
Softening Splits in Decision Trees Using Simulated Annealing

Jakub Dvořák and Petr Savický

Institute of Computer Science, Academy of Sciences of the Czech Republic
{dvorak,savicky}@cs.cas.cz

Abstract. Predictions computed by a classification tree
are usually constant on axis-parallel hyperrectangles cor-
responding to the leaves and have strict jumps on their
boundaries. The density function of the underlying class
distribution may be continuous and the gradient vector may
not be parallel to any of the axes. In these cases a better
approximation may be expected, if the prediction function
of the original tree is replaced by a more complex contin-
uous approximation. The approximation is constructed us-
ing the same training data on which the original tree was
grown and the structure of the tree is preserved.
The current paper uses the model of trees with soft splits
suggested by Quinlan and implemented in C4.5, how-
ever, the training algorithm is substantially different. The
method uses simulated annealing, so it is quite computa-
tionally expensive. However, this allows to adjust the soft
thresholds in groups of the nodes simultaneously in a way
that better captures interactions between several predictors
than the original approach. Our numerical test with data
derived from an experiment in particle physics shows that
besides the expected better approximation of the training
data, also smaller generalization error is achieved.

Keywords: decision trees, soft splits, classification,
simulated annealing.

1 Introduction

Classification trees are suitable for predicting the class
in complex distributions, if a large sample from the dis-
tribution is available. The classical parametrical meth-
ods may not succeed in such situations, if they work
with a closed formula describing the density in the
whole predictor space. Decision trees and ensambles of
trees are comparable to neural networks and SVM in
classification accuracy. The predictor vector for a tree
consists of a fixed number of numerical and categorical
variables. In this paper, we consider single univariate
decision trees with numerical predictors.

A trained classification tree usually does not only
provide a discrete classification, but also an estimate
of the confidence for it on a continuous scale. This con-
fidence may be an estimate of the conditional proba-
bility of the classes, but this is not necessary. Even if
it is not a good estimate of the probabilities, it may be
a reasonable information. In the real world problems,

it is frequently plausible to assume that the function
which assigns such a confidence to each point of the
predictor space is continuous. Even if the true distri-
bution has a sharp boundary between the classes, a
limited sample from the distribution does not provide
enough information for a justified construction of a
prediction function with a strict jump.

Classification trees constructed using the tradi-
tional methods like CART [2] or C4.5 [4] generate
trees, whose internal nodes contain conditions of the
form xkj

≤ cj , where xkj
is one the predictors and cj

is a threshold value. The result of the use of such sharp
threshold conditions is that the predictions computed
by a classification tree are constant on axis-parallel
hyperrectangles corresponding to the leaves and have
strict jumps on their boundaries. Such functions may
badly approximate boundaries of different type. This
is the cost, which is paid for the simplicity of the clas-
sifier.

A soft threshold condition means that if the actual
value of xkj

is close to cj , then both branches of the
tree are evaluated and their results are combined using
weights changing continuously with xkj

−cj . Soft splits
were suggested first by Quinlan [4] including the imple-
mentation in C4.5. We use exactly the same extension
of the decision tree classifiers, but use a substantially
different technique for training.

Quinlan’s technique determines the soft thresholds
in each node separately using statistical estimation.
In our approach, several thresholds corresponding to
a group of nodes close to each other in the tree are
adjusted simultaneously. Hence, the choice of the fi-
nal thresholds is influenced also by the interactions
between predictors. A nonsoft tree together with the
training data used for its construction, are used as the
input to an optimization phase, which tries to find
the values of the parameters of the soft thresholds,
which yield the best possible approximation of the
training data. Since the structure of the tree, in partic-
ular, its number of nodes, is fixed during the optimiza-
tion, overfitting was not observed in our experiments,
although a computationally intensive optimization is
used to tune the soft thresholds.

The goal of the postprocessing of the tree is to
reach a smoother function that fits better the train-
ing data. Since the complexity of the classifier does
not increase too much, one may expect to achieve also

smaller generalization error. Besides better approxi-
mation in cases, where the unknown conditional prob-
ability function is continuous, we may obtain a better
approximation even if the true value of the conditional
probability makes a jump on a boundary between the
regions of different classification, if the boundary is
not in axis-parallel direction. Soft tree may represent
a more complex function than a nonsoft tree. In partic-
ular, as a consequence of interactions of several predic-
tors, the prediction function of a soft tree may have
gradient vector in a general direction, while keeping
the small number of nodes of the original tree. Ap-
proximating this using a nonsoft tree requires to use
a stair like boundary with a large number of nodes.

A situation, where soft thresholds are well justified
directly from an application domain, may be demon-
strated for example on evaluating custumers asking for
a credit card in a bank. The bank investigates several
parameters of each customer, for example the current
amount on his account, his regular monthly deposit
amount, and some other criteria. Insufficiency in one
of these criteria may be compensated by good values
in some other. Instead of designing a tree with a large
number of nodes, an approximating smaller tree with
soft splits may be sufficient.

The current paper investigates classification accu-
racy on data from particle physics (MAGIC gamma
telescope) considered already in [1]. In this compari-
son, ensambles of trees, in particular random forests,
provided the best classifiers for these data. Our ex-
perimental results on these data demonstrate that the
trees obtained by introducing soft splits may have sub-
stantially smaller generalization error than individual
nonsoft trees.

We also compare the soft trees obtained by sim-
ulated annealing with soft trees obtained by C5.01.
There is no significant difference in test classification
error between these two types of trees, see section Re-
sults, although the trees are obtained using substan-
tially different principles. C5.0 finds the soft thresholds
as bounds of confidence intervals based on a statistical
model. It does not take into account whether the er-
ror on the training data changes or not. In fact, using
thresholds constructed in this way frequently increases
the training error. On the other hand, our approach
optimizes the soft threshold purely by minimizing the
training error. Our result shows that minimizing train-
ing error leads to similar results as the satistical esti-
mation used in C5.0, at least on the MAGIC data.

1 http://www.rulequest.com, commercial version of C4.5.

2 Decision tree with soft splits

Let T be a decision tree with nodes vj for j = 1, . . . , s.
We assume that if vj1 and vj2 are left and right succes-
sor of vj , then j < j1 and j < j2. In particular, v1 is the
root. Let V be the set of indices of the internal nodes
and U the set of indices of the leaves. The variable
tested in node vj is denoted xkj

and the correspond-
ing threshold value is denoted cj . If C is the number
of classes, then the label (response vector) G(v) of a
leaf v is a nonnegative real valued vector of dimension
C, whose coordinates sum up to one. Let T (x) be the
function Rd → RC computed by the tree, where d is
the number of predictors. More generally, let Tj(x) be
the function computed by the subtree starting at vj .
In particular, T1(x) = T (x). Note that Tj(x) is defined
even in cases, when the computation of the whole tree
T for x does not reach the node vj .

If vj1 and vj2 are left and right successor of vj , then
we have Tj(x) = if xkj

≤ cj then Tj1(x) else Tj2(x).
If we define I(condition) equal to 1 if condition is
true and equal to 0 if condition is false, then this is
equivalent to

Tj(x) = I(xkj ≤ cj)Tj1(x) + I(xkj > cj)Tj2(x).

A tree with soft splits is obtained by replacing this by

Tj(x) = Lj(xkj
− cj)Tj1(x) + Rj(xkj

− cj)Tj2(x)

for appropriate continuous functions Lj , Rj : R →
[0, 1]. It is required that if both subtrees of Tj return
the same output vector, then Tj returns the same vec-
tor as well. Hence, we require Lj(t)+Rj(t) = 1 for all
t ∈ R. A natural further requirement is that Lj be non-
increasing with limits Lj(−∞) = 1 and Lj(∞) = 0.
Hence, we also have that Rj is nondecreasing with
limits Rj(−∞) = 0 and Rj(∞) = 1.

The functions Lj and Rj used in the current paper
are piecewise linear functions interpolating the points
in the table

t Lj(t) Rj(t)
−∞ 1 0
−aj 1 0
0 1/2 1/2
bj 0 1
∞ 0 1

where the values aj ≥ 0 and bj ≥ 0 are parameters of
the soft splits. If aj > 0 and bj > 0, then the functions
Lj , Rj are uniquely determined by the above table.
If some of the values aj , bj is zero, the corresponding
function Lj , Rj is defined as a pointwise limit, which
is noncontinuous. The limit function satisfies Lj(0) =
1/2 or Rj(0) = 1/2 as in any other case.

The tree with soft splits is obtained by replacing
the evaluation function in each internal node by the

above one. This requires to specify the parameters
(aj , bj) in all internal nodes. Let θ = {(aj , bj)}j∈V .
The functions Lj , Rj defined above depend on θ.
So, the correct notation for them is Lj(θ, t), Rj(θ, t).
Moreover, let T (θ, x) and Tj(θ, x) denote the functions
computed by the whole tree and the tree starting at
node vj , respectively, if the soft splits determined by
θ are used. We again have T (θ, x) = T1(θ, x).

If xkj
= cj , then the soft split always evaluates

both subtrees and returns their arithmetic mean. If
xkj 6= cj the situation depends on xkj as follows. If
xkj ≤ cj − aj or xkj ≥ cj + bj , then the evaluation
function in node vj behaves in the same way as in the
original tree and returns the value of one of the two
subtrees. If xkj

∈ (cj − aj , cj + bj), then evaluating
Tj(x, θ) requires to compute both subtrees and the
output is a combination of their values.

Note that T (0, x) behaves similarly to T (x), but
there is a difference. If the computation of T (x) never
reaches a node, where xkj = cj , then we have T (0, x) =
T (x). However, if xkj = cj is satisfied at some step of
the computation, the results may differ, since evalua-
tion of T (0, x) combines both subtrees, while evalua-
tion of T (x) uses only one of them.

For every pair of nodes vj and vj1 such that vj1 is
one of the two successors of vj , let H(θ, vj , vj1)(x) be
the following function defined on the predictor vector
x.

H(θ, vj , vj1)(x) =

Lj(θ, xkj) if vj1 is the left

successor of vj

Rj(θ, xkj
) if vj1 is the right

successor of vj

For every leaf v, let Path(v) be the uniquely deter-
mined path from the root to v. Then an explicit for-
mula for the function computed by a tree with soft
splits is

T (θ, x) =
∑
j∈U

(u1,...,uk)=P ath(vj)

G(vj)
k∏

i=2

H(θ, ui−1, ui)(x).

The formula may be verified by induction starting at
the leaves.

3 Optimization of the soft splits

The method described in this paper assumes that a
nonsoft classification tree T with two classes 0 and
1 is available. Such a tree may be obtained using a
method like CART or C4.5 without softening. We used
the R implementation of CART. The response vector
is two dimensional in this case and the two coordi-
nates are assumed to sum up to one. Hence, each of
the coordinates alone carries the full information on

the prediction. Let us denote T ∗(x) the component of
the response vector computed by tree T , which cor-
responds to class 1. The method of the current paper
assumes that it is possible to find a threshold h such
that the rule “predict 1 iff T ∗(x) ≥ h” provides a rea-
sonable classification.

The goal is to find θ such that the error of classifica-
tion using T ∗(θ, x) ≥ h on unseen cases is smaller than
in the original tree. Since the algorithm has access only
to the training data, the method tries to achieve the
above goal by minimizing the error of T ∗(θ, x) on the
training data. This error may be measured in different
ways. We tested first simply the classification error,
but it appeared to be better to use a continuous error
defined on the data (xi, yi), i = 1, . . . ,m, yi ∈ {0, 1},
by the formula

f(θ) =
m∑

i=1

eα(|T∗(θ,xi)−yi|−1), (1)

where α was chosen to be 4. Experiments show that
an improvement on unseen cases is indeed achieved.

Since the minimized function f(θ) is not a smooth
function and has a large number of local minima,
we used simulated annealing available in R Statistical
Package [5] using method SANN of function “optim”.
Since this does not allow to restrict the range of θ to
nonnegative values, we used a large penalty (number
of errors larger than the number of training cases) for
θ, which contain a negative value. The initial value
of θ was chosen to be 0, i.e. the optimization starts
approximately at the original nonsoft tree.

The dimension of the optimization problem (the
number of parameters of the minimized function) is
two times the number of internal nodes. In order to
make the optimization process independent on the
scaling of the data, the optimization function uses a
normalized vector of parameters θ′ = {(a′j , b′j)}j∈V ,
where a′j = aj/aj,0, b′j = bj/bj,0. The normalizing fac-
tors aj,0, bj,0 are defined using the original nonsoft tree
as follows.

In each node of the tree, we find the hyperrect-
angle that is guaranteed to contain all training points
that go through the node during classification. For the
root, the hyperrectangle is the cartesian product of the
smallest closed intervals, which contain all the values
of the corresponding predictor in the training data. If
vj1 , vj2 are the two successors of vj , then the hyper-
rectangles assigned to them are obtained by splitting
the hyperrectangle assigned to vj by the hyperplane
xkj = cj . Then, the values aj,0 and bj,0 are chosen so
that the interval [cj−aj,0, cj +bj,0] is exactly the range
of xkj

within the hyperrectangle assigned to vj .

4 Iteration of simulated annealing

In this section, we discuss the strategy to look for θ
that minimizes the function (1). For the purpose of
this section, we denote θ as x ∈ Rn, where n is the
length of θ. It appeared to be better to split the min-
imization into phases, in each of which, only a small
randomly chosen subset of arguments is modified. Let
us introduce the following notation for this purpose.
Let S ⊆ {1, . . . , n} and z ∈ Rn. By RS we mean the
set of vectors {xi}i∈S , i.e. the vectors from R|S| whose
coordinates are indexed by elements of S instead of
consecutive integers. Then, let f [S, z] : RS → R be the
function defined for every x ∈ RS by f [S, z](x) = f(y),
where

yi =
{

xi if i ∈ S
zi otherwise

Optimization is performed by a sequence of calls of
method SANN of optim, which is an implementation of
simulated annealing. The initial approximation of each
call is the best solution found during the previous call.
The initial temperature for all calls is temp = 10 and
the bound on the number of iterations is maxit = 101
for all calls.

For each call of optim, a set S of k indices of vari-
ables is selected, see below. In the given call, f(x) is
minimized by modifying only variables with indices in
S. Formally, the minimized function is the function
f [S, x0](x) with k = |S| arguments, where x0 is the
result of the previous call. The restriction of x0 to the
selected set S of indices is also the initial value for x
in the current call.

One call of optim is successful, if it succeeds to find
a better solution than the initial one. The whole pro-
cess stops, when 50 consecutive calls are unsuccessful.

As mentioned above, for each call of optim, a set
S of indices of variables is selected. Let s be a variable
from the vector θ. This means that s is aj or bj for
some j. Then, let Ts be the maximal subtree of the
tree T , such that the root of Ts is the left son of the
node vj in the case that s is aj and the right son of
vj if s is bj . The selection of S starts with selecting
randomly a variable s such that the root of Ts is not
a leaf. Then S contains s and variables ai, bi where i
traces through all indexes of nodes in the two top levels
of Ts. Depending on the structure of T and selection
of s the set S contains 3, 5 or 7 variables.

5 Experimental setup

In a single run of the experiment, the available data
D were split at random in ratio 2:1 into a training set
D1 and a test set D2 and the four classifiers obtained
by the following methods were constructed:

1. CART.
2. Soft tree obtained by the method described in the

prevoius section from CART trees.
3. C5.0 without softenning.
4. C5.0 with softenning (option “-p”).

More detail is given in subsections below.

5.1 CART

The trainig set D1 was further split in ratio 2:1 into
D11 and D12. The larger part D11 was used for grow-
ing the tree, the smaller D12 was used for pruning as
the validation set (cost complexity pruning in CART
method). The result of the pruning is a sequence of
trees of different sizes. Accuracy of these trees is re-
ported for comparison with the other methods. In or-
der to show that the comparison result does not de-
pend on the selection of the tree in the sequence, we
select the best tree on the test set D2 and report its
accuracy. Even such trees are worse than the soft trees,
whose error is measured using standard methodology.

5.2 Softening trees from CART

We use the sequence of pruned trees constructed by
CART. Trees without split nodes are not considered.
When interpreting the soft tree as a classifier, we used
threshold h = 0.5. This means that the class with the
larger confidence (we have two classes) in the response
vector is predicted.

The error of the resulting soft tree is never worse
than in the original tree, however, it is sometimes close
to it. Such soft trees are discarded. The optimization is
considered unsuccessful, if the ratio of the error of the
original tree over the error of the soft tree is less than
1.01. The sequence of trees from CART contains trees
of different sizes. Smaller trees have higher chance to
be improved by one run of the softening procedure. On
the other hand, if the softening procedure succeeds
to improve a large tree, the result is usually better
than for small trees. In order to balance between these
two effects, we used a strategy which is splitted into
steps numbered by i = 1, 2, In step i, the softening
procedure tries to improve all of the i largest trees in
the sequence. The process terminates, when 10 trees
successfuly improved by softening are collected. The
resulting classifier is determined as the tree with the
smallest classification error on D1 among the 10 trees
obtained by the above strategy. The error of this tree
on D2 is reported.

5.3 C5.0

We used C5.0 release 1.15. The confidence level, which
determines the amount of pruning was chosen 0.1 (op-
tion “-c 10”), which appeared to be the best among

several values that we tried. For each split of the data,
C5.0 was run twice, with and without the option “-p”,
which forces that a softened tree is constructed.

The reason for choosing the confidence level equal
to 0.1 was the following: We computed for each split
of the data error rates of C5.0 softened trees for the
values of confidence level 0.01, 0.02, 0.05, 0.10, 0.15,
0.20, 0.25 and 0.30. Then for each of these values we
compared the error rate of C5.0 and the error rate of
the tree from CART softened. The value 0.10 is the
one, for which the error rates of C5.0 softened trees
are lower than the error rates of softened trees from
CART in the highest number of data splits.

6 Results

We used data simulating registration of gamma and
hadron particles in Cherenkov imaging gamma ray
telescope MAGIC [1]. There are 10 numerical predic-
tors and 2 classes. The predictors are numerical values
that are produced by the registration device and char-
acterize the registered particle. Class signal represents
cases, where the registered particle is gamma. Class
background corresponds to hadrons, mostly protons.
The number of cases in the dataset is 19020.

The data were created by a complex Monte Carlo
simulation [3] that approximates the development of a
shower of particles generated by a high energy primary
particle that reaches the atmosphere. The result of the
simulation is an estimate of the number of Cherenkov
ultraviolet photons that reach different pixels in the
focus of an antenna at the ground and form a single
registered event. The 10 predictors are numerical pa-
rameters of the geometric form of the obtained image.
Generating each case in the dataset required several
seconds of CPU time.

Creating the dataset was a part of the project of
constructing the telescope and was used to support
the decision, which classification technique to use in
regular observations using the telescope. On the basis
of [1], random forest was selected and is still used.

We used 7 random splits of this set in the ratio 2:1
into D1 and D2. For each of these splits, four classi-
fiers were constructed using the methods described in
the previous section. Besides the nonsoft CART trees,
the classifier was constructed using only D1 and its
accuracy was estimated using D2. Due to the large
size of both training and testing set, there is a strong
relationship between the training error and test error.
The test errors on D2 are presented in the following
tables.

CART CART ratio
non-soft softened soft/non-soft

1 0.1677 0.1377 0.8213
2 0.1610 0.1371 0.8511
3 0.1598 0.1366 0.8549
4 0.1659 0.1393 0.8394
5 0.1591 0.1377 0.8652
6 0.1550 0.1380 0.8901
7 0.1533 0.1371 0.8940

The next table allows to compare the error rates of
trees from CART softened and trees from C5.0 soft-
ened. The ratio of these two errors is included.

CART C5.0 C5.0 ratio
softened non-soft softened CART s./C5.0 s.

1 0.1377 0.1473 0.1391 0.9898
2 0.1371 0.1535 0.1438 0.9529
3 0.1366 0.1456 0.1323 1.0322
4 0.1393 0.1508 0.1380 1.0091
5 0.1377 0.1478 0.1366 1.0081
6 0.1380 0.1516 0.1483 0.9309
7 0.1371 0.1479 0.1410 0.9720

In our experiments, softening using simulated an-
nealing led to soft trees with similar accuracy on the
MAGIC dataset compared to that of C5.0 softened
tree. In order to formulate the result in terms of sta-
tistical significance, let p1 be the probability of the
event that the error rate of a tree softened using sim-
ulated annealing on the MAGIC dataset is lower than
error rate of C5.0 softened tree. The two sided 0.95
confidence interval for p1 obtained using the exact bi-
nomial test is approximately [0.18, 0.9], since we have
4 successes out of 7 trials. This means that the re-
sult of the experiment does not imply any significant
difference between the two methods.

The comparison of trees softened using simulated
annealing with the non-soft trees from the CART
method gives much better result. The error of the soft
tree obtained by SANN was always by at least 10%
better than that of the corresponding nonsoft tree. In
order to formulate the result in terms of statistical sig-
nificance, let p2 be the probability of the event that
the error rate of a tree softened using simulated an-
nealing on the MAGIC dataset is lower than 90 % of
error rate of CART tree. The one-sided lower 0.95 con-
fidence limit for p2 obtained using the exact binomial
test is approximately 0.65, since we have 7 successes
out of 7 trials.

Acknowledgement. The first author was sup-
ported by Czech Science Foundation (GACR) under
the grant No. GD201/05/H014. The second author
was partially supported by the “Information Soci-
ety” project 1ET100300517. Both authors were par-

tially supported also by the Institutional Research
Plan AV0Z10300504.

References

1. R.K. Bock, A. Chilingarian, M. Gaug, F. Hakl,
T. Hengstebeck, M. Jǐrina, J. Klaschka, E. Kotrč,
P. Savický, S. Towers, A. Vaicilius, “Methods for mul-
tidimensional event classification: a case study using
images from a Cherenkov gamma-ray telescope.” Nu-
clear Instruments and Methods in Physics Research,
Section A, Volume 516, Issue 2-3, p. 511-528, 2004.

2. L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone,
Classification and Regression Trees, Belmont CA:
Wadsworth, 1993.

3. D.Heck et al., CORSIKA, A Monte Carlo code to sim-
ulate extensive air showers, Forschungszentrum Karl-
sruhe FZKA 6019, 1998.

4. J.R. Quinlan, C4.5: Programs for Machine Learning,
Morgan Kaufmann Publishers, San Mateo — Califor-
nia, 1993.

5. R Development Core Team (2005). R: A language
and environment for statistical computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL
http://www.r-project.org.

