
One Analog Neuron Cannot Recognize
Deterministic Context-Free Languages?

Jǐŕı Š́ıma and Martin Plátek

Institute of Computer Science of the Czech Academy of Sciences,
P. O. Box 5, 18207 Prague 8, Czech Republic, sima@cs.cas.cz

Abstract. We analyze the computational power of discrete-time recur-
rent neural networks (NNs) with the saturated-linear activation function
within the Chomsky hierarchy. This model restricted to integer weights
coincides with binary-state NNs with the Heaviside activation function,
which are equivalent to finite automata (Chomsky level 3), while ratio-
nal weights make this model Turing complete even for three analog-
state units (Chomsky level 0). For an intermediate model αANN of
a binary-state NN that is extended with α ≥ 0 extra analog-state neurons
with rational weights, we have established the analog neuron hierarchy
0ANNs ⊂ 1ANNs ⊂ 2ANNs ⊆ 3ANNs. The separation 1ANNs $ 2ANNs
has been witnessed by the deterministic context-free language (DCFL)
L# = {0n1n |n ≥ 1} which cannot be recognized by any 1ANN even with
real weights, while any DCFL (Chomsky level 2) is accepted by a 2ANN
with rational weights. In this paper, we generalize this result by showing
that any non-regular DCFL cannot be recognized by 1ANNs with real
weights, which means (DCFLs \ REG) ⊂ (2ANNs \ 1ANNs), implying
0ANNs = 1ANNs ∩ DCFLs. For this purpose, we show that L# is the
simplest non-regular DCFL by reducing L# to any language in this class,
which is by itself an interesting achievement in computability theory.

Keywords: Neural computing · Analog neuron hierarchy · Determinis-
tic context-free language · Restart automaton · Chomsky hierarchy.

1 The Analog Neuron Hierarchy

The computational power of discrete-time recurrent neural networks (NNs) with
the saturated-linear activation function1 depends on the descriptive complex-
ity of their weight parameters [13, 21]. NNs with integer weights, corresponding
to binary-state (shortly binary) networks (with Boolean outputs 0 or 1), coin-
cide with finite automata (FAs) recognizing regular languages (REG) [1, 3, 4,
9, 17, 23]. Rational weights make the analog-state (shortly analog) NNs (with
real-valued outputs in the interval [0, 1]) computationally equivalent to Turing

? Research was done with institutional support RVO: 67985807 and partially sup-
ported by the grant of the Czech Science Foundation GA19-05704S.

1 The results are partially valid for more general classes of activation functions [8, 12,
16, 24] including the logistic function [7].

2 J. Š́ıma and M. Plátek

machines (TMs) [4, 15], and thus (by a real-time simulation [15]) polynomial-
time computations of such networks are characterized by the fundamental com-
plexity class P. Moreover, NNs with arbitrary real weights can even derive
“super-Turing” computational capabilities [13]. In particular, their polynomial-
time computations correspond to the nonuniform complexity class P/poly while
any input/output mapping (including undecidable problems) can be computed
within exponential time [14]. In addition, a proper infinite hierarchy of nonuni-
form complexity classes between P and P/poly has been established for polyno-
mial-time computations of NNs with increasing Kolmogorov complexity of real
weights [2].

As can be seen, our understanding of the computational power of NNs is
satisfactorily fine-grained when changing from rational to arbitrary real weights.
In contrast, there is still a gap between integer and rational weights which results
in a jump from regular languages capturing the lowest level 3 in the Chomsky
hierarchy to recursively enumerable languages on the highest Chomsky level 0.
In order to refine the classification of NNs which do not possess the full power
of TMs (Chomsky level 0), we have initiated the study of binary-state NNs
employing integer weights, that are extended with α ≥ 0 extra analog neurons
having real weights, which are denoted as αANNs. Although this study has been
inspired by theoretical issues, NNs with different types of units/layers are widely
used in practical applications, e.g. in deep learning [11], and they thus require a
detailed mathematical analysis.

In our previous work [20], we have characterized syntactically the class of
languages that are accepted by 1ANNs with one extra analog unit, in terms of
so-called cut languages [22] which are combined in a certain way by usual oper-
ations on languages. By using this syntactic characterization of 1ANNs we have
proven a sufficient condition when a 1ANN recognizes only a regular language
(Chomsky level 3), which is based on the quasi-periodicity [22] of some param-
eters derived from its real weights. In particular, a 1ANN with weights from
the smallest field extension Q(β) over the rational numbers Q including a Pisot
number β > 1, such that the self-loop weight w of its only analog neuron equals
1/β, is computationally equivalent to a FA. For instance, since every integer
n > 1 is a Pisot number, it follows that any 1ANN with rational weights such
that w = 1/n, accepts a regular language. More complex examples of such neural
FAs, are 1ANNs that have rational weights except for the irrational (algebraic)
self-loop weight w = 1/ρ ≈ 0.754878 or w = 1/ϕ = ϕ − 1 ≈ 0.618034 for the
plastic constant ρ or the golden ratio ϕ, respectively, which are Pisot numbers.

On the other hand, we have introduced examples of languages accepted by
1ANNs with rational weights that are not context-free (CFLs) [20], and they
are thus above Chomsky level 2, while we have proven that any language ac-
cepted online2 by this model is context-sensitive (CSL) at Chomsky level 1. For

2 In online input/output protocols, the time between reading two consecutive input
symbols as well as the delay in outputting the result after an input has been read,
is bounded by a constant, while in offline protocols these time intervals are not
bounded.

One Analog Neuron Cannot Recognize DCFLs 3

instance, the CSL L1 =
{
x1 . . . xn ∈ {0, 1}∗

∣∣∣∑n
k=1 xn−k+1

(
216
125

)−k
< 1

}
which

is not in CFLs, can be recognized by a 1ANN. In other words, the computational
power of binary-state networks having integer weights can increase from REG
(Chomsky level 3) to that between CFLs (Chomsky level 2) and CSLs (Chom-
sky level 1), when an extra analog unit with rational weights is added, while a
condition when this does not bring any additional power even for real weights,
was formulated.

Furthermore, we have established an analog neuron hierarchy of classes of
languages recognized by binary αANNs with α extra analog units having rational
weights, for α = 0, 1, 2, 3, . . ., that is, 0ANNs ⊆ 1ANNs ⊆ 2ANNs ⊆ 3ANNs
⊆ · · · , respectively. Note that we use the notation αANNs also for the class
of languages accepted by αANNs, which can clearly be distinguished by the
context. Obviously, the 0ANNs are purely binary-state NNs which are equivalent
to FAs and hence, 0ANNs $ 1ANNs because we know there are non-context-free
languages such as L1 accepted by 1ANNs [20]. In contrast, we have proven that
the deterministic context-free language (DCFL) L# = {0n1n |n ≥ 1}, which
contains the words of n zeros followed by n ones, cannot be recognized even
offline2 by any 1ANN with arbitrary real weights [19]. We thus know that 1ANNs
are not Turing complete.

Nevertheless, we have shown that any DCFL included in Chomsky level 2 can
be recognized by a 2ANN with two extra analog neurons having rational weights,
by simulating a corresponding deterministic pushdown automaton (DPDA) [19].
This provides the separation 1ANNs $ 2ANNs since the DCFL L# is not ac-
cepted by any 1ANN. In addition, we have proven that any TM can be simulated
by a 3ANN having rational weights with a linear-time overhead [18]. It follows
that recursively enumerable languages at the highest Chomsky level 0 are ac-
cepted by 3ANNs with rational weights and thus this model including only three
analog neurons is Turing complete. Since αANNs with rational weights can be
simulated by TMs for any α ≥ 0, the analog neuron hierarchy collapses to
3ANNs:

FAs ≡ 0ANNs $ 1ANNs $ 2ANNs ⊆ 3ANNs = 4ANNs = . . . ≡ TMs ,

which is schematically depicted in Figure 1. It appears that the analog neuron
hierarchy is only partially comparable to that of Chomsky.

In this paper, we further study the relation between the analog neuron hier-
archy and the Chomsky hierarchy. We show that any non-regular DCFL cannot
be recognized online by 1ANNs with real weights, which provides the stronger
separation (DCFLs \ REG) ⊂ (2ANNs \ 1ANNs), implying REG = 0ANNs =
1ANNs ∩ DCFLs. Thus, the class of non-regular DCFLs is contained in 2ANNs
with rational weights, having the empty intersection with 1ANNs, as depicted
in Figure 1. In order to prove this lower bound on the computational power of
1ANNs, we show that L# is the simplest non-regular DCFL by reducing L# to
any language in DCFLs \ REG. Namely, for any non-regular DCFL L, we can
recognize the language L# by a FA that is allowed to call an online subroutine for
solving L, which represents a kind of Turing reduction known in computability

4 J. Š́ıma and M. Plátek

L1 62 CFLs
<latexit sha1_base64="THAZqXSNS/hIYPOuwfaYou9aNsk=">AAACA3icbVC7SgNBFJ2NrxhfUTttBhPBKuzGQisJBMQiRQTzgOyyzE4myZDZ2WXmrhiWgI2/YmOhiK0/YeffOHkUmnjgwuGce7n3niAWXINtf1uZldW19Y3sZm5re2d3L79/0NRRoihr0EhEqh0QzQSXrAEcBGvHipEwEKwVDKsTv3XPlOaRvINRzLyQ9CXvcUrASH7+qFjzHezKCLDLJXaBPUBava7pcdHPF+ySPQVeJs6cFNAcdT//5XYjmoRMAhVE645jx+ClRAGngo1zbqJZTOiQ9FnHUElCpr10+sMYnxqli3uRMiUBT9XfEykJtR6FgekMCQz0ojcR//M6CfQuvZTLOAEm6WxRLxEYIjwJBHe5YhTEyBBCFTe3YjogilAwseVMCM7iy8ukWS4556XybblQuZrHkUXH6ASdIQddoAq6QXXUQBQ9omf0it6sJ+vFerc+Zq0Zaz5ziP7A+vwB+KiWcg==</latexit>

L# 62 1ANNs
<latexit sha1_base64="E3nLXwm9VARSPVe6gtkdMKzlHwU=">AAACBXicbVA9SwNBEN2LXzF+nVpqsZgIVuEuFlpJxMZCQgTzAbkQ9jabZMne3rE7J4YjjY1/xcZCEVv/g53/xk1yhSY+GHi8N8PMPD8SXIPjfFuZpeWV1bXsem5jc2t7x97dq+swVpTVaChC1fSJZoJLVgMOgjUjxUjgC9bwh1cTv3HPlOahvINRxNoB6Uve45SAkTr2YeGm4+WxJ0PAHpfYA/YAiXtZqehxoWPnnaIzBV4kbkryKEW1Y3953ZDGAZNABdG65ToRtBOigFPBxjkv1iwidEj6rGWoJAHT7WT6xRgfG6WLe6EyJQFP1d8TCQm0HgW+6QwIDPS8NxH/81ox9M7bCZdRDEzS2aJeLDCEeBIJ7nLFKIiRIYQqbm7FdEAUoWCCy5kQ3PmXF0m9VHRPi6XbUr58kcaRRQfoCJ0gF52hMrpGVVRDFD2iZ/SK3qwn68V6tz5mrRkrndlHf2B9/gAgGZcN</latexit>

DCFLs \ REG
<latexit sha1_base64="mGNT7af5qoomEShlsp6JBmX80Vo=">AAACDHicbVC7SgNBFJ2NrxhfUUubwUSwCrux0EoEn4VFFGMC2UVmJzc6ZHZ2mbkrhiUfYOOv2FgoYusH2Pk3Th6FrwMDh3PO5c49YSKFQdf9dHITk1PTM/nZwtz8wuJScXnl0sSp5lDnsYx1M2QGpFBQR4ESmokGFoUSGmF3f+A3bkEbEasL7CUQROxaiY7gDK10VSyVfYQ7zA72j05Nn/oGMBIqNXQknx8e98s25VbcIehf4o1JiYxRuyp++O2YpxEo5JIZ0/LcBIOMaRRcQr/gpwYSxrvsGlqWKhaBCbLhMX26YZU27cTaPoV0qH6fyFhkTC8KbTJieGN+ewPxP6+VYmcnyIRKUgTFR4s6qaQY00EztC00cJQ9SxjXwv6V8humGUfbX8GW4P0++S+5rFa8rUr1rFra2x3XkSdrZJ1sEo9skz1yQmqkTji5J4/kmbw4D86T8+q8jaI5ZzyzSn7Aef8CGkKa/w==</latexit>

0ANNs ⌘ FAs ⌘ REG
<latexit sha1_base64="OeTHdCqcZYPBcSlQ2wmBfSKIo6A=">AAACH3icbZDJSgNBEIZ74h63qEcvjYngKcxEUE+iiMspRDEmkAmhp1NjmvQsdteIYcibePFVvHhQRLz5NnaWg0Z/aPj5qorq+r1YCo22/WVlpqZnZufmF7KLS8srq7m19RsdJYpDlUcyUnWPaZAihCoKlFCPFbDAk1DzuieDeu0elBZReI29GJoBuw2FLzhDg1q5vYKL8ICp6/nUPi6XdZ+6cJeIezriZ8eT5Or0vF9o5fJ20R6K/jXO2OTJWJVW7tNtRzwJIEQumdYNx46xmTKFgkvoZ91EQ8x4l91Cw9iQBaCb6fC+Pt02pE39SJkXIh3SnxMpC7TuBZ7pDBh29GRtAP+rNRL0D5qpCOMEIeSjRX4iKUZ0EBZtCwUcZc8YxpUwf6W8wxTjaCLNmhCcyZP/mptS0dktli5L+aPDcRzzZJNskR3ikH1yRC5IhVQJJ4/kmbySN+vJerHerY9Ra8Yaz2yQX7K+vgFKYKKA</latexit>

1ANNs ⇢ CSLs
<latexit sha1_base64="HVvOOfJ9bJ8MTSB8bByRZTFL+LA=">AAACD3icbVA9SwNBEN2LXzF+RS1tFhPFKtzFQitRbCwkKBoj5I6wt5kzS/Y+2J0Tw5F/YONfsbFQxNbWzn/jJrnCrwcDj/dmmJnnJ1JotO1PqzA1PTM7V5wvLSwuLa+UV9eudJwqDk0ey1hd+0yDFBE0UaCE60QBC30JLb9/PPJbt6C0iKNLHCTghewmEoHgDI3UKW9XXYQ7zFw/oM5Ro6GH1NWprwHpxDi+ONXDaqdcsWv2GPQvcXJSITnOOuUPtxvzNIQIuWRatx07QS9jCgWXMCy5qYaE8T67gbahEQtBe9n4nyHdMkqXBrEyFSEdq98nMhZqPQh90xky7Onf3kj8z2unGOx7mYiSFCHik0VBKinGdBQO7QoFHOXAEMaVMLdS3mOKcTQRlkwIzu+X/5Kres3ZrdXP65XDgzyOItkgm2SHOGSPHJITckaahJN78kieyYv1YD1Zr9bbpLVg5TPr5Aes9y/iTpvr</latexit>

2ANNs � DPDAs
<latexit sha1_base64="tZtYZ2yJ5iNQC6fZVtflkLRauC0=">AAACEHicbVA9SwNBEN2L3/ErammzGEWrcBcLrSRiCqsQwSRC7gh7mzldsvfB7pwYjvwEG/+KjYUitpZ2/hs3yRV+PRh4vDfDzDw/kUKjbX9ahZnZufmFxaXi8srq2nppY7Ot41RxaPFYxurKZxqkiKCFAiVcJQpY6Evo+IOzsd+5BaVFHF3iMAEvZNeRCARnaKReaX/XRbjDzPUDWj1tNPSIujpNNCCdGvVm/VSPdnulsl2xJ6B/iZOTMsnR7JU+3H7M0xAi5JJp3XXsBL2MKRRcwqjophoSxgfsGrqGRiwE7WWTh0Z0zyh9GsTKVIR0on6fyFio9TD0TWfI8Eb/9sbif143xeDYy0SUpAgRny4KUkkxpuN0aF8o4CiHhjCuhLmV8humGEeTYdGE4Px++S9pVyvOYaV6US3XTvI4Fsk22SEHxCFHpEbOSZO0CCf35JE8kxfrwXqyXq23aWvByme2yA9Y71+AF5w7</latexit>

3ANNs ⌘ TMs
<latexit sha1_base64="F29ykfyEaz60eaKiLpfRtsl+ssk=">AAACDXicbVC7SgNBFJ31GeMramkzmAhWYTcptBLFxsagYDSQXcLs5G4yZPbhzF0xLPsDNv6KjYUitvZ2/o2TR+HrwIXDOfdy7z1+IoVG2/60Zmbn5hcWC0vF5ZXVtfXSxuaVjlPFocljGauWzzRIEUETBUpoJQpY6Eu49gcnI//6FpQWcXSJwwS8kPUiEQjO0EidUqXiItxh5voBrR83GjqnLtyk4pZO9MsznVc6pbJdtcegf4kzJWUyxXmn9OF2Y56GECGXTOu2YyfoZUyh4BLyoptqSBgfsB60DY1YCNrLxt/kdNcoXRrEylSEdKx+n8hYqPUw9E1nyLCvf3sj8T+vnWJw4GUiSlKEiE8WBamkGNNRNLQrFHCUQ0MYV8LcSnmfKcbRBFg0ITi/X/5LrmpVp16tXdTKR4fTOApkm+yQPeKQfXJETsk5aRJO7skjeSYv1oP1ZL1ab5PWGWs6s0V+wHr/Anm/myw=</latexit>

Fig. 1. The analog neuron hierarchy.

theory. Now if the language L is accepted by a 1ANN, then we could recognize
L# by a 1ANN, which is a contradiction, implying that L cannot be accepted
by any 1ANN even with real weights. The proof exploits the technical repre-
sentation of DCFLs by so-called deterministic monotonic restarting automata
[5, 6].

Note that the Turing-like reduction from L# to any non-regular DCFL is by
itself an interesting achievement in formal language theory, providing the sim-
plest non-regular DCFL which any language in DCFLs \ REG must include.
This is somewhat opposite to the usual hardness results in computational com-
plexity theory where all problems in a class are usually reduced to its hardest
problem such as in NP-completeness. Our result can thus open a new direction
of research in computability theory aiming towards the existence of the simplest
problems in traditional complexity classes and their mutual reductions.

The paper is organized as follows. In Section 2, we introduce basic definitions
concerning the language acceptors based on 1ANNs. In Section 3, we present the
theorem that reduces the languages L# to any non-regular DCFL. For this pur-
pose we use the formalism of deterministic monotonic restarting automata, which
is shortly recalled. Section 4 shows that one extra analog neuron is not sufficient
for recognizing any non-regular DCFL. Finally, we summarize the results and
list some open problems in Section 5.

2 Neural Language Acceptors with One Analog Unit

We specify a computational model of a discrete-time binary-state recurrent neu-
ral network with one extra analog unit (shortly, 1ANN), N , which will be used
as a formal language acceptor. The network N consists of s ≥ 1 units (neurons),
indexed as V = {1, . . . , s}. All the units in N are assumed to be binary-state
(shortly binary) neurons (i.e. perceptrons, threshold gates) except for the last
sth neuron which is an analog-state (shortly analog) unit. The neurons are con-
nected into a directed graph representing an architecture ofN , in which each edge
(i, j) ∈ V 2 leading from unit i to j is labeled with a real weight w(i, j) = wji ∈ R.
The absence of a connection within the architecture corresponds to a zero weight
between the respective neurons, and vice versa.

The computational dynamics of N determines for each unit j ∈ V its state

(output) y
(t)
j at discrete time instants t = 0, 1, 2, The states y

(t)
j of the first

One Analog Neuron Cannot Recognize DCFLs 5

s − 1 binary neurons j ∈ V ′ = V \ {s} are Boolean values 0 or 1, whereas the

output y
(t)
s from analog unit s is a real number from the unit interval I = [0, 1].

This establishes the network state y(t) =
(
y
(t)
1 , . . . , y

(t)
s−1, y

(t)
s

)
∈ {0, 1}s−1 × I at

each discrete time instant t ≥ 0.

For notational simplicity, we assume a synchronous fully parallel mode with-
out loss of efficiency [10]. At the beginning of a computation, the 1ANN N is
placed in an initial state y(0) ∈ {0, 1}s. At discrete time instant t ≥ 0, an excita-

tion of any neuron j ∈ V is defined as ξ
(t)
j =

∑s
i=0 wjiy

(t)
i , including a real bias

value wj0 ∈ R which can be viewed as the weight w(0, j) from a formal constant

unit input y
(t)
0 ≡ 1 for every t ≥ 0 (i.e. formally 0 ∈ V ′). At the next instant t+1,

all the neurons j ∈ V compute their new outputs y
(t+1)
j in parallel by applying

an activation function σj : R −→ I to ξ
(t)
j , that is, y

(t+1)
j = σj

(
ξ
(t)
j

)
for j ∈ V .

For the neurons j ∈ V ′ with binary states yj ∈ {0, 1}, the Heaviside activation
function σj(ξ) = H(ξ) is used where H(ξ) = 1 for ξ ≥ 0 and H(ξ) = 0 for ξ < 0,
while the analog unit s ∈ V with real output ys ∈ I employs the saturated-linear
function σs(ξ) = σ(ξ) where σ(ξ) = ξ for 0 ≤ ξ ≤ 1, whereas σ(ξ) = 1 for ξ > 1,
and σ(ξ) = 0 for ξ < 0. In this way, the new network state y(t+1) ∈ {0, 1}s−1× I
is determined at time t+ 1.

The computational power of NNs has been studied analogously to the tradi-
tional models of computations [21] so that the networks are exploited as acceptors
of formal languages L ⊆ Σ∗ over a finite alphabet Σ = {λ1, . . . λp} composed
of p letters (symbols). For a finite 1ANN N , we use the following online in-
put/output protocol employing its special neurons nxt, out ∈ V ′. An input word
(string) x = x1 . . . xn ∈ Σn of arbitrary length n ≥ 0, is sequentially presented
to the network, symbol after symbol, via the first p < s so-called input neurons
X = {1, . . . , p} ⊂ V ′, at the time instants 0 < τ1 < τ2 < · · · < τn when queried
by N , where τk+1 − τk is bounded by a constant for every k = 1, . . . , n. Thus,
once the prefix x1, . . . , xk−1 of x for 1 ≤ k ≤ n, has been read, the next input
symbol xk ∈ Σ is presented to N one computational step after N activates the

special neuron nxt ∈ V ′. This means that N signals y
(t−1)
nxt = 1 if t = τk whereas

y
(t−1)
nxt = 0 otherwise, for every k = 1, . . . , n.

We employ the popular one-hot encoding of alphabet Σ where each letter
λi ∈ Σ is represented by one input neuron i ∈ X which is activated when
symbol λi is being read. The states of input neurons i ∈ X, which represent
a current input symbol xk at the time instant τk, are thus externally set as

y
(t)
i = 1 if xk = λi ∈ Σ and t = τk, whereas y

(t)
i = 0 otherwise. At the same

time, N carries its computation deciding about each prefix of the input word x
whether it belongs to L, which is indicated by the output neuron out ∈ V ′ when

the neuron nxt is active, i.e. y
(τk+1−1)
out = 1 if x1 . . . xk ∈ L, and y

(τk+1−1)
out = 0

if x1 . . . xk /∈ L, where τn+1 > τn is the time instant when the input word x is
decided. We say that a language L ⊆ Σ∗ is accepted (recognized) by 1ANN N ,
which is denoted as L = L(N), if for any input word x ∈ Σ∗, N accepts x iff
x ∈ L.

6 J. Š́ıma and M. Plátek

3 The Simplest Non-Regular Deterministic Language

In this section, we show that in some sense, any non-regular DCFL includes
the language L# = {0n1n |n ≥ 1} which is thus the simplest problem in the
class DCFLs \ REG. This fact will be used in Section 4 for proving that any
non-regular DCFL cannot be recognized by 1ANNs since we know that L# is
not accepted by 1ANNs [19]. For the proof, we employ deterministic monotonic
restarting automata (shortly, det-mon-R-automata) which have been shown to
recognize exactly the class of DCFLs [5, 6].

Recall a det-mon-R-automaton A = (Q,Σ, k, I, q0, QA, QR) has a finite-state
control unit and one head moving on an input while possibly erasing some sym-
bols. A finite set of its states, Q, includes the initial (start) state q0 ∈ Q and
two disjoint subsets of accepting and rejecting states, QA, QR ⊆ Q, respectively.
Moreover, the finite input alphabet Σ is extended with two new special symbols
¢, $ (originally not contained in Σ), which always start and end any input to A,
respectively, and serve as sentinels which cannot be erased. The head of A scans
a ‘window’ of k ≥ 1 consecutive symbols of the input from its position to the
right (or the remaining symbols to the end of the input if the distance of the
head position to the right endmarker $ is less than k).

For an input word s ∈ Σ∗, the det-mon-R-automaton A starts in the initial
state q0, while its head position is on the left endmarker ¢ of input ¢s$. Then
A carries out the computation by performing instructions from a finite set I,
which are of the following two types:

1. the move instruction (q, w) −→ q′

2. the restart instruction (q, w) −→ v

The left-hand side (q, w) of an instruction determines when it is applicable,
namely, the current state of A is q ∈ Q and its head scans the string w ∈ Σ∗
composed of k = |w| consecutive symbols of the input from the head position to
the right (or |w| < k if w ends with $). We assume that A is deterministic which
means there are no two instructions in I with the same left-hand side (q, w).
The right-hand side of an instruction describes the activity to be performed. In
a move instruction, A changes its current state to q′ ∈ Q and the head moves
one symbol to the right. In a restart instruction, some of the symbols (excluding
¢, $) in the string w are deleted which means the scanned part w of the input,
is replaced with a shorter string v ∈ Σ∗ where |v| < |w|, which is a proper
subsequence of w, and A restarts in the initial state q0, while its head position
is again on the left endmarker ¢ of this modified input. Moreover, we assume
that A is monotonic which means that the whole string v which has replaced w,
will be scanned by the head before the next restart instruction is applied. This
ensures that the positions of deleted symbols do not increase their distances from
the right endmarker $.

Furthermore, the subset of so-called halting states in which no instruction
from I is applicable, coincide with QA ∪QR ⊆ Q. Thus, an input word s ∈ Σ∗
is accepted (recognized) by A if its computation on s (bounded by ¢, $) halts in
an accepting state from QA. Such input words form the language L(A). For any

One Analog Neuron Cannot Recognize DCFLs 7

s1, s2 ∈ Σ∗, the notation s1 ⇒ s2 means that if A starts in the initial states q0
with the input s1, then this input is rewritten to s2 when A finds in q0 for the
next time, while⇒∗ denotes the reflexive and transitive closure of the relation⇒.
In addition, the det-mon-R-automata satisfy the correctness preserving property
[5, 6] which guarantees that for every s1, s2 ∈ Σ∗ if s1 ⇒∗ s2, then s1 ∈ L(A) iff
s2 ∈ L(A).

Theorem 1. For any non-regular deterministic context-free language L ⊂ Σ∗

over a finite alphabet Σ 6= ∅, there exist words u,w, z ∈ Σ∗, nonempty strings
x, y ∈ Σ+, an integer κ ≥ 0, and languages Lk ∈ {L,L} for k ∈ K =
{−κ, . . . ,−1, 0, 1, . . . , κ}, such that for every pair of integers, m ≥ 0 and n ≥ κ,(

uxmwyn+kz ∈ Lk for all k ∈ K
)

iff m = n . (1)

Proof. (Sketch.) Let L ⊂ Σ∗ be a non-regular DCFL and assumeA = (Q,Σ, k, I,
q0, QA, QR) is a det-mon-R-automaton that accepts L = L(A). It follows that A
employs at least one restart instruction for some input since otherwise A would
reduce to a finite automaton implying L is regular. Let s ∈ Σ∗ be an input
presented to A. We mark all the symbols in s (including ¢, $) that are scanned
by the head at least once at a time instant when some restart instruction is
applied in the course of computation of A on the input s. These marked symbols
form contiguous segments in s called the marked substrings σ1, . . . , σ` ∈ Σ∗,
which are separated by non-marked symbols and have length at least k since
the head of A scans a window of length k. Observe that the number of marked
strings in s′ which is derived from s⇒∗ s′ does not increases (i.e. is at most `)
because A is monotonic, which guarantees that the windows scanned by the
head in the consecutive restarts, overlap when the distance of the restart head
position to the left endmarker ¢ shortens.

Suppose that the length of marked substrings could be bounded by a con-
stant, say k ≤ |σi| ≤ c for every i = 1, . . . , ` and s ∈ Σ∗. In such a case, A could
be modified to an equivalent A′ recognizing the same language L = L(A′), which
employs only the move instructions while the original restart operations of A are
implemented by the finite-state control unit of A′ when the length of the head
window is extended to c symbols. This would imply that L is regular. Hence,
there are inputs to A with marked substrings of unbounded length. In our analy-
sis of input s, we can focus on only one marked substring σ of unbounded length
since the other marked substrings in s can be eliminated by A through restart
operations because A is monotonic and the marked substrings are separated by
non-marked symbols.

It follows that there exists an infinite sequence of inputs sn ∈ Σ∗ for n ≥ 1,
each with marked substring σn ∈ Σ∗, such that sn+1 ⇒∗ sn (i.e. |sn+1| > |sn|),
and (q, w′) −→ v from I is the first restart instruction that is applicable when the
input sn is presented to A, which can be assumed to be the same for every n ≥ 1,
since both the set of states Q and the set of instructions I are finite. This also en-
sures that the number of restart instructions that are applied in order to rewrite
sn+1 to sn, is bounded by a constant. Hence, sn = u′σnz

′ for some strings u′, z′ ∈
Σ∗ composed of symbols that are not marked in sn, and σn = xnw

′yn for some

8 J. Š́ıma and M. Plátek

xn, yn ∈ Σ∗ such that the head of A scans w′ ∈ Σ∗ (following xn) in state q ∈ Q,
which implies sn+1 = u′xn+1w

′yn+1z
′ ⇒ u′xn+1vyn+1z

′ ⇒∗ u′xnw′ynz′ = sn.

Since A is monotonic, we have yn+1 = y′nyn for some y′n ∈ Σ∗, while xn+1 =
χnx

′
n and xn = χnχ

′
n for some χn, χ

′
n, x
′
n ∈ Σ∗. The length of x′n and y′n is

bounded due to the number of restart operations rewriting sn+1 to sn is bounded,
which ensures the set {x′ny′n |n ≥ 1} is finite. Hence, there are x′, y ∈ Σ∗ such
that x′n = x′ and y′n = y for infinitely many n. By pruning the sequence (sn),
we can assume without loss of generality that x′n = x′ and y′n = y are the same
for every n ≥ 1. Thus, we have sn+1 = u′χnx

′w′yynz
′ ⇒∗ u′χnχ′nw′ynz′ = sn =

u′χn−1x
′w′yyn−1z

′ where |x′y| > |χ′n| due to any restart operation deletes at
least one symbol.

Suppose that χ′n = vnx
′ where vn ∈ Σ∗, for all but finitely many n ≥ 1,

which implies y 6= ε. In this case, the derivation sn+1 = u′χnx
′w′yynz

′ ⇒∗
u′χnvnx

′w′ynz
′ = sn only swaps the substrings x′w′ of bounded length and y,

while rewriting y with vn through a finite number of restart instructions, for
every n ≥ 1. If this is the only type of operations in any sequence (sn) (apart
from a finite number of n such that χ′n is a suffix of x′), then A would accept
only a regular language, which is a contradiction. Thus, by pruning the sequence
(sn), we can assume without loss of generality that for every n ≥ 1, x′ = xχ′n
for some nonempty x ∈ Σ+, which means χn = χn−1x = χ1x

n−1 due to χ′n
is the same for every n ≥ 1, defining u = u′χ1 and w = χ′nw

′. We obtain
sn+1 = uxnwyynz

′ ⇒∗ uxn−1wynz′ = sn.

Furthermore, suppose that for any choice of considered (sn), the string y = ε
is empty, which also ensure yn = ε. Thus the derivation sn+1 = uxnwz′ ⇒∗
uxn−1wz′ = sn only deletes x, confirming that L is regular, which is a contra-
diction. Hence, y ∈ Σ+ and we have yn = yyn−1 = yn−1y1, defining z = y1z

′.
This results in sn+1 = uxnwynz ⇒∗ uxn−1wyn−1z = sn, for every n ≥ 1.

It also follows that uxn+kwynz ⇒∗ uxkwz and uxnwyn+kz ⇒∗ uwykz for
every n ≥ 1 and k ≥ 0. We show that Lx = L∩{uxkwz | k ≥ 0} is regular, while
a similar argument proves Ly = L ∩ {uwykz | k ≥ 0} to be regular. Consider
the inputs uxkwz to A for any k ≥ 1. If A applies only finitely many restart
instructions to these inputs, then the restarts can be implemented by the finite-
state control unit while the head possibly scans a wider window, which implies
Lx is regular. Thus, suppose that the number of restarts that A applies to uxkwz
is unbounded. We know the first restart instruction can possibly be applied first
when the head scans w′ in uxkwz = u′χ1x

kχ′nw
′y1z

′ where recall χ′n is constant
for every n ≥ 1. According to the previous analysis, there is a repeated cycle of
restart operations rewriting and shortening the sequence of substrings xk from
the right by a regular rule, since Q, k, and |x| are finite. We conclude that Lx
and Ly are regular languages.

Let Kx = {k ≥ 0 |uxkwz ∈ Lx} which meets Kx = %x ∪ {aq + r | a ≥ 1,
r ∈ Rx} for some integer q ≥ 1, and sets %x, Rx ⊆ {0, . . . , q − 1}, because
Lx is regular. Note that we assume without loss of generality that the period q
described by Rx equals the length of preperiodic part determined by %x, since we
can align the preperiodic part to a multiple of the periods while shifting this new

One Analog Neuron Cannot Recognize DCFLs 9

multiple period. Similarly, Ky = {k ≥ 0 |uwykz ∈ Ly} = %y ∪ {aq + r | a ≥ 1,
r ∈ Ry} for %y, Ry ⊆ {0, . . . , q − 1}. Without loss of generality, we employ
the same periods q in Kx and Ky by taking their least common multiple. For
simplicity, we consider only the case when Rx 6= ∅ and Ry 6= ∅. If %x = %y and
Rx = Ry for any choice of sequence (sn), then L would be regular. Hence, either
%x 6= %y or Rx 6= Ry.

Now set κ = 2q − 1, and for every k = 0, 1, . . . , κ, define K−k = L if k ∈ Kx

and K−k = L if k /∈ Kx, while Kk = L if k ∈ Ky and Lk = L if k /∈ Ky. It follows
that uxkwz ∈ L−k and uwykz ∈ Lk for every k = 0, . . . , κ. Let m ≥ 0 and n ≥ κ.
First assume that m = n which implies uxmwyn−kz ⇒∗ uxkwz for 0 ≤ k ≤ n
and uxmwyn+kz ⇒∗ uwykz for every k ≥ 0. Hence, uxmwyn+kz ∈ Lk for every
k ∈ K = {−κ, . . . ,−1, 0, 1, . . . , κ}, which proves the right-to-left implication
in (1).

Further assume that m > n, while the argument for m < n is analogous. In
addition, we consider the special case without preperiodic parts, which means
%x = Rx and %y = Ry, whereas the general case can be handled similarly. On the
contrary, suppose that uxmwyn+kz ∈ Lk for all k ∈ K. Denote δ = m− n > 0.
Let d ∈ {0, . . . , κ} be the remainder after dividing δ by 2q, and b ≥ 1 be the
greatest common divisor of d and 2q. We have uxmwyn−kz ⇒∗ uxδ+kwz which
implies uxδ+kwz ∈ L−k for 0 ≤ k ≤ κ. Hence, Lk = Lk−d for k = −κ+ d, . . . , 0
whereas Lk = Lk−d+κ+1 for k = −κ, . . . ,−κ + d − 1, which is resolved as Li =
Li−bj for every i = −b+1, . . . , 0 and j = 1, . . . , 2qb −1. Similarly, uxmwyn+kz ⇒∗
uxδ−kwz ∈ Lk for 0 ≤ k ≤ min(δ, κ), and uxmwyn+kz ⇒∗ uwyk−δz ∈ Lk for
δ + 1 ≤ k ≤ κ. Hence, Lk = Lk−d for every k = 0, . . . , κ, which imposes
Li = Li+bj for every i = 0, . . . , b − 1 and j = 1, . . . , 2qb − 1. It follows that
Rx = Ry which is a contradiction, completing the proof of the left-to-right
implication in (1). ut
Example 1. We illustrate Theorem 1 on a simple example of the non-regular
deterministic context free language L over the binary alphabet Σ = {0, 1} that
is composed of words containing more zeros then ones. For this language L,
Theorem 1 provides the empty words u = w = z = ε, the non-empty strings
x = 0 ∈ Σ+, y = 1 ∈ Σ+, the integer κ = 1, and the languages L−1 = L and
L0 = L1 = L such that for every pair of integers, m ≥ 0 and n ≥ 1, condition
(1) holds:(

0m1n−1 ∈ L−1 = L & 0m1n ∈ L0 = L & 0m1n+1 ∈ L1 = L
)

iff

(m > n− 1 & m ≤ n & m ≤ n+ 1) iff m = n .

4 One Analog Unit Doesn’t Accept Non-Regular DCFLs

In this section we show the main result that any non-regular DCFL cannot be
recognized online by a binary-state 1ANN extended with one extra analog unit,
which gives the stronger separation (DCFLs \ REG) ⊂ (2ANNs \ 1ANNs) in the
analog neuron hierarchy, implying REG = 0ANNs = 1ANNs ∩ DCFLs. For this
purpose, we exploit the fact that the DCFL L# is not accepted by any 1ANN:

10 J. Š́ıma and M. Plátek

Theorem 2. [19, Theorem 1] The deterministic context-free language L# =
{0n1n |n ≥ 1} cannot be recognized by any 1ANN with one extra analog unit
having real weights.

According to Theorem 1, the language L# reduces to any non-regular DCFL,
which can be implemented by a binary NN, providing the following theorem.

Theorem 3. Any non-regular deterministic context-free language L cannot be
recognized online by any 1ANN with one extra analog unit having real weights.

Proof. (Sketch.) Let L ⊂ Σ∗ be a non-regular deterministic context-free lan-
guage over a finite alphabet Σ including p > 0 symbols. On the contrary assume
that there is a 1ANN N with the set of neurons V , that accepts L = L(N). We
will outline a construction of a bigger 1ANN N# with the set of neurons V# ⊃ V ,
recognizing the language L# = {0n1n |n ≥ 1} over the binary alphabet {0, 1},
which incorporates N as its subnetwork. Let u,w, z ∈ Σ∗ and x, y ∈ Σ+ be the
strings, κ ≥ 0 be the integer, and Lk for k ∈ K = {−κ, . . . ,−1, 0, 1, . . . , κ} be the
languages guaranteed by Theorem 1 for L. Since the class of languages accepted
by 1ANNs is clearly closed under intersection with regular languages, we can
confine ourselves only to strings 0m1n for sufficiently large integers m,n ≥ κ,
which represent the inputs to N#. Any such input 0m1n is transformed to the
strings uxmwyn+kz ∈ Σ∗ for all k ∈ K, which are presented as inputs to N .

We first transform N to a 1ANN N ′ so that the output neuron out ∈ V of N ′
decides about each prefix of an input string that has been read so far according
to the input/output protocol (see Section 2), as if this prefix extended with the
string z is presented to N . The idea of building N ′ issues from the representation
theorem [20, Theorem 4] characterizing syntactically the languages accepted by
1ANNs. According to this theorem, the state domain I of the only analog unit
s ∈ V can be partitioned into a finite number of subintervals so that the binary

states y
(t+1)
1 , . . . , y

(t+1)
s−1 ∈ {0, 1} at the next time instant t + 1 are uniquely

determined by an index of the subinterval to which the real state y
(t)
s ∈ I belongs,

apart from the current binary states y
(t)
1 , . . . , y

(t)
s−1 ∈ {0, 1}. The partition of I can

further be refined so that the membership in its subintervals, which can easily
be tested by threshold gates, determines the output from out ∈ V as if the tail z
is already read. This refinement can be achieved by continuing the computation
of N with the state of analog unit replaced by the end-points of the original
subintervals until z is read which takes a constant number of computational
steps in the online input/output protocol, producing a finite partition.

We introduce an input buffer B1 ⊂ V# \ V for the subnetwork N ′, which
is implemented by p parallel oriented paths of binary neurons. These disjoint
paths have the same length b ≥ |uw| + (κ + 1)|xy| and each p neurons in the
same distance from the first units form a layer which encodes one symbol from
Σ using the one-hot encoding. Thus, B1 stores a string from Σ∗ of length at
most b, which is clamped by self-loop weights. Its last layer feeds the p input
neurons X ⊂ V encoding an input symbol from Σ, at the request of N ′ which is
indicated by nxt ∈ V , according to the input protocol for N ′. At the same time,

One Analog Neuron Cannot Recognize DCFLs 11

the neurons in each layer send their outputs to the subsequent layer so that the
string is shifted in B1 by one symbol forward after its last symbol is read by N ′.

On the other hand, B1 is being filled so that it always contains an input
symbol when queried by N ′. The initial states of N# ensures that B1 contains
u ∈ Σ∗ (and possibly some initial copies of x ∈ Σ+). Furthermore, B1 is being
replenished by copies of x whose count m equals exactly the number of 0s which
are being read by N# through its input neurons X# ⊂ V# on request of nxt# ∈
V# when there is a free space in B1. If N# reads the first 1 following the input
sequence 0m, then the string w ∈ Σ∗ is pushed into B1 which is further being
filled by copies of y ∈ Σ+ whose count n equals exactly the number of 1s being
read by N#, increased by κ.

Furthermore, the subnetwork N ′ has also its output buffer B2 for storing the
last 2κ+ 1 states of the output neuron out ∈ V from N ′, which are recorded at
the time instants when nxt ∈ V fires, according to the output protocol for N ′.
This is synchronized with the input string 0m1n which has already been read
by N# so that B2 contains the results of whether uxmwyn+kz belongs to L for
every k ∈ K. The neural acceptor N# rejects the input 0m1n for n < κ through
the output neuron out# ∈ V# which is activated when nxt# ∈ V# fires. For
n ≥ κ, the network N# accepts 0m1n iff uxmwyn+kz ∈ Lk for all k ∈ K, which
can be determined from the contents of buffer B2. According to Theorem 1, this
happens if and only if m = n, which ensures N# recognizes L#. This contradicts
Theorem 2 and completes the proof of Theorem 3. ut

5 Conclusion

In this paper, we have refined the analysis of the computational power of discrete-
time binary-state recurrent neural networks αANNs extended with α analog-
state neurons by proving a stronger separation 1ANNs $ 2ANNs in the analog
neuron hierarchy. Namely, we have shown that the class of non-regular deter-
ministic context-free languages is contained in 2ANNs \ 1ANNs, which implies
0ANNs = 1ANNs ∩ DCFLs. For this purpose, we have reduced the determin-
istic language L# = {0n1n |n ≥ 1}, which is known to be not in 1ANNs [19],
to any non-regular DCFL. This means that in some sense, L# is the simplest
problem in the class of non-regular DCFLs. This is by itself an interesting new
achievement in computability theory, which can open a new direction of research
aiming towards the existence of the simplest problems in traditional complexity
classes as a counterpart to the hardest problems such as NP-complete problems.
We conjecture that our result can be generalized to nondeterministic context-
free languages. Another challenge for future research is an open question whether
there is a non-context-sensitive language that can be accepted offline by a 1ANN
or whether the separation 2ANNs $ 3ANNs holds.

References

1. Alon, N., Dewdney, A.K., Ott, T.J.: Efficient simulation of finite automata by
neural nets. Journal of the ACM 38(2), 495–514 (1991)

12 J. Š́ıma and M. Plátek

2. Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural net-
works: A characterization in terms of Kolmogorov complexity. IEEE Transactions
on Information Theory 43(4), 1175–1183 (1997)

3. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network
implementations of finite state machines. Neural Networks 9(2), 243–252 (1996)

4. Indyk, P.: Optimal simulation of automata by neural nets. In: Proceedings of the
STACS 1995 Twelfth Annual Symposium on Theoretical Aspects of Computer
Science. LNCS, vol. 900, pp. 337–348 (1995)

5. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Proceedings of
the FCT 1995 Tenth International Symposium on Fundamentals of Computation
Theory. LNCS, vol. 965, pp. 283–292 (1995)

6. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart
operation. Journal of Automata, Languages and Combinatorics 4(4), 287–311
(1999)

7. Kilian, J., Siegelmann, H.T.: The dynamic universality of sigmoidal neural net-
works. Information and Computation 128(1), 48–56 (1996)

8. Koiran, P.: A family of universal recurrent networks. Theoretical Computer Science
168(2), 473–480 (1996)

9. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

10. Orponen, P.: Computing with truly asynchronous threshold logic networks. Theo-
retical Computer Science 174(1-2), 123–136 (1997)

11. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Networks
61, 85–117 (2015)

12. Siegelmann, H.T.: Recurrent neural networks and finite automata. Journal of Com-
putational Intelligence 12(4), 567–574 (1996)

13. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing
Limit. Birkhäuser, Boston (1999)

14. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theo-
retical Computer Science 131(2), 331–360 (1994)

15. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. Jour-
nal of Computer System Science 50(1), 132–150 (1995)

16. Š́ıma, J.: Analog stable simulation of discrete neural networks. Neural Network
World 7(6), 679–686 (1997)

17. Š́ıma, J.: Energy complexity of recurrent neural networks. Neural Computation
26(5), 953–973 (2014)

18. Š́ıma, J.: Three analog units are Turing universal. In: Proceedings of the TPNC
2018 Seventh International Conference on Theory and Practice of Natural Com-
puting. LNCS, vol. 11324, pp. 460–472 (2018)

19. Š́ıma, J.: Counting with analog neurons. In: Proceedings of the ICANN 2019
Twenty-Eighth International Conference on Artificial Neural Networks, Part I.
LNCS, vol. 11727, pp. 389–400 (2019)

20. Š́ıma, J.: Subrecursive neural networks. Neural Networks 116, 208–223 (2019)
21. Š́ıma, J., Orponen, P.: General-purpose computation with neural networks: A sur-

vey of complexity theoretic results. Neural Computation 15(12), 2727–2778 (2003)
22. Š́ıma, J., Savický, P.: Quasi-periodic β-expansions and cut languages. Theoretical

Computer Science 720, 1–23 (2018)
23. Š́ıma, J., Wiedermann, J.: Theory of neuromata. Journal of the ACM 45(1), 155–

178 (1998)
24. Šorel, M., Š́ıma, J.: Robust RBF finite automata. Neurocomputing 62, 93–110

(2004)

