnλ dλ−1rλsλ . (6)

The data energy Eλ
data is defined as the number of read and write accesses to DRAM

when evaluating the λth layer for λ ∈ Γ, multiplied by the number b of bits in a floating-
point representation of numbers to be transferred between DRAM and Buffer. Note
that in our model we assume that any floating-point number is transferred as a separate,
indivisible, and uncompressed block of b bits. This energy complexity can be split into
three components that count the DRAM accesses separately for the inputs, outputs, and
weights of Nλ:

Eλ
data = Eλ

inputs + Eλ
outputs + Eλ

weights . (7)

4 A Simple Lower Bound on Energy Complexity
In this section, we derive a simple lower bound on the data energy Eλ

data for any convo-
lutional layer Nλ where λ ∈ Γ. Obviously, the numbers of inputs, outputs, and weights
of Nλ which can be calculated as dλ−1mλ−1nλ−1, dλmλnλ, and dλ(dλ−1rλsλ + 1) (in-
cluding biases), respectively, altogether provide a trivial lower bound on the data energy
complexity of layer Nλ:

Eλ
data ≥ b (dλ−1mλ−1nλ−1 + dλmλnλ + dλ(dλ−1rλsλ + 1)) (8)

since all the inputs and weights must be read into Buffer at least once and all the evalu-
ated outputs are eventually written to DRAM.

The trivial lower bound (8) can slightly be improved. For this purpose observe
that any two fixed MAC arguments chosen from the three ones that occur in (2) for
λ ∈ Γ, which are the inputs yg((k − 1)σλ + i , (` − 1)σλ + j) for all g ∈ Nλ−1, k ∈
{1, . . . ,mλ}, ` ∈ {1, . . . , nλ}, i ∈ {1, . . . , rλ}, and j ∈ {1, . . . , sλ}, the weighted sums
Sf (k, `) accumulated for the outputs yf (k, `) for all f ∈ Nλ, k ∈ {1, . . . ,mλ}, and
` ∈ {1, . . . , nλ}, and the weights wfg(i, j) for all f ∈ Nλ, g ∈ Nλ−1, i ∈ {1, . . . , rλ},
and j ∈ {1, . . . , sλ}, determine uniquely the remaining third MAC argument in (2) if it
exists.

For instance, the sum Sf1(k1, `1) for some fixed f1 ∈ Nλ, k1 ∈ {1, . . . ,mλ},
and `1 ∈ {1, . . . , nλ}, and the weight wf1g1(i1, j1) for some fixed g1 ∈ Nλ−1, i1 ∈
{1, . . . , rλ}, and j1 ∈ {1, . . . , sλ}, represent two arguments of the only one MAC
operation used to evaluate (2) over the corresponding unique input yg1((k1 − 1)σλ +
i1 , (`1−1)σλ+ j1) as the third argument. On the other hand, the input yg1((k1−1)σλ+
i1 , (`1 − 1)σλ + j1) for some fixed g1 ∈ Nλ−1, k1 ∈ {1, . . . ,mλ}, `1 ∈ {1, . . . , nλ},
i1 ∈ {1, . . . , rλ}, and j1 ∈ {1, . . . , sλ}, and the weight wf1g1(i1, j2) for some fixed
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f1 ∈ Nλ and j2 ∈ {1, . . . , sλ} such that j1 6= j2, do not occur together as arguments of
any MAC operation, since the sum Sf1(k1, `1) in (2) does not contain the incompatible
term wf1g1(i1, j2) · yg1((k1 − 1)σλ + i1 , (`1 − 1)σλ + j1).

Suppose that β ≥ 3 floating-point numbers of size b bits can be stored in Buffer
which means B = b · β. It follows from the preceding observation that after reading
one number into Buffer, the maximum number of new triple arguments (input, output,
weight) of MACs that meet in Buffer which are used for evaluating (2), is b(β − 1)/2c,
since there can be at most b(β − 1)/2c pairs of MAC arguments in Buffer combined
with the read unique third MAC argument. Hence, the data energy complexity of layer
Nλ can be lower bounded by the number of MAC operations divided by the maximum
number new MACs enabled by one DRAM access, that is,

Eλ
data ≥ b · dλmλnλdλ−1rλsλ⌊

β−1
2

⌋ . (9)

Particularly for constant Buffer capacity B, we obtain the asymptotic lower bound

Eλ
data = Ω (dλdλ−1mλnλrλsλ) (10)

which can be rewritten as

Eλ
data = Ω

(
dλdλ−1mλ−1nλ−1rλsλ

σ2
λ

)
(11)

due to mλnλ ≈ mλ−1nλ−1/σ
2
λ according to (1).

5 Upper Bounds on Energy Complexity
In the following two Sections 5.1 and 5.2, we present two common dataflows for evalu-
ating a convolutional layer Nλ where λ ∈ Γ, and calculate their theoretical data energy
complexity Eλ

data, which provides upper bounds on energy. In Section 5.3, these upper
bounds are then compared to the lower bounds derived in Section 4.

In the first dataflow, each output is written to DRAM only once and in the second
one, each input is read into Buffer only once, while each weight (including bias) is read
into Buffer just one time in both dataflows, that is,

Eλ
weights = b dλ(dλ−1rλsλ + 1) . (12)

We will assume a sufficiently large capacity of Buffer:

B = b (2mλnλ + 1) , (13)

which is a realistic assumption in practical hardware implementations of CNNs as will
be illustrated in Section 6.

For the purpose of describing the dataflows, we define a partition of an input feature
map g ∈ Nλ−1 composed of mλ−1 × nλ−1 neurons,

g =
⋃

i0,j0∈{1,...,σλ}

g(i0 , j0) (14)
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Figure 3: The partition of an input feature map.

into σ2
λ disjoint grid submaps

g(i0, j0) =

{(
i0 + (k − 1)σλ , j0 + (`− 1)σλ

) ∣∣∣∣ k ∈ {1, . . . ,mλ}
` ∈ {1, . . . , nλ}

}
, (15)

each composed ofmλ×nλ neurons that share the same weightswfg(i, j) in the weighted
sum (2) for each f ∈ Nλ, as is schematically depicted Figure 3. These shared weights
wfg(i, j) satisfy

1 ≤ i = i0 + k1σλ ≤ rλ and 1 ≤ j = j0 + `1σλ ≤ sλ (16)

for integers k1, `1 ∈ Z, since a weight wfg(i, j) is combined with an input yg
(
(k −

1)σλ + i0 , (` − 1)σλ + j0

)
in (2) for some k ∈ {1, . . . ,mλ}, ` ∈ {1, . . . , nλ}, and

i0, j0 ∈ {1, . . . , σλ}, iff there is k2 ∈ {1, . . . ,mλ}, `2 ∈ {1, . . . , nλ} such that (k −
1)σλ + i0 = (k2 − 1)σλ + i and (`− 1)σλ + j0 = (`2 − 1)σλ + j iff i = i0 + k1σλ and
j = j0 + `1σλ where k1 = k − k2 and `1 = `− `2.

5.1 The Dataflow with Write-Once Outputs
The dataflow in which each output is written to DRAM only once is described in Algo-
rithm 1. This algorithm is basically composed of five nested for loops 1–26, 6–22, 7–21,
12–20, and 16–19. The outermost loop 1–26 goes through all the macro-units f ∈ Nλ
representing the feature maps of convolutional layer Nλ where λ ∈ Γ, for which the
bias bf is first read (line 2) in order to initialize the mλ × nλ weighted sums Sf (k, `)
of feature map f accumulated in Buffer, for all k ∈ {1, . . . ,mλ} and ` ∈ {1, . . . , nλ}
(lines 3–5). The next two nested loops 6–22 and 7–21 pass through all the macro-units
g ∈ Nλ−1 representing the input feature maps in the (λ− 1)th layer, and through all the
grid submaps g(i0, j0) parameterized by i0, j0 ∈ {1, . . . , σλ} from the partition (14) of
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Algorithm 1 The dataflow with write-once outputs and B = b(2mλnλ + 1).
1: for all feature maps f ∈ Nλ do
2: read bias bf into Buffer
3: for all k ∈ {1, . . . ,mλ}, ` ∈ {1, . . . , nλ} do
4: Sf (k, `)← bf {initialization of mλ × nλ weighted sums}
5: end for
6: for all input feature maps g ∈ Nλ−1 do
7: for all i0, j0 ∈ {1, . . . , σλ} do
8: {i.e. for all grid submaps g(i0, j0) from the partition of g}
9: for all (k, `) ∈ g(i0, j0) do

10: read yg(k, `) into Buffer {reading mλ × nλ submap inputs}
11: end for
12: for all (k1, `1) s.t. 1 ≤ i0 + k1σλ ≤ rλ, 1 ≤ j0 + `1σλ ≤ sλ do
13: {i.e. for all weights wfg(i0 +k1σλ , j0 +`1σλ) shared by submap g(i0, j0)}
14: i← i0 + k1σλ; j ← j0 + `1σλ
15: read weight wfg(i, j) into Buffer
16: for all k ∈ {1, . . . ,mλ}, ` ∈ {1, . . . , nλ} do
17: {i.e. for all MACs in (2) over the weight wfg(i, j)}
18: Sf (k, `)← Sf (k, `) + wfg(i, j) · yg

(
(k − 1)σλ + i , (`− 1)σλ + j

)
19: end for
20: end for{next shared weight}
21: end for{next input submap}
22: end for{next input feature map}
23: for all k ∈ {1, . . . ,mλ}, ` ∈ {1, . . . , nλ} do
24: write yf (k, `)← ReLU

(
Sf (k, `)

)
to DRAM {writing mλ × nλ outputs}

25: end for
26: end for{next feature map}

g, respectively. The mλ×nλ inputs yg(k, `) of submap g(i0, j0) for all (k, `) ∈ g(i0, j0)
are read from DRAM into Buffer (lines 9–11).

The next nested loop 12–20 goes through all the weights wfg(i, j) that are shared
by the submap g(i0, j0) for all integers k1, `1 ∈ Z satisfying (16). The single weight
wfg(i, j) is read from DRAM into Buffer (line 15) which is then used in the innermost
loop 16–19 to carry out all the MAC operations in Buffer over this weight, updating
all the weighted sums Sf (k, `) of feature map f , for all k ∈ {1, . . . ,mλ} and ` ∈
{1, . . . , nλ} (line 18). After these weighted sums Sf (k, `) are eventually evaluated for
feature map f , the corresponding mλ × nλ outputs yf (k, `) are computed according to
(3) and written to DRAM, for all k ∈ {1, . . . ,mλ} and ` ∈ {1, . . . , nλ} (lines 23–25).

Algorithm 1 uses B = b(2mλnλ + 1) bits of Buffer memory satisfying (13), which
is occupied by mλnλ accumulated weighted sums Sf (k, `) for all k ∈ {1, . . . ,mλ} and
` ∈ {1, . . . , nλ} (lines 3–5, 16–19, and 23–25), mλnλ inputs yg(k, `) of grid submap
g(i0, j0) for all (k, `) ∈ g(i0, j0) (lines 9–11), and one weight wfg(i, j) shared by
submap g(i0, j0) (line 15).

Each output yf (k, `) for f ∈ Nλ (|Nλ| = dλ), k ∈ {1, . . . ,mλ}, and ` ∈ {1, . . . , nλ}
is written to DRAM only once (line 24 within the nested loops 1–26 and 23–25), which
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gives
Eλ

outputs = b dλmλnλ . (17)

The partition (14) ensures that each weight wfg(i, j) for f ∈ Nλ, g ∈ Nλ−1, i0, j0 ∈
{1, . . . , σλ}, and k1, `1 ∈ Z satisfying (16) (line 15 within the nested loops 1–26, 6–22,
7–21, and 12–20) including bias bf for f ∈ Nλ (line 2 within the outermost loop 1–26)
is read into Buffer only once, which implies (12).

Every input yg(k, `) for g ∈ Nλ−1 and (k, `) ∈
⋃
i0,j0∈{1,...,σλ} g(i0, j0) is read once

for each macro-unit f ∈ Nλ (line 10 within the nested loops 1–26, 6–22, 7–21, and
9–11) due the partition (14), which implies

Eλ
inputs = b dλdλ−1mλ−1nλ−1 . (18)

Hence, the dataflow provides the following upper bound on the data energy of layerNλ:

Eλ
data ≤ b dλ (dλ−1mλ−1nλ−1 +mλnλ + dλ−1rλsλ + 1) (19)

according to (7), (18), (17), and (12).
In addition, we also present an alternative dataflow with write-once outputs of the

same data energy (19) in Algorithm 2, whose Buffer capacity is

B = b (mλnλ + rλsλ + 1) , (20)

cf. (13). The alternative dataflow differs in that we load the whole filter Wfg of rλ× sλ
weights from DRAM into Buffer at once for each f ∈ Nλ and g ∈ Nλ−1 (lines 7–9
within the nested loops 1–21 and 6–17), while only the single inputs yg(k1, `1) from
the input feature map g ∈ Nλ−1 are read from DRAM into Buffer one by one for each
k1 ∈ {1, . . . ,mλ−1}, `1 ∈ {1, . . . , nλ−1} (line 11 within the loop 10–16) which is then
used in the innermost loop 12–15 to carry out all the MAC operations in Buffer over this
input, updating all the weighted sums Sf (k, `) of feature map f , for all k ∈ {1, . . . ,mλ}
and ` ∈ {1, . . . , nλ} (line 14).

It follows that the Buffer memory is used for mλnλ accumulated weighted sums
Sf (k, `) for all k ∈ {1, . . . ,mλ} and ` ∈ {1, . . . , nλ} (lines 3–5, 12–15, and 18–20),
rλsλ weights wfg(i, j) for all i ∈ {1, . . . , rλ}, j ∈ {1, . . . , sλ} (lines 7–9), and one
input yg(k1, `1) (line 11), which implies (20). Moreover, every input in layer Nλ−1

is read into Buffer once for each macro-unit f ∈ Nλ (line 11 within the outermost
loop 1–21), which proves the upper bound (19) also for this alternative dataflow.

5.2 The Dataflow with Read-Once Inputs
The dataflow in which each input is read into Buffer only once is described in Algo-
rithm 3. This algorithm is basically composed of five nested for loops 2–36, 3–35,
9–34, 20–33, and 24–32. The two outermost loops 2–36 and 3–35 go through all the
macro-units g ∈ Nλ−1 representing the input feature maps in the (λ − 1)th layer, and
through all the grid submaps g(i0, j0) parameterized by i0, j0 ∈ {1, . . . , σλ} from the
partition (14) of g, respectively. The variable inp is used to count the total number of
currently processed input submaps in layer Nλ−1 (lines 1 and 5). The mλ × nλ inputs
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Algorithm 2 The dataflow with write-once outputs and B = b(mλnλ + rλsλ + 1).
1: for all feature maps f ∈ Nλ do
2: read bias bf into Buffer
3: for all k ∈ {1, . . . ,mλ}, ` ∈ {1, . . . , nλ} do
4: Sf (k, `)← bf {initialization of mλ × nλ weighted sums}
5: end for
6: for all input feature maps g ∈ Nλ−1 do
7: for all i ∈ {1, . . . , rλ}, j ∈ {1, . . . , sλ} do
8: read weight wfg(i, j) into Buffer {reading filter Wfg}
9: end for

10: for all k1 ∈ {1, . . . ,mλ−1}, `1 ∈ {1, . . . , nλ−1} do
11: read yg(k1, `1) into Buffer
12: for all k ∈ {1, . . . ,mλ}, ` ∈ {1, . . . , nλ}, i ∈ {1, . . . , rλ}, j ∈ {1, . . . , sλ}

s.t. k1 = (k − 1)σλ + i, `1 = (`− 1)σλ + j do
13: {i.e. for all MACs in (2) over the input yg(k1, `1)}
14: Sf (k, `)← Sf (k, `) + wfg(i, j) · yg

(
(k − 1)σλ + i , (`− 1)σλ + j

)
15: end for
16: end for{next input}
17: end for{next input feature map}
18: for all k ∈ {1, . . . ,mλ}, ` ∈ {1, . . . , nλ} do
19: write yf (k, `)← ReLU

(
Sf (k, `)

)
to DRAM {writing mλ × nλ outputs}

20: end for
21: end for{next feature map}

yg(k, `) of submap g(i0, j0) for all (k, `) ∈ g(i0, j0) are read from DRAM into Buffer
(lines 6–8).

The next nested loop 9–34 passes through all the macro-units f ∈ Nλ representing
the feature maps in the (λ − 1)th convolutional layer for λ ∈ Γ. For the first input
submap (line 10), the bias bf is read (line 11) in order to initialize themλ×nλ weighted
sums Sf (k, `) of feature map f accumulated in Buffer, for all k ∈ {1, . . . ,mλ} and
` ∈ {1, . . . , nλ} (lines 12–14), while for the next input submaps (line 15) these weighted
sums currently stored in DRAM (line 30) are read into Buffer (lines 16–18).

The following nested loop 20–33 goes through all the weights wfg(i, j) that are
shared by the submap g(i0, j0) for all integers k1, `1 ∈ Z satisfying (16). The single
weight wfg(i, j) is read from DRAM into Buffer (line 23) which is then used in the
innermost loop 24–32 to carry out all the MAC operations in Buffer over this weight,
updating all the weighted sums Sf (k, `) of feature map f , for all k ∈ {1, . . . ,mλ} and
` ∈ {1, . . . , nλ} (line 26). For the last input submap (line 27) when these weighted
sums Sf (k, `) have eventually been evaluated for feature map f , the corresponding
mλ × nλ outputs yf (k, `) are computed according to (3) and written to DRAM, for
all k ∈ {1, . . . ,mλ} and ` ∈ {1, . . . , nλ} (line 28 within the loop 24–32). Otherwise
(line 29), these weighted sums Sf (k, `) of feature map f are stored in DRAM for all
k ∈ {1, . . . ,mλ} and ` ∈ {1, . . . , nλ} (line 30 within the loop 24–32).

Algorithm 3 uses B = b(2mλnλ + 1) bits of Buffer memory satisfying (13), which
is occupied by mλnλ inputs yg(k, `) of grid submap g(i0, j0) for all (k, `) ∈ g(i0, j0)
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Algorithm 3 The dataflow with read-once inputs and B = b(2mλnλ + 1).
1: inp← 0
2: for all input feature maps g ∈ Nλ−1 do
3: for all i0, j0 ∈ {1, . . . , σλ} do
4: {i.e. for all grid submaps g(i0, j0) from the partition of g}
5: inp← inp+ 1 {counts the current number of input submaps}
6: for all (k, `) ∈ g(i0, j0) do
7: read yg(k, `) into Buffer {reading mλ × nλ submap inputs}
8: end for
9: for all feature maps f ∈ Nλ do

10: if inp = 1 {first input submap} then
11: read bias bf into Buffer
12: for all k ∈ {1, . . . ,mλ}, ` ∈ {1, . . . , nλ} do
13: Sf (k, `)← bf {initialization of mλ × nλ weighted sums}
14: end for
15: else
16: for all k ∈ {1, . . . ,mλ}, ` ∈ {1, . . . , nλ} do
17: read Sf (k, `) into Buffer {reading mλ × nλ weighted sums}
18: end for
19: end if
20: for all (k1, `1) s.t. 1 ≤ i0 + k1σλ ≤ rλ, 1 ≤ j0 + `1σλ ≤ sλ do
21: {i.e. for all weights wfg(i0 +k1σλ , j0 +`1σλ) shared by submap g(i0, j0)}
22: i← i0 + k1σλ; j ← j0 + `1σλ
23: read weight wfg(i, j) into Buffer
24: for all k ∈ {1, . . . ,mλ}, ` ∈ {1, . . . , nλ} do
25: {i.e. for all MACs in (2) over the weight wfg(i, j)}
26: Sf (k, `)← Sf (k, `) + wfg(i, j) · yg

(
(k − 1)σλ + i , (`− 1)σλ + j

)
27: if inp = dλ−1σ

2
λ {last input submap} then

28: write yf (k, `) ← ReLU
(
Sf (k, `)

)
to DRAM {writing mλ × nλ out-

puts}
29: else
30: write Sf (k, `) to DRAM {writing mλ × nλ weighted sums}
31: end if
32: end for
33: end for{next shared weight}
34: end for{next feature map}
35: end for{next input submap}
36: end for{next input feature map}
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(lines 6–8), mλnλ accumulated weighted sums Sf (k, `) for all k ∈ {1, . . . ,mλ} and
` ∈ {1, . . . , nλ} (lines 12–14, 16–18, and 24–32), and one weight wfg(i, j) shared by
submap g(i0, j0) (line 23).

Moreover, the partition (14) ensures that each input yg(k, `) for g ∈ Nλ−1 and
(k, `) ∈

⋃
i0,j0∈{1,...,σλ} g(i0, j0) (line 7 within the nested loops 2–36, 3–35, and 6–8),

as well as each weight wfg(i, j) for g ∈ Nλ−1, f ∈ Nλ, i0, j0 ∈ {1, . . . , σλ}, and
k1, `1 ∈ Z satisfying (16) (line 23 within the nested loops 2–36, 3–35, 9–34, and 20–
33) including bias bf for f ∈ Nλ (line 11 within the first run of loop 9–34) is read into
Buffer only once, which implies

Eλ
inputs = b dλ−1mλ−1nλ−1 (21)

and (12), respectively.
Any accumulated weighted sum Sf (k, `) for f ∈ Nλ, k ∈ {1, . . . ,mλ}, and ` ∈

{1, . . . , nλ}, is read (lines 16–18 within the loop 9–34) except for its initialization by
bias bf at the beginning (lines 11–14), and written once for each of the dλ−1 macro-units
g ∈ Nλ−1 and each of the σ2

λ submaps g(i0, j0) from the partition (14) of g (lines 28
and 30 within the nested loops 2–36 and 3–35), which gives

Eλ
outputs = b

(
2dλ−1σ

2
λ − 1

)
dλmλnλ . (22)

Hence, this dataflow provides another upper bound on the data energy of layer Nλ:

Eλ
data ≤ b

(
dλ−1mλ−1nλ−1 +

(
2dλ−1σ

2
λ − 1

)
dλmλnλ + dλ (dλ−1rλsλ + 1)

)
(23)

according to (7), (21), (22), and (12).

5.3 Comparison of Energy Complexity Bounds
The upper bound (19) on the data energy Eλ

data for evaluating a convolutional layer Nλ
(λ ∈ Γ), achieved by Algorithms 1 and 2 that are based on the dataflow with write-once
outputs, with Buffer capacity (13) and (20), respectively, differs only in the number of
DRAM accesses for reading inputs by factor dλ from the trivial lower bound (8):

b (dλ−1mλ−1nλ−1 + dλmλnλ + dλ(dλ−1rλsλ + 1)) ≤ Eλ
data (24)

≤ b (dλ dλ−1mλ−1nλ−1 + dλmλnλ + dλ(dλ−1rλsλ + 1)) . (25)

The used non-constant Buffer size B = b(2mλnλ + 1) according to (13) (similarly for
(20)) devalues the improved lower bound (9) to Eλ

data ≥ b · dλdλ−1rλsλ which is weaker
than the trivial lower bound (24). It is an open problem whether the gap between the
lower bound (24) and the upper bound (25) on the data energy Eλ

data can be removed.
We conjecture that the trivial lower bound bound (24) can possibly be improved to
match the upper bound (25), which would provide the optimal energy complexity for
the assumed Buffer capacity B = b(2mλnλ + 1).

Furthermore, suppose that the number of single neurons in layers Nλ−1 and Nλ is
of the same order, that is, dλ−1mλ−1nλ−1 ≈ dλmλnλ, as typically assumed in practical
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CNNs. Then the upper bound (23) on the data energy Eλ
data for evaluating a convolu-

tional layer Nλ (λ ∈ Γ), achieved by Algorithm 3 that is based on the dataflow with
write-once inputs, using the Buffer capacity (13), can be rewritten as

Eλ
data = O (dλmλnλ + dλdλ−1mλ−1nλ−1 + dλ (dλ−1rλsλ + 1)) (26)

since σ2
λmλnλ ≈ mλ−1nλ−1 according to (1). The upper bound (26) coincides asymp-

totically with (25), which means that the three proposed Algorithm 1–3 are comparable
from the data energy complexity point of view. Nevertheless, the multiplicative con-
stant 2 of leading term dλdλ−1mλ−1nλ−1 in (23), which is caused by storing partially
evaluated weighted sums in DRAM, makes the upper bound (25) more tight than (23).

6 Experimental Validation
In this section, we compare the theoretical energy complexity introduced in Section 3
to the real energy consumption estimated by the Timeloop/Accelergy software tool for
evaluating DNN accelerator designs. The Timeloop (Parashar et al., 2019) finds a map-
ping of a convolutional layer specified by its architectural parameters (e.g. high, width,
depth, size of receptive fields, stride) onto a given hardware platform, which is empiri-
cally optimal in terms of energy consumption estimated by Accelergy (Wu et al., 2019)
reporting the energy statistics.

Namely, we have employed Simba (Shao et al., 2019) and Eyeriss (Chen et al.,
2016) as the target hardware platforms onto which convolutional layers with increasing
parameters have been mapped so that the least energy intensive dataflows are achieved.
These platforms have been chosen as prominent examples of accelerators based on the
systolic array of processing elements which are often implemented in practice as they
are general and not tied to a specific CNN. All configuration files used in experiments
are publicly available at Github1.

The computation energy reported by Timeloop/Accelergy corresponds directly to
the number of MACs calculated in (6) for Eλ

comp where Cb is the energy per one MAC
operation which was estimated as C8 = 0.56 pJ and C16 = 2.20 pJ for 8-bit Simba and
16-bit Eyeriss architectures, respectively.

For a convolutional layer Nλ where λ ∈ Γ, we measure empirical dependencies
of the optimal data energy first separately on its depth dλ, input feature map size
mλ−1 = nλ−1, kernel size rλ = sλ, and stride σλ, which is minimized by using the
Timeloop/Accelergy framework exploring various types of possible dataflows for the
Simba and Eyeriss architectures. These dependencies are then compared to the corre-
sponding upper bound (19) on Eλ

data achieved by the proposed dataflows in the energy
complexity model as presented in Section 5.3. This theoretical upper bound assumes
a sufficient Buffer capacity satisfying (13) or (20). Table 1 shows required Buffer ca-
pacities for the AlexNet convolutional layers (Krizhevsky, Sutskever, & Hinton, 2017)
in kilobytes (kB) which appear in an order of magnitude to be realistic to common
hardware architectures such as Eyeriss (Chen et al., 2016).

1https://github.com/PetraVidnerova/timeloop-accelergy-test
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Table 1: Required buffer capacities for AlexNet convolutional layers in kilobytes.
λ 1 2 3 4 5
mλ = nλ 55 27 13 13 13
dλ 64 192 384 256 256
rλ = sλ 11 5 3 3 3
σλ 4 1 1 1 1
(13): 2m2

λ + 1 6051 1459 339 339 339
b = 8 bits 5.91 kB 1.42 kB 0.33 kB 0.33 kB 0.33 kB
b = 16 bits 11.82 kB 2.85 kB 0.66 kB 0.66 kB 0.66 kB
b = 32 bits 23.64 kB 5.7 kB 1.32 kB 1.32 kB 1.32 kB

(20): m2
λ + r2

λ + 1 3147 755 179 179 179
b = 8 bits 3.07 kB 0.74 kB 0.17 kB 0.17 kB 0.17 kB
b = 16 bits 6.15 kB 1.47 kB 0.35 kB 0.35 kB 0.35 kB
b = 32 bits 12.29 kB 2.95 kB 0.7 kB 0.7 kB 0.7 kB

In particular, for the comparison of empirical energy consumption to the theoretical
data energy Eλ

data, we use the following asymptotic upper bounds:

Eλ
data = O (dλ) , E

λ
data = O

(
m2
λ−1

)
, Eλ

data = O
(
r2
λ

)
, Eλ

data = O
(
σ−2
λ

)
, (27)

which are derived from (19) for individual variables (when the other independent pa-
rameters are considered to be constant) by using the approximation m2

λ−1 ≈ σ2
λm

2
λ due

to (1). Note that the upper bounds in (27) match asymptotically the corresponding lower
bounds derived from (11) for individual variables and constant Buffer capacity B.

Figure 4 presents the results of experimental comparison of energy-efficient CNN
hardware implementations to our theoretical energy complexity model separately for
individual parameters of a convolutional layer. By using the Timeloop/Accelergy tool
applied to the Simba and Eyeriss hardware architectures, the optimal values of their data
energy consumption have been estimated for a convolutional layer Nλ where λ ∈ Γ,
with increasing parameters dλ, mλ−1 = nλ−1, rλ = sλ, and σλ, each separately.
Namely, the values for dλ (or dλ−1 for which the results omitted in Figure 4 were simi-
lar) andmλ−1 were taken from the interval 8 to 512 and 56 to 448, respectively, with the
step 8, while for rλ and σλ we took the values 3, 5, 7, 9, 11 and 1, 2, 3, 4, 5, respectively.

These parameters serve as independent variables in regression analysis where the
relationships between the data energy and the independent variables are modeled as
functions with asymptotics (27), including multiplicative and additive coefficients c2

and c1, respectively. As depicted in Figure 4, these coefficients are approximated by the
method of least squares so that the theoretical data energyEλ

data (dashed lines) fits energy
estimates by Timeloop/Accelergy (displayed by bars), which confirms the asymptotic
trends (27) in the energy complexity model. However, note that the calculated values of
coefficients c2 and c1 do not have any special meaning in the Simba and Eyeriss hard-
ware architectures that are not related to the proposed hardware-independent energy
complexity model.

In addition, the energy complexity model has been validated by statistical tests using
quadratic regression with the function model ax2 + bx+ c for independent variable x to
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Energy vs. layer depth dλ: Eλ
data = c2dλ + c1

Energy vs. input feature map size mλ−1 = nλ−1: Eλ
data = c2m

2
λ−1 + c1

Energy vs. kernel size rλ = sλ: Eλ
data = c2r

2
λ + c1

Energy vs. stride σλ: Eλ
data = c2σ

−2
λ + c1

Figure 4: The data energy estimates by Timeloop/Accelergy (displayed by bars) for
convolutional layerNλ with increasing parameters dλ,mλ−1,rλ, and σλ, each separately
(from top to bottom), on the Simba (left) and Eyeriss (right) architectures, which fit the
asymptotic trends (27) in the energy complexity model (dashed lines).
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be dλ,mλ−1, rλ, and σ−1
λ , respectively. These statistical tests have approved the linearity

in dλ (p-value 0.556 accepting the null hypothesis of a = 0) and the quadraticity in
mλ−1 rλ, and σ−1

λ (p-value 0.000, 0.001, and 0.000, respectively, rejecting the null
hypothesis of a = 0).

Furthermore, we have also extended our experiments to the case where all the pa-
rameters dλ, dλ−1, mλ−1 = nλ−1, rλ = sλ, and σλ of convolutional layer Nλ where
λ ∈ Γ, are changed simultaneously, in order to fit the empirical optimal data energy to
its theoretical asymptotic lower bound (11):

Eλ
data = Ω

(
dλdλ−1m

2
λ−1r

2
λσ
−2
λ

)
(28)

for constant Buffer capacity B. For this purpose, we employ 4840 convolutional lay-
ers whose parameters dλ, dλ−1, mλ−1, rλ, and σλ are sampled uniformly at random
from the intervals 8 to 512, 8 to 512, 56 to 448, 3 to 15, and, 1 to 5, respectively,
since there are too many combinations of these parameters’ values to run the time
consuming Timeloop/Accelergy tool on each. Anyway, different samplings in our
repeated experiments led to the same results. The points in Figure 5.a show energy
consumption of these convolutional layers on the Simba architecture estimated by the
Timeloop/Accelergy program, depending on the product dλdλ−1m

2
λ−1r

2
λσ
−2
λ from (28).

It appears that the energy estimates in Figure 5.a which represent empirical upper
bounds on the data energy, fluctuate for some combinations of convolutional layer pa-
rameters even for the same value of product dλdλ−1m

2
λ−1r

2
λσ
−2
λ . This is due to specific

properties of the used Simba hardware architecture (e.g. energy consumption can be
significantly increased by a systematic step widening of the systolic array required for
certain critical combinations of increasing convolutional layer parameters). In order to
asymptotically compare the empirical optimal data energy to its theoretical lower bound
(28), we filter out these fluctuations by selecting the points with the minimum energy
over each 10 consecutive distinct products dλdλ−1m

2
λ−1r

2
λσ
−2
λ which are indicated in

boldface in Figure 5.a. The constant 10 was chosen as a compromise between a suffi-
cient number of sampled points and outliers, yet the results for values of 10 to 50 are
very similar.

The selected points are then used in regression analysis where the relationship be-
tween the data energy and the product dλdλ−1m

2
λ−1r

2
λσ
−2
λ as the independent variable

is modeled as a function with asymptotics (28), including multiplicative and additive
coefficients c2 and c1, respectively. As depicted in Figure 5.b, these coefficients are
approximated by the method of least squares so that the theoretical data energy Eλ

data
(dashed line) fits energy estimates (displayed by points) by the Timeloop/Accelergy
program for the Simba architecture. This has been validated by the statistical test using
quadratic regression with the function model ax2 + bx + c for independent variable
x = dλdλ−1m

2
λ−1r

2
λσ
−2
λ , which has approved the linearity with the p-value 0.3084 ac-

cepting the null hypothesis of a = 0.
The presented experiments have thus validated the energy complexity model whose

upper and lower bounds on theoretical energy for a convolutional layer fit asymptoti-
cally very well the energy consumption estimated by the Timeloop/Accelergy program
for the Simba and Eyeriss hardware platforms. Of course, this perfect asymptotic match
does no mean that for some critical values of parameters, the energy consumption of
practical CNN accelerators cannot deviate substantially from the theoretical bounds, as
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(a) Energy vs. dλdλ−1m
2
λ−1r

2
λσ
−2
λ

(b) Eλ
data = c2 · dλdλ−1m

2
λ−1r

2
λσ
−2
λ + c1

Figure 5: The data energy estimates by Timeloop/Accelergy (displayed by points) de-
pending on dλdλ−1m

2
λ−1r

2
λσ
−2
λ for convolutional layerNλ on the Simba architecture (a),

whose fluctuations are filtered out by selecting the energy minima over each 10 consec-
utive values of independent variable (points in boldface), which fit the asymptotic lower
bound (28) on Eλ

data (dashed line) in the energy complexity model (b).
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illustrated by fluctuations in Figure 5.a on the Simba architecture. Nevertheless, con-
stants are hidden in the big O notation within the theoretical fairly tight asymptotic
dependencies.

7 Conclusion
In this paper, we have introduced a hardware-independent energy complexity model
for CNNs that captures asymptotically all important sources of energy consumption
of their diverse hardware implementations. In this model, we have proven a simple
lower bound on energy complexity which establishes asymptotic limits on energy effi-
ciency of any CNN hardware accelerators. Moreover, we have derived corresponding
upper bounds for two common energy-efficient dataflows with write-once outputs and
read-once inputs, respectively. The underlying theoretical asymptotic trends in energy
complexity both for individual CNN parameters and their combination, have been val-
idated by statistical tests to fit the energy consumption optimized empirically by the
Timeloop/Accelergy program for CNNs on the Simba and Eyeriss hardware platforms
for various dataflows.

In future research we plan to prove optimal bounds on the data energy of CNNs in
the model with non-constant Buffer capacity B such as (13). Partial results along this
direction have already been achieved for a special case of fully-connected layers (Šı́ma
& Cabessa, 2023). The proposed model thus allows to determine the principal asymp-
totic limits to which heuristic optimizers e.g. based on evolutionary algorithms (Kao &
Krishna, 2020) can reach.

Another important challenge is to generalize the proposed methodology to trans-
formers that represent now the dominating workloads for many applications (Zhou,
Liu, Gu, & Sun, 2023). This includes the derivation of new energy bounds for trans-
formers whose architecture differs from that of CNNs, for which our previous analysis
for fully-connected layers can possibly be exploited (Šı́ma & Cabessa, 2023). In addi-
tion, a method of estimating real energy consumption for transformers should also be
developed.
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