
Fundamenta Informaticae XX (2017) 1–13 1

DOI 10.3233/FI-2016-0000

IOS Press

On Tight Separation for Blum Measures Applied to Turing
Machine Buffer Complexity

Jiřı́ Šı́ma∗

Institute of Computer Science

The Czech Academy of Sciences

sima@cs.cas.cz

Stanislav Žák†

Institute of Computer Science

The Czech Academy of Sciences

stan@cs.cas.cz

Abstract. We formulate a very general tight diagonalization method for the Blum complexity
measures satisfying two additional axioms related to our diagonalizer machine. We apply this
method to two new, mutually related, distance and buffer complexities of Turing machine compu-
tations which are important nontrivial examples of natural Blum complexity measures different
from time and space. In particular, these measures capture how many times the worktape head
needs to move a certain distance during the computation which corresponds to the number of nec-
essary block uploads into a buffer cache memory. We start this study by proving a tight separation
which shows that a very small increase in the distance or buffer complexity bound (roughly from
f(n) to f(n + 1)) brings provably more computational power to both deterministic and nonde-
terministic Turing machines even for unary languages. We also obtain hierarchies of the distance
and buffer complexity classes.

∗Research was partially supported by project GA ČR P202/12/G061 and RVO: 67985807. The presentation of this paper
benefited from valuable comments of an anonymous reviewer.
†Research was partially supported by project GA ČR P202/10/1333 and RVO: 67985807.
Address for correspondence: Jiřı́ Šı́ma, Institute of Computer Science, The Czech Academy of Sciences, P.O. Box 5,
182 07 Prague 8, Czech Republic

2 J. Šı́ma, Žák / On Tight Separation Applied to Buffer Complexity

1. Introduction

The theory of computational complexity is one of the major attempts to understand the phenomenon of
computation. One of the key tasks of the theory is to find out how an increase or decrease of limits set
on the computational resources can influence the computational power of different types of computa-
tional devices. In history, the efforts to answer questions of this type led to a long sequence of various
separation and hierarchy results for particular computational devices and complexity measures, e.g.
chronologically [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

The present paper follows this direction of research. We formulate a very general tight diago-
nalization method issuing from delayed diagonalization [9], which works for the Blum measures of
computational complexity [13] satisfying two additional axioms related to our diagonalizer machine.
We apply this method to two new nontrivial natural Blum measures, namely the so-called distance
and buffer complexities, which are introduced for both deterministic and nondeterministic Turing ma-
chines (TM) with one worktape [14]. These measures capture how many times the worktape head
needs to move a certain distance during the computation.

In particular, any computation by a TM is characterized, among others, by a sequence of worktape
head positions (ht)t≥0 where ht is the location of the head on the worktape just after t computa-
tional steps (i.e. at time instant t). The distance complexity dδ is the minimum length of its so-called
δ-distance subsequence (hti)i≥0 which, starting with t0 = 0, is defined inductively as follows. The
next ti+1 is the first time instant at which the worktape head is exactly at distance δ(n) (measured in
the number of tape cells) from any of its previous locations visited since time ti. Note that parameter
δ(n) > 0 depends on the input length n where δ is a recursive function on the set of natural numbers.

The buffer complexity bδ is defined similarly by using a so-called δ-buffer subsequence such that
the distance in the definition of ti+1 is measured from the previous member hti of this subsequence.
The δ-buffer subsequence thus partitions the worktape into disjoint blocks of size δ(n). The buffer
complexity measures how many times the worktape head crosses the border between two such neigh-
boring blocks on the worktape when multiple immediately subsequent crossings through the same
border are counted only once. This is a natural model of the number of times a buffer cache memory
needs to be read/written during a computation.

In particular, consider the control unit has an imaginary cache buffer memory for the worktape
whose capacity is two blocks of length δ(|u|) so that the worktape head location has to be within
this buffer. This means that the block from the worktape next to the right is uploaded into the buffer
memory when the head leaves the buffer to the right, and the buffer contents are shifted to the left
so that the head finds itself in the midpoint of the buffer while the block on the left is stored to the
worktape. This is reminiscent of a super-head reading the whole block as a super-cell of length δ(|u|)
and moving to the right. Similarly, the buffer window moves to the left when the head is about to leave
the buffer memory to the left. Within this framework, the buffer complexity measures the number of
necessary block uploads into the cache buffer memory.

Furthermore, the buffer complexity proves to be related to the distance measure by d2δ ≤ bδ ≤ dδ.
In this way, the buffer or distance measure can be used for investigating the buffering aspects of
Turing computations. Thus, they represent important nontrivial examples of natural Blum complexity
measures different from time and space. In fact, these new measures are bounded by space S and

J. Šı́ma, Žák / On Tight Separation Applied to Buffer Complexity 3

time T as bS/δc ≤ dδ ≤ dT/δe, bS/δc ≤ bδ ≤ dT/δe. For example, this means that for a constant
function δ, the buffer measure coincides with the time complexity by the linear speedup theorem at
the cost of multi-symbol worktape alphabet, or the space complexity is O(n log n) for linear buffer
complexity with logarithmic δ etc. In addition, the worktape cells that are close to each other, can be
reused during a computation without increasing the distance and buffer complexity. This is one of the
two properties required in our diagonalizer machine, which is shared with the space measure but not
with the time complexity, although the diagonalizer can also be adapted for measures that break this
condition including the time complexity.

We start our study by separation and hierarchy results for the distance and buffer complexity which
are surprisingly very tight. This indicates that these new measures are suitable tools for classifying the
Turing computations with respect to their buffering complexity. The tightness in the results requires
that the worktape alphabet is fixed and the measure is not applied to the TM computations directly
but instead to their simulations on a fixed universal Turing machine, which rules out Blum’s speedup
theorem.

The results are of the form that an increase of only one in the argument of a given complexity
bound (and of parameter δ plus an additive constant) leads to a strictly greater computational power.
For example, an additive constant increase in the linear complexity bound is sufficient to gain more
power. For the hierarchies of full languages1, the increase in the complexity bound is required to be
slightly larger. The main tool of the proof is a delayed diagonalization method derived from [9] which
is newly formulated for suitable Blum computational complexity measures. The results are valid even
for unary languages, which strengthens a preliminary version of this paper [15] containing the proofs
only for a binary alphabet.

The paper is organized as follows. After a brief review of basic definitions regarding Turing
machines and complexity measures in Section 2, we define a diagonalizer and prove a general diago-
nalization theorem for Blum complexity measures in Section 3. In Section 4, the distance and buffer
complexity measures are introduced and related to each other. The separation for these measures is
proven in Section 5 while the corresponding hierarchies are presented in Section 6. The results are
summarized in Section 7 where possible further research directions are outlined.

2. Preliminaries

By a language L we mean any set of words over a fixed binary alphabet, that is, L ⊆ {0, 1}∗. We will
formulate our results for unary languages over a one-symbol alphabet for which we assume L ⊆ {1}∗.
In addition, we say that two languages L and L′ are equivalent, that is, L ∼ L′ iff they differ only in
a finite number of words. For a class C of languages we define E(C) =df {L′ | (∃L ∈ C)L ∼ L′}.
Clearly, L /∈ E(C) implies that L differs from any language of E(C) on infinitely many words.

By a Turing machine we mean any finite-control machine with two-way read-only input tape and
with one semi-infinite worktape (infinite to the right) with alphabet {0, 1, b} (b stands for blank) and
endmarker # at the left end side (at the 0th cell of the worktape), allowing for both the deterministic
or nondeterministic versions [14].

1A language accepted by a TM is full if all its words are accepted within a given complexity bound.

4 J. Šı́ma, Žák / On Tight Separation Applied to Buffer Complexity

The programs are words from {0, 1}+. If p is a program, then Mp is a corresponding machine
which implements p. For any machine M , we denote by L(M) the language accepted by M , and
define Lp = L(Mp). By pM we mean a program of M . For any input word u, a universal machine
starts its computation with some program p stored at the left end side of the worktape and it simulates
machine Mp on u.

By a complexity measure we mean any (partial) mapping c : {0, 1}∗×{0, 1}∗×{0, 1}∗ → N∪{∞}
where N denotes the set of natural numbers (including 0). Informally, c(p, u, v) is intended to measure
the complexity of computation by machine Mp on input word u starting with v stored at the left end
side of the worktape. In general, we assume that c satisfies Blum axioms [13]: c(p, u, v) < ∞ iff
Mp with initial worktape contents v halts on input u, and there is a Turing machine which, given
p, u, v ∈ {0, 1}∗ and m ∈ N, decides whether c(p, u, v) = m. We also use notation c(p, u) =
c(p, u, ε) when ε is the empty word.

In Section 4, we will introduce the complexity measures whose definitions depend parametri-
cally on the input length. This means that complexity measure c is in fact defined as a (uniform)
sequence of complexity measures (cn)∞n=0 where cn is employed for input words of length n, that is,
c(p, u) = c|u|(p, u) where |u| is the length of word u. For such c we denote by c′ the complexity
measure specified by a shifted sequence (cn+1)∞n=0 so that c′(p, u) = c|u|+1(p, u) for any input word
u ∈ {0, 1}∗. For nonparametric measures, c′ and c coincide.

Let P ⊆ {0, 1}+ be a recursively enumerable set of programs of the machines in question (e.g.
nondeterministic Turing machines), that is, there exists a Turing machine which will enumerate all pro-
grams of P . For any p ∈ P , for any complexity measure c and for any complexity bound f : N→ N,
we define languageLp(c, f) =df {u ∈ Lp | c(p, u) ≤ f(|u|)} to be a set of words accepted by machine
Mp within the complexity bound f measured by c. The complexity class c(f) = {Lp(c, f) | p ∈ P}
contains all such languages for p ∈ P , including those Lp(c, f) (Lp which are pruned by the
complexity bound, while the respective complexity class of full languages satisfying Lp(c, f) = Lp,
is denoted by a corresponding capital letter as C(f) = {Lp |Lp = Lp(c, f) , p ∈ P}. Obviously,
C(f) ⊆ c(f).

For the purpose of a tight separation of complexity classes we will measure the complexity of a
computation by machine M as the complexity of simulating pM on a fixed universal machine U . In
particular, for any complexity measure c we define its universal version as cU (p, u) =df c(pU , u, p).

In the notation of languages and complexity classes, f(n + 1) stands for the complexity bound
f ′ : N → N such that f ′(n) = f(n + 1) for every n ∈ N. This means that f(n + 1) can denote a
function on natural numbers (not just an image of n+ 1 under f) within the context where a function
symbol is expected. Notice that the inclusion c(f) ⊆ c(f(n+1)) need not, in general, be true even for
nondecreasing f since some of the languages Lp(c, f) cut out of Lp by complexity bound f cannot be
delimited by f(n + 1). Recall that complexity bound f is recursive if there is a Turing machine that
computes f . Hereafter, log : N → N will always mean the logarithmic function of base 2 restricted
to natural numbers whose value log n = dlog2 ne is rounded to the smallest following integer for any
n ∈ N.

J. Šı́ma, Žák / On Tight Separation Applied to Buffer Complexity 5

3. The Diagonalization Theorem

Our delayed diagonalization method issuing from [9] is based on a diagonalizer for Blum complexity
measure c and its recursive bound f : N→ N, which is a Turing machine ∆ working on unary inputs
u ∈ {1}∗. We will below describe its program p∆ (for sufficiently large n = |u|) by using a high-level
pseudocode. The program is composed of two main parts: precomputation A and simulation S. The
precomputation A is formally defined as an infinite process which is terminated when the worktape
head of ∆ leaves a delimited working space.

Diagonalizer ∆

input u

Precomputation A

check whether the input u is of the form 1n and construct a working space Wn of length
|Wn| = log n on the worktape (e.g. using a binary counter)

for every i = 1, 2, 3, . . . until space Wn suffices do

Phase G: on the untapped part of Wn, generate the next element pi of a sequence (pi)
∞
i=1

which contains each program p ∈ P infinitely many times

Phase T : using only Wn, test whether ui =df 12si−1+1
?
∈ Lpi(cU , f) where si ∈ N is the

length of the used worktape space after phase G

enddo

Simulation S { last generated pi is on the worktape }

if A terminates during its phase G without generating pi+1 then

accept u iff ui /∈ Lpi(cU , f)

else { A terminates during its phase T without deciding ui
?
∈ Lpi(cU , f) }

simulate machine Mpi on input u1 as universal machine U would do

Note that the leaving condition which breaks the precomputation A when the logarithmic working
spaceWn on the worktape is consumed can, in fact, be replaced by any suitable condition which can be
simply tested so that the longer the input word to ∆, the more computation of A is performed. In gen-
eral, ui ∈ {1}∗ must be the shortest input to ∆ for which A generates pi (within space |W|ui|| = si).
Hence, our choice of |Wn| = log n leads to the definition of ui = 12si−1+1 since 2si−1 + 1 is the
minimal ni such that log ni = si. On the other hand, there is no sublogarithmic increasing function
that is fully space constructible by deterministic [16] and nondeterministic [17] Turing machines and
could thus be exploited for delimiting working space Wn.

6 J. Šı́ma, Žák / On Tight Separation Applied to Buffer Complexity

Furthermore, we define function z : N → N as z(i) is the minimum j ∈ N such that A finishes

its phase T on input ui1j and decides whether ui
?
∈ Lpi(cU , f). Thus, z(i) corresponds to a sufficient

delay when ∆ diagonalizes against machine Mpi . Denote Ri = {ui1j | 0 ≤ j < z(i)} for any i ∈ N,
which are pairwise disjoint sets since |ui1z(i)| < |ui+1| for every i ∈ N, as the next pi+1 is generated
on the untapped part of worktape space Wn during phase G. The union R =

⋃
i≥1Ri contains the

inputs on which ∆ performs the simulation in S, while the diagonalization is delayed. Now we are
ready to introduce our diagonalization theorem which proves a tight separation for suitable Blum
complexity measures that meet two additional axioms related to ∆:

Theorem 3.1. Let ∆ be a diagonalizer for Blum complexity measure c and its recursive bound
f : N→ N which satisfy the following two conditions:

1. for any u ∈ Ri, c′(p∆, u) = cU (pi, u1)

2. for any u /∈ R, c′(p∆, u) ≤ f(|u|+ 1).

Then L =df Lp∆(c′, f(n+ 1)) ∈ c′(f(n+ 1)) \ E(cU (f)).

Proof:
On the contrary, suppose that L ∈ E(cU (f)). Hence, L ∼ Lp(cU , f) for some p ∈ P . By the
definition of diagonalizer ∆ we know that p occurs in the sequence (pi)

∞
i=1 generated during phase G

of precomputation A infinitely many times. Thus, there is i ∈ N such that Lpi(cU , f) differs from L
only on words shorter than ui.

For any input ui1j ∈ Ri, the diagonalization delays so that ui1j ∈ L iff ui1j ∈ Lp∆ &
c′(p∆, ui1

j) ≤ f(|ui1j | + 1) (by definition of L) iff ui1j ∈ Lp∆ & cU (pi, ui1
j+1) ≤ f(|ui1j+1|)

(by condition 1) iff ui1j+1 ∈ Lpi(cU , f) (by definition of ∆) iff ui1j+1 ∈ L since Lpi(cU , f) differs
from L only on words shorter than ui. Hence, ui ∈ L iff ui1z(i) ∈ L iff ui1z(i) ∈ Lp∆ (as for
u = ui1

z(i) /∈ R we know c′(p∆, u) ≤ f(|u| + 1) by condition 2) iff ui /∈ Lpi(cU , f) (by definition
of ∆) iff ui /∈ L, which is a contradiction, and thus L /∈ E(cU (f)). ut

Note that condition 1 in Theorem 3.1 is naturally satisfied for Blum measures that are related to the
space complexity. Clearly, the logarithmic space consumed within precomputation A is hidden in the
space complexity of simulation S, which implies condition 1. For example, this is not true for the time
complexity of ∆ which is a sum of the times needed for performingA and S, respectively. In this case,
the diagonalizer itself must control the time of simulation S [9]. Thus, for Blum complexity measures
that do not meet condition 1 one can possibly modify ∆ in part S so that ∆ simulates Mpi by U on
input u1 and accepts iff U accepts within complexity bound f(|u1|). In addition, the witness language
L is defined as the full language Lp∆ . Hence, for any ui1j ∈ Ri, we obtain that ui1j ∈ L =df Lp∆

iff ui1j+1 ∈ Lpi & cU (pi, ui1
j+1) ≤ f(|ui1j+1|) by this modified definitions of ∆ and L which

compensate for condition 1 in the proof of Theorem 3.1 accordingly. On the other hand, Theorem 3.1
and its adaptation for the time measure yield exactly the known results when applied to the space [18]
and time [9] complexity, respectively.

The diagonalization Theorem 3.1 provides the witness language L which is unary and is thus
outside the respective complexity class of languages over any multi-symbol alphabet. This strengthens

J. Šı́ma, Žák / On Tight Separation Applied to Buffer Complexity 7

our previous simpler diagonalizer ∆′ working on binary inputs which was presented in a preliminary
version of this paper [15]. In the binary case, the unary code 1k of program pi ∈ P where pi is
the binary expansion of k > 0, is a part of input 1k0l1j to ∆′, which is extended with the padding
string 1j that enlarges the working space Wn whose length |Wn| = log n grows with the input length
n = k + l + j. The binary alphabet is here essential for separating the program code 1k from the
padding string 1j by 0l where l > 0. Then ∆′ simply constructs program pi from its code 1k on
the worktape in phase G instead of generating the sequence of programs up to pi, which avoids the
for-loop repeating the phases G and T in the unary diagonalizer ∆.

4. The Distance and Buffer Measures

We introduce two new nontrivial computational complexity measures which capture how many times
the worktape head of a Turing machine needs to move a certain distance during the computation. For
any computation by Turing machine M , denote by ht ∈ N the head position on the worktape just
after t computational steps by M (i.e. at time instant t) which equals the distance (in the number of
tape cells) from the current worktape head location to the leftmost worktape cell with endmarker #
whose position is thus zero (e.g. h0 = 1). This defines a sequence h0, h1, h2, . . . of the worktape head
positions which is finite for halting computations and satisfies |ht+1 − ht| ≤ 1 for any t ≥ 0. For
any positive recursive function δ : N → N (i.e. δ > 0 which means δ(n) > 0 for every n ∈ N),
we inductively define its so-called δ-distance subsequence ht0 , ht1 , ht2 , . . . for a computation on input
word u as follows:

1. t0 = 0

2. ti+1 = min{t | (∃ t′) ti ≤ t′ < t & |ht − ht′ | = δ(|u|)}.

In other words, if we take into account only the worktape positions hti , hti+1, hti+2, . . . visited by
the head after ti computational steps, then ti+1 is the first time instant at which the worktape head
is exactly at distance δ(|u|) from some of these previous locations. Similarly, a so-called δ-buffer
subsequence is defined when condition 2 above is replaced by

2’. ti+1 = min{t | t > ti & |ht − hti | = δ(|u|)}

in which t′ is restricted to ti, and hence δ(|u|) divides hti − 1 for any i ∈ N. This means that the
δ-buffer subsequence partitions the worktape into blocks of length δ(|u|).

For any program p ∈ P , any input word u, and any initial worktape contents v, we define the
distance complexity dδ(p, u, v) to be the minimum length of δ-distance subsequence over all halting
computations ofMp on input u, starting with v on the worktape, where δ is a parameter of the distance
measure depending on the input length. In addition, we define formally dδ(p, u, v) = ∞ if Mp does
not halt on u. Recall the short notation dδ(p, u) = dδ(p, u, ε) for the empty word ε. Similarly, the
buffer complexity measure bδ is defined by using δ-buffer subsequences. Obviously, the distance and
buffer complexity measures satisfy the Blum axioms and bS/δc ≤ dδ ≤ dT/δe, bS/δc ≤ bδ ≤ dT/δe
where S and T is the conventional space and time complexity, respectively. Moreover, they can
mutually be related as follows.

8 J. Šı́ma, Žák / On Tight Separation Applied to Buffer Complexity

Lemma 4.1. Let δ : N → N be a positive recursive function. For any program p ∈ P and any input
word u, the inequality d2δ(p, u) ≤ bδ(p, u) ≤ dδ(p, u) holds.

Proof:
Let (ht1i

)i≥0, (ht2i
)i≥0, and (ht′i)i≥0 be the δ-distance, 2δ-distance, and δ-buffer subsequences, re-

spectively, for a computation of p on input word u. It suffices to prove t1i ≤ t′i ≤ t2i for any
meaningful i (note that the subsequences are typically of different length). By definition we know
t10 = t′0 = t20 = 0. On the contrary, let j ≥ 1 be the minimum index such that t1j ≤ t′j < t′j+1 < t1j+1

or t′j ≤ t2j < t2j+1 < t′j+1. Suppose first that t1j ≤ t′j < t′j+1 < t1j+1. According to the
definition of δ-distance subsequence, t1j+1 is the first time instant such that there is t′ satisfying
t1j ≤ t′ < t1j+1 and |ht1j+1

− ht′ | = δ(|u|), but for t′ = t′j we know t1j ≤ t′j < t1j+1 and

|ht′j+1
− ht′j | = δ(|u|), which contradicts t′j+1 < t1j+1. Thus, assume t′j ≤ t2j < t2j+1 < t′j+1.

According to the definition of δ-buffer subsequence, t′j+1 is the first time instant such that t′j+1 > t′j
and |ht′j+1

− ht′j | = δ(|u|), which implies |ht2j+1
− ht′j | < δ(|u|) and |ht′j − ht2j | < δ(|u|). Hence,

2δ(|u|) > |ht2j+1
− ht′j |+ |ht′j − ht2j | ≥ |ht2j+1

− ht2j | = 2δ(|u|), which is a contradiction completing
the argument. ut

5. The Separation Result

We first show a lemma concerning the distance complexity of simulating a machine on the universal
Turing machine. Recall that δ + k for a constant k ∈ N, denotes the function δ′ : N → N defined as
δ′(n) = δ(n) + k for any n ∈ N.

Lemma 5.1. Let U be a fixed universal machine, pM be a program of machine M , and δ : N→ N be
a positive recursive function. Then dδ(pM , u) = d

δ+|pM |
U (pM , u) for any input word u.

Proof:
(Sketch) Machine M is simulated by universal Turing machine U so that its program pM is being
shifted along the worktape following the shifts of the head of M . The distance δ on the worktape of
M is thus transformed to the distance δ + |pM | on the worktape of U . ut

A tight separation for the distance complexity measure is formulated in the following theorem. We
point out that this is a quite strong result since a very small increase in the distance complexity bound f
to f(n + 1) and in the distance δ to δ(n + 1) plus a constant brings provably more computational
power to both deterministic and nondeterministic Turing machines working on unary inputs. Recall
from Section 2 that for a fixed universal machine U , dδU denotes the universal version of the distance
complexity measure dδ (i.e. dδU (p, u) = dδ(pU , u, p) for any program p ∈ P running on input u). In
addition, remember that δ(n + 1) can denote a function on natural numbers, and as such, it can be
added or compared to other functions (e.g. δ(n+ 1) ≥ log means δ(n+ 1) ≥ log n for every n ∈ N).

Theorem 5.2. Let U be a fixed universal machine. Assume δ : N → N and f : N → N are positive
recursive functions, and δ(n+1) ≥ log. Then L = Lp∆(dδ(n+1), f(n+1)) ∈ dδ(n+1)+|p∆|

U (f(n+1))\
E(dδU (f)) where ∆ is a diagonalizer for complexity measure dδ and its bound f .

J. Šı́ma, Žák / On Tight Separation Applied to Buffer Complexity 9

Proof:
We will employ Theorem 3.1 for the distance complexity dδ and its bound f for which the two condi-
tions have to be verified. For any input word u = 1n to ∆, the distance complexity dδ(n+1)(pA, u) of
precomputation A equals 1 by the assumption of δ(n+ 1) ≥ log since the capacity of working space
Wn is log n. Thus, for input word u ∈ Ri, the distance complexity dδ(n+1)(p∆, u) = dδU (pi, u1) is
dominated by the complexity of simulation S, which secures condition 1 of Theorem 3.1. Condition 2
which has now the form 1 = dδ(n+1)(p∆, u) ≤ f(|u| + 1) for any u /∈ R follows from the assump-
tion of f > 0. By applying Theorem 3.1, we obtain language L = Lp∆(dδ(n+1), f(n + 1)) ∈
dδ(n+1)(f(n + 1)) which satisfies L /∈ E(dδU (f)). Moreover, L ∈ d

δ(n+1)+|p∆|
U (f(n + 1)) by

Lemma 5.1, which completes the proof. ut

Note that in order to secure condition 1 of Theorem 3.1, the assumption δ(n + 1) ≥ log in
Theorem 5.2 cannot be substantially weakened as we know the length of working space Wn for pre-
computation A in diagonalizer ∆ cannot be delimited by a sublogarithmic function. In addition, it is
obvious that Lemma 5.1 and Theorem 5.2 are also valid for the buffer complexity bδ, which can be
verified simply by replacing d with b in their statements and proofs.

6. The Hierarchies

In order to achieve a fine-grained hierarchy for the distance (or buffer) complexity we will employ the
classes Dδ

U (f) of full languages (see Section 2 for the definition). Unlike dδU (f), these classes Dδ
U (f)

prove to be linearly ordered with respect to the inclusion for hierarchies of functions δ and f .

Lemma 6.1. Let U be a fixed universal machine. Assume δ1 : N → N, δ2 : N → N are positive
recursive functions, and f1 : N → N, f2 : N → N are recursive complexity bounds. If δ1 ≤ δ2 and
f1 ≤ f2, then Dδ1

U (f1) ⊆ Dδ2
U (f2).

Proof:
Let Lp ∈ Dδ1

U (f1), that is, Lp = L(Mp) = Lp(d
δ1
U , f1) for some p ∈ P . We will prove that

Lp(d
δ1
U , f1) ⊆ Lp(dδ2U , f2) which implies Lp = Lp(d

δ2
U , f2), and consequently Lp ∈ Dδ2

U (f2).
Suppose that u ∈ Lp(dδ1U , f1). For k ∈ {1, 2}, let htk0 , htk1 , htk2 , . . . be the δk-distance subsequence

for a computation of U on the input word u starting with p on the worktape. We will prove that
t1i ≤ t2i for any meaningful i. We know t10 = t20 = 0. On the contrary, let j ≥ 1 be the minimum
index such that t1j ≤ t2j < t2j+1 < t1j+1. This means that there is t′ such that t2j ≤ t′ < t2j+1 and
|ht2j+1

− ht′ | = δ2(|u|) ≥ δ1(|u|) by the definition of δ2-distance subsequence, which contradicts the

definition of δ1-distance subsequence since t2j+1 < t1j+1 was assumed. Thus, t1i ≤ t2i , which implies
dδ2U (p, u) ≤ dδ1U (p, u) ≤ f1(|u|) ≤ f2(|u|). Hence, u ∈ Lp(dδ2U , f2), which completes the argument
for Dδ1

U (f1) ⊆ Dδ2
U (f2). ut

We will show that any language from the complexity class dδ(f) is a full language for a slightly
larger distance parameter δ′ and complexity bound f ′.

10 J. Šı́ma, Žák / On Tight Separation Applied to Buffer Complexity

Lemma 6.2. Let δ : N→ N be a positive recursive function and f : N→ N be a recursive complexity
bound such that for any input word u, the binary representation of function values δ(|u|) and f(|u|)
can be computed by a Turing machine Γ so that dδ

′
(pΓ, u) ≤ gδf (|u|) where δ′ = δ+ 8 log δ+ 2 log f ,

for some complexity bound gδf : N→ N. Then Lp(dδ, f) ∈ Dδ′(f + gδf) for any p ∈ P .

Proof:
Denote L = Lp(d

δ, f) and M = Mp. We will define machine M ′ that simulates M on any input
word u and halts immediately before dδ(pM , u) > f(|u|), which implies L(M ′) = L. In addition, we
will ensure that L(M ′) ∈ Dδ′(f + gδf), which gives desired L ∈ Dδ′(f + gδf). The main ideas of how
M ′ computes are as follows. At the beginning, M ′ constructs on its worktape two segments of length
8 log δ(|u|) and 2 log f(|u|), respectively, by using Γ. Then M ′ simulates M so that M ′ shifts the two
segments along the worktape following the worktape head of M .

The first segment of length 8 log δ(|u|) serves for identifying the time instant ti+1 corresponding
to the next worktape head position hti+1 from the δ-distance subsequence ht0 , ht1 , ht2 , . . . for a com-
putation of M on u. Recall that ti+1 is the first time instant t since ti for which there is t′ such that
ti ≤ t′ < t and |ht − ht′ | = δ(|u|). For this purpose, it suffices to keep and update the current head
location hτ , the current minimum and maximum head positions hmin = min{ht | ti ≤ t ≤ τ} and
hmax = max{ht | ti ≤ t ≤ τ} since time instant ti as the differences hτ − hti , |hmin − hti |, and
|hmax − hti |, respectively, which consumes 3 log δ(|u|) worktape cells of the segment. Moreover, a
test whether the current maximum distance |hmin−hti |+ |hmax−hti | equals δ(|u|) requires the value
of δ(|u|) occupying additional log δ(|u|) cells to be precomputed and shifted with the first segment.
Similarly, the second segment of length 2 log f(|u|) serves for halting the computation after f(|u|)
members of the δ-distance subsequence. In particular, the value of f(|u|) occupying log f(|u|) cells
is computed at the beginning and decremented after each head position of the δ-distance subsequence
is reached.

In fact, the implementation of the ideas above requires the full double length of the two segments
since the worktape alphabet of M ′ is (besides blank) restricted to 0 and 1 according to our assumption
on Turing machines. In particular, it suffices to replace each bit by a pair of bits. The first bit of this
pair indicates ”marked/non-marked”, which is used e.g. for comparing two parts of segments, and the
second one represents the value of the original bit. Hence, the length of the two segments follows,
which guarantees L(M ′) ∈ Dδ′(f + gδf). ut

Now we are ready to prove the hierarchy theorem for the distance complexity classes of full lan-
guages.

Theorem 6.3. Let U be a fixed universal machine. Assume δ : N → N and f : N → N are positive
nondecreasing recursive functions, and δ(n + 1) ≥ log. Define recursive functions δ′ : N → N and
f ′ : N→ N as

δ′ = δ(n+ 1) + 8 log δ(n+ 1) + 2 log f(n+ 1) (1)

f ′ = f(n+ 1) + g
δ(n+1)
f(n+1) (2)

where gδ(n+1)
f(n+1) : N → N is a nondecreasing recursive complexity bound such that for any input

word u, the binary representation of function values δ(|u| + 1) and f(|u| + 1) can be computed by

J. Šı́ma, Žák / On Tight Separation Applied to Buffer Complexity 11

a Turing machine Γ so that dδ
′
(pΓ, u) ≤ g

δ(n+1)
f(n+1)(|u|). Then Dδ

U (f) (D
δ′+|p∆|
U (f ′) where ∆ is the

diagonalizer for the distance complexity measure dδ and its bound f .

Proof:
Since δ, f , and gδ(n+1)

f(n+1) are nondecreasing functions we know that δ ≤ δ′+ |p∆| and f ≤ f ′ according

to (1) and (2), respectively. Hence, Dδ
U (f) ⊆ D

δ′+|p∆|
U (f ′) follows from Lemma 6.1. Define L =

Lp∆(dδ(n+1), f(n + 1)). According to Theorem 5.2, we know L /∈ E(dδU (f)) ⊇ E(Dδ
U (f)) which

gives L /∈ Dδ
U (f). On the other hand, L ∈ Dδ′(f ′) by Lemma 6.2, which implies L ∈ Dδ′+|p∆|

U (f ′)
according to Lemma 5.1. This completes the proof of the theorem. ut

For example, consider the case of δ(n) = log n and f(n) = n which gives δ′ = 3 log(n + 1)+
8 log log(n + 1). One can easily construct a Turing machine Γ which, given a unary input u =
1n, computes the binary representation of log(n + 1) and n + 1 within the distance complexity
dδ
′
(pΓ, u) = 1, by using a binary counter. Hence, f ′(n) = n + 2, and by Theorem 6.3 we obtain

Dlog
U (n) (D

3 log(n+1)+8 log log(n+1)+|p∆|
U (n+ 2) which can be rewritten as Dlog

U (n) (D4 log
U (n+ 2)

according to Lemma 6.1.
The argument is similar for the hierarchy of buffer complexity classes Bδ

U (f) of full languages,
which is formulated in the following theorem.

Theorem 6.4. Let U be a fixed universal machine. Assume δ : N → N and f : N → N are positive
nondecreasing recursive functions, and δ(n + 1) ≥ log. Define recursive functions δ′ : N → N and
f ′ : N→ N as

δ′ = δ(n+ 1) + 4 log δ(n+ 1) + 2 log f(n+ 1) (3)

f ′ = f(n+ 1) + g
δ(n+1)
f(n+1) (4)

where gδ(n+1)
f(n+1) : N→ N is a nondecreasing recursive complexity bound such that for any input word u,

the binary representation of function values δ(|u| + 1) and f(|u| + 1) can be computed by a Turing
machine Γ so that bδ

′
(pΓ, u) ≤ gδ(n+1)

f(n+1)(|u|). ThenBδ
U (f) (B

δ′+|p∆|
U (f ′) where ∆ is the diagonalizer

for the buffer complexity measure bδ and its bound f .

Proof:
The proof proceeds in the same way as in the case of the distance complexity. In particular, the
proof of Theorem 6.3 is based on Theorem 5.2 and on Lemmas 5.1–6.2. We already know that the
statements of Theorem 5.2 and Lemma 5.1, in which d is replaced with b, are also valid for the buffer
complexity. The same applies to Lemma 6.1 in whose proof the time instant t′ coincides with t2j .
The only slight change appears in the proof of the buffer complexity version of Lemma 6.2. In the
definition of machine M ′, the first segment serves for identifying the time instant ti+1 corresponding
to the next worktape head position hti+1 from the δ-buffer subsequence ht0 , ht1 , ht2 , . . ., which is the
first time instant t such that t > ti and |ht − ht′ | = δ(|u|). Thus, it suffices to keep and update only
the current head location hτ since time instant ti as the difference hτ −hti which consumes log δ(|u|)
worktape cells of the segment. Hence, the first segment is of half length 4 log δ(|u|) as compared to
the distance complexity version, which appears in formula (3). ut

12 J. Šı́ma, Žák / On Tight Separation Applied to Buffer Complexity

7. Conclusions

In this paper we have introduced the new distance and buffer complexity measures for computations
on Turing machines with one worktape. These measures can be used for investigating the buffering
aspects of Turing computations and they thus represent important nontrivial examples of natural Blum
complexity measures different from time and space. As a first step along this direction, we have
proven quite strong separation and hierarchy results which are valid even for unary languages. Many
questions concerning e.g. reductions, completeness, complexity classes, and relations to the time and
space hierarchies remain open for further research. To name just one simple example: Is the buffer
complexity class B

√
n(
√
n) strictly included in SPACE(n)?

We have also formulated our diagonalization method for the Blum complexity measures satisfying
two additional axioms related to our diagonalizer, which is interesting on its own. This general method
yields the known separation results for the usual space [18] and time [9] complexity. Moreover, the
present framework is also applicable to oracle Turing machines employing other complexity measures
such as the number of oracle queries or the maximum/total length of queries [19]. Analogous theo-
rems can possibly be proven for other types of machines including those with auxiliary pushdown or
counter and/or for other common computational resources such as randomness, interaction etc., which
certainly deserves deeper study.

References

[1] Trakhtenbrot BA. Turing computations with logarithmic delay. Algebra i Logika, 1964. 3(4):33–48.

[2] Stearns RE, Hartmanis J, Lewis II PM. Hierarchies of Memory Limited Computations. In: Proceedings
of the SWCT 1965 Sixth Annual Symposium on Switching Circuit Theory and Logical Design. 1965 pp.
179–190. doi:10.1109/FOCS.1965.11.

[3] Borodin A. Computational Complexity and the Existence of Complexity Gaps. Journal of the ACM, 1972.
19(1):158–174. doi:10.1145/321679.321691.

[4] Cook SA. A Hierarchy for Nondeterministic Time Complexity. Journal of Computer and System Sciences,
1973. 7(4):343–353. doi:10.1016/S0022-0000(73)80028-5.

[5] Ibarra OH. A Hierarchy Theorem for Polynomial-Space Recognition. SIAM Journal on Computing, 1974.
3(3):184–187. doi:10.1137/0203014.

[6] Seiferas JI. Relating Refined Space Complexity Classes. Journal of Computer and System Sciences, 1977.
14(1):100–129. doi:10.1016/S0022-0000(77)80042-1.

[7] Seiferas JI, Fischer MJ, Meyer AR. Separating Nondeterministic Time Complexity Classes. Journal of
the ACM, 1978. 25(1):146–167. doi:10.1145/322047.322061.

[8] Sudborough IH. Separating Tape Bounded Auxiliary Pushdown Automata Classes. In: Proceedings
of the STOC’77 Ninth Annual ACM Symposium on Theory of Computing. 1977 pp. 208–217. doi:
10.1145/800105.803410.

[9] Žák S. A Turing Machine Time Hierarchy. Theoretical Computer Science, 1983. 26:327–333. doi:
10.1016/0304-3975(83)90015-4.

J. Šı́ma, Žák / On Tight Separation Applied to Buffer Complexity 13

[10] Allender E, Beigel R, Hertrampf U, Homer S. Almost-Everywhere Complexity Hierarchies for Nonde-
terministic Time. Theoretical Computer Science, 1993. 115(2):225–241. doi:10.1016/0304-3975(93)
90117-C.

[11] Geffert V. Space Hierarchy Theorem Revised. In: Proceedings of the MFCS 2001 Twenty-Sixth Sym-
posium on Mathematical Foundations of Computer Science, volume 2136 of LNCS. 2001 pp. 387–397.
doi:10.1007/3-540-44683-4 34.

[12] Kinne J, van Melkebeek D. Space Hierarchy Results for Randomized Models. In: Proceedings of the
STACS 2008 Twenty-Fifth Annual Symposium on Theoretical Aspects of Computer Science. 2008 pp.
433–444. doi:10.4230/LIPIcs.STACS.2008.1363.

[13] Blum M. A Machine-Independent Theory of the Complexity of Recursive Functions. Journal of the ACM,
1967. 14(2):322–336. doi:10.1145/321386.321395.

[14] Sipser M. Introduction to the Theory of Computation. International Thomson Publishing, 1st edition,
1996. ISBN 053494728X. doi:10.1145/230514.571645.

[15] Žák S, Šı́ma J. A Turing Machine Distance Hierarchy. In: Proceedings of the LATA 2013 Seventh
International Conference on Language and Automata Theory and Applications, volume 7810 of LNCS.
2013 pp. 570–578. doi:10.1007/978-3-642-37064-9 50.

[16] Freedman AR, Ladner RE. Space Bounds for Processing Contentless Inputs. Journal of Computer and
System Sciences, 1975. 11(1):118–128. doi:10.1016/S0022-0000(75)80052-3.

[17] Geffert V. Nondeterministic Computations in Sublogarithmic Space and Space Constructibility. SIAM
Journal on Computing, 1991. 20(3):484–498. doi:10.1137/0220031.

[18] Žák S. A Turing Machine Space Hierarchy. Kybernetika, 1979. 15(2):100–121.

[19] Žák S. A Turing Machine Oracle Hierarchy, Parts I and II. Commentationes Mathematicae Universitatis
Carolinae, 1980. 21(1):11–39.

