
Complexity and Probability of some Boolean FormulasPetr Savick�y �Institute of Computer Science,Academy of Sciences of Czech Republic,Prague, Czech Republice-mail: savicky@uivt.cas.czAbstractFor any Boolean function f let L(f) be its formula size complexity in the basisf^;�; 1g. For every n and every k � n=2, we describe a probabilistic distributionon formulas in the basis f^;�; 1g in some given set of n variables and of the sizeat most `(k) = 4k. Let pn;k(f) be the probability that the formula chosen from thedistribution computes the function f . For every function f with L(f) � `(k)�, where� = log4(3=2), we have pn;k(f) > 0. Moreover, for every function f , if pn;k(f) > 0,then (4n)�`(k) � pn;k(f) � c�`(k)1=4;where c > 1 is an absolute constant. Although the upper and lower bounds are expo-nentially small in `(k), they are quasipolynomially related whenever `(k) � ln
(1) n.The construction is a step towards developping a model appropriate for investigationof the properties of a typical (random) Boolean function of some given complexity.1 IntroductionProbabilistic methods appear to be very powerful in combinatorics and computer science.A natural point of view on these methods is that we investigate the properties of a typicalobject chosen from a set. One of the very �rst facts proven on Boolean functions is that atypical Boolean function chosen from the set of all functions has exponential complexityin any reasonable computation model. In particular, for the Boolean formulas the resultmay be found in [5]. Hence, the properties of functions chosen from the set of all functionscannot say much about functions of moderate complexity.In this situation, it is natural to ask what are the typical properties of functions cho-sen among the functions of some given complexity rather than among all functions. Onepossibility to construct a probabilistic distribution on functions of limited complexity isto describe the distribution in terms of their representations. In this case, it is easy toguarantee the complexity bound just using only representations of an appropriate size.However, if the distribution is de�ned only in terms of syntactic properties of the repre-sentations, it may easily be the case that the distribution is concentrated on a small setof functions, e.g. on the two constant functions.�This research was supported by GA CR, Grant No. 201/95/0976, and by Heinrich-Hertz-Stiftungwhile visiting Universit�at Dortmund, FB Informatik, LS2.1



In the present paper a syntactically de�ned probabilistic model of Boolean formulas isdescribed. The model is constructed by iterating the 4-ary Boolean operation x1x2�x3�x4starting from a simple distribution on variables, their negations and the constants. After kiterations, the model generates a distribution on functions of the formula size complexity inthe basis f^;�; 1g bounded by `(k) = 4k . The set of functions having nonzero probabilitycontains all functions of complexity at most `(k)�, where � = log4(3=2). An upper boundon the probability of each of the functions with a positive probability is given. The upperbound is quasipolynomially related to a trivial lower bound on this probability (Theorem3.2). It follows that the distribution is not concentrated on any small set of functions.The result is proved for a particular case of the model investigated in [6] and [7]. Forthis particular case, comparing to the bounds from [6] and [7], much stronger bounds onthe probability of single functions are obtained.A similar model based on balanced formulas build up from the NAND operation (orequivalently from alternating levels of ANDs and ORs) and with randomly chosen literalswas suggested by Friedmann [2] in order to get information on Boolean complexity. Fried-man suggested to study the distributions using their moments and presented an applicationof this method to iterated AND, namely to random 1-SAT and random 2-SAT.Formulas with a �xed tree of connectives and with the leaves assigned to variablesor some other simple functions at random were used also for some other more speci�cpurposes. Let us mention the construction of a monotone formula of size O(n5:3) presentedin [10] and the proof of existence of e.g. Ramsey graphs on 2n vertices, whose adjacencymatrix is representable by a Boolean formula of polynomial size in n, see [4], [8].A di�erent model of random Boolean formulas based on the uniform distribution onall AND/OR formulas of size tending to in�nity was investigated in [3]. It is proved thatthe distributions on functions obtained in this way converge to a limit distribution, inwhich the probability of every function f is positive and related to the complexity of f asfollows. If L0(f) � 
(n3), then the probability p(f) of f in the limit distribution satis�es(8n)�L0(f)�2 � p(f) � c�L0(f)=n31 ;where c1 > 1 is an absolute constant and L0(f) is the formula size complexity of f in thebasis f^;_;:g. The existence of a limit distribution with all probabilities positive wasinvestigated also for a more general model of random trees, see [12].The number B(n; `) of distinct Boolean functions of n variables expressible by anAND/OR formula of size at most ` is estimated in [9]. In a wide range of the values of`, matching lower and upper bound on B(n; `) is proved. Namely, if both �(n) and �(n)tend to in�nity with n and �(n) � ` � 2n=n�(n), then B(n; `) = ((c2 � o(1))n)`, wherec2 = 2=(ln 4� 1).2 The probability modelLet n � 2 be a �xed natural number throughout the paper. The Boolean functions of nvariables are the functions f0; 1gn ! f0; 1g. Since n is �xed, we call them simply Booleanfunctions. The projection functions are denoted xi for i = 1; : : : ; n as usual. The negationof xi is denoted as �xi. The conjunction is denoted like the multiplication, i.e. without anyoperation symbol. Recall that � is the addition mod 2.2



For any Boolean function u let u�1(1) be the set of a 2 f0; 1gn for which u(a) = 1.Moreover, let juj = ju�1(1)j. For arbitrary Boolean functions u; v lethu; vi = Ma2f0;1gn u(a)v(a):If A � f0; 1gn and g is a Boolean function, we denote as gjA the restriction of g to the setA. Let XA be the characteristic function of A.For any nonconstant function f , let L(f) be the formula size complexity of f in thebasis f^;�; 1g, i.e. the minimum number of occurrences of the variables in a formulaexpressing f in the given basis. Moreover, let L(f) = 1, if f is a constant function.The probability distributions studied in the present paper are de�ned as follows.De�nition 2.1 Let ~gn;0 2 f0; 1; x1; :::; xn; �x1; �x2:::; �xng be a random Boolean functionsuch that Pr(~gn;0 = 0) = Pr(~gn;0 = 1) = 1=4 and each of the literals occurrs as ~gn;0 withprobability 1=(4n). For every k � 0 let ~gn;k+1 = ~gn;k;1~gn;k;2 � ~gn;k;3 � ~gn;k;4, where ~gn;k;jare independent realizations of ~gn;k. Finally, for every k � 0, let pn;k(f) = Pr(f = ~gn;k).For the purpose of the present paper, ~gn;k is de�ned to be a Boolean function. Clear-ly, the de�nition of this function implicitly describes a Boolean formula expressing ~gn;k ,which contains `(k) = 4k occurrences of variables, their negations and constants. Hence,pn;k(f) > 0 implies L(f) � `(k).The distribution is chosen so that if a and �a are complementary points in f0; 1gn,i.e. they have the Hamming distance n, then ~gn;0(a) and ~gn;0(�a) are independent randomvariables. This simpli�es the analysis of the distribution of ~gn;k for small k in the proofof Lemma 4.6.For every f and k, if pn;k(f) > 0, then also pn;k+1(f) > 0, since e.g. f = 1 � f � 0� 0and the constants occur as ~gn;k with positive probability for all n and k. Moreover,every Boolean function f , that depends essentially only on variables x1; x2; :::; xi, maybe expressed as f = xif1 � f2 � 0, where f1, f2 do not depend on xi. Extending thisby induction and using the fact that pn;0(f) > 0 for every f depending on at most onevariable, one can prove that for every Boolean function f we have pn;n�1(f) > 0.By the well-known relationship between the size and the depth complexity of theBoolean formulas in any complete basis, see e.g. [11], one can prove that for any Booleanfunction f we have pn;k(f) > 0 for some k = O(logL(f)). In fact, we can prove abetter estimate using the method of balancing formulas in the basis f^;�g from [1]. Forconvenience of the reader, we present the proof from [1] adapted to our model. For acomparison, recall that pn;k(f) > 0 is possible only if L(f) � `(k).Theorem 2.2 For every n and k and for every Boolean function f that satis�es L(f) �`(k)log4(3=2), we have pn;k(f) > 0.Proof: Let D(f) be the smallest k, for which pn;k(f) > 0. Recall that for any function f ,L(f) � 1. By induction on L(f), an upper bound D(f) � log3=2L(f) will be proved. Thisbound implies the theorem, since L(f) � `(k)log4(3=2) is equivalent to log3=2L(f) � k.If L(f) = 1, then f is a constant, a variable or negation of a variable. Hence,D(f) = 0. Let L(f) � 2 and let the upper bound on D(f) be true for all functionsof complexity less than L(f). We will �nd functions f1, f2 and f3 such that f = f1f2� f33



and L(fj) � 2=3 � L(f) for j = 1; 2; 3. Then, since f = f1f2 � f3 � 0, we haveD(f) � max(D(f1); D(f2); D(f3)) + 1. By the induction hypothesis and the bound onL(fj), this implies D(f) � log3=2L(f).For any formula �, let size(�) denote the number of occurrences of variables in �. Inorder to �nd f1, f2 and f3, consider a formula � expressing f satisfying size(�) = L(f).This is possible, since f is a nonconstant function. Find the smallest subformula �0 of �that satis�es size(�0) > 2=3 � L(f). This subformula is either of the form � � � or ��,where � and � are subformulas of �. It is easy to see that 1=3 �L(f)� size(�) � 2=3 �L(f).The same inequality holds also for size(�). Let  (y) be the formula �, where � is replacedby a new variable y. For every input, � evaluates either to 0 or 1. Hence, using also theproperties of �, � �  (�) � � � ( (0)�  (1))�  (0).Now, let f1, f2 and f3 be the functions expressed by the formulas �,  (0)�  (1) and (0) respectively. This choice implies immediately f = f1f2 � f3. Since � contains atleast one occurrence of a variable, we have L(f1) � size(�) � 2=3 �L(f). Since the size of (0) is size(�)� size(�) > 0, we have also L(f3) � size( (0))� 2=3 �L(f).It remains to show that L(f2) � 2=3�L(f). To this end, we �rst construct two sequencesof formulas. Let  0(y) be the formula  (y). This formula consists of two subformulas.Denote the two subformulas  1(y) and 1, where  0(y) is the one, which contains theunique occurrence of y. By repeating this decomposition and assuming w.l.o.g. thatin each step of the process, y is in the left hand side subformula, we obtain sequences 0(y); : : : ;  m(y) and 1; : : : ; m of subformulas of  (y), such that  0(y) =  (y),  m(y) =y and for all i = 1; : : : ; m,  i�1(y) is either  i(y)� i or  i(y)i. Let I be the set of thosei0s, for which  i�1(y) �  i(y)i.Clearly, for any assignment of the values of the variables x1; x2; : : : ; xn, a change ofthe value of y propagates to the root of the formula  (y) if and only if the value of i forall i 2 I is equal to 1 for the given assignment. Hence, (0)�  (1) � î2I i:Since i are disjoint subformulas of  (0), we have size(Vi2I i) � 2=3 � L(f). SinceL(f) � 2, this implies L(f2) � 2=3 � L(f) even if f2 is a constant function. 2Lemma 2.3 For every k � 0 we havemaxf Pr(~gk = f) � maxf Pr(~gk+1 = f)Proof: Let ~gk+1 = ~h1~h2 � ~h3 � ~h4, where ~hj are independent realizations of ~gk. Becauseof the independence of the ~hj , we obtain for any Boolean function fPr(f = ~gk+1) =Xf1 Pr(f = ~h1~h2 � ~h3 � f1) � Pr(~h4 = f1):By using the properties of �, this is at mostXf1 Pr(f1 = ~h1~h2 � ~h3 � f) �maxf2 Pr(~h4 = f2) = maxf2 Pr(~gk = f2):This �nishes the proof of the lemma. 2 4



3 The resultFor the proof of the bounds on pn;k(f), we use the fact that the distribution of ~gkjA fora �xed A � f0; 1gn tends to the uniform distribution on the functions A ! f0; 1g whenk tends to in�nity. Moreover, we need an explicitly given estimate of the distance of thedistribution of ~gkjA from the uniform one depending on A and k. Such an estimate isgiven in the following theorem, which is proved in the next section. For any at least twoelement subset A of the Boolean cube, let �(A) be the minimum of �(x; y), where � is theHamming distance and x; y 2 A are distinct. If jAj = 1 then let �(A) = n. Moreover, forevery nonzero function w, let �(w) be de�ned as �(w�1(1)).Theorem 3.1 There exists a constantK � 0 such that for every n, every nonempty subsetA � f0; 1gn, every f : A ! f0; 1g and every k � k0(A) = 2 log2 jAj+ log2(n=�(A)) +K,we have ����Pr(~gkjA = f)� 12jAj ���� � 12jAj 2k�k0(A) :Note that the number of di�erent functions, which may appear as a realization of ~gn;k ,does not exceed (2n+ 2)4k . Hence, for k < log4 jAj � log4 log2(2n+ 2) not every functionf : A! f0; 1g has a positive probability. This gives a lower bound on the values of k0(A)that satisfy the statement of Theorem 3.1. If jAj is at least n
(1), this lower bound and thevalue of k0(A) for which Theorem 3.1 is actually proved di�er at most by a multiplicativeconstant.The proof of Theorem 3.1 is given in Section 4. Now, we will apply the theorem toderive the following bound.Theorem 3.2 There exists a constant c > 1 such that for every su�ciently large n, everyk that satis�es 0 � k � n=2 and every Boolean function f , we have either pn;k(f) = 0 or(4n)�`(k) � pn;k(f) � c�`(k)1=4 ;where `(k) = 4k.Proof: Clearly, every realization of ~gn;0 has a probability at least 1=(4n). For every k, ~gn;kis a combination of `(k) independent realizations of ~gn;0. This implies the lower bound.Let A0 be any maximal subset of f0; 1gn that satis�es �(A0) > n=6. Then, every pointof the Boolean cube is within Hamming distance at most n=6 from A0. Hence,jA0j bn=6cXj=0  nj! � 2n:By using the estimate dXj=0 nj! � �nd�d � nn� d�n�d � �ned �dfor d = bn=6c and using the fact that the estimate is even larger with d = n=6, we obtainjA0j � 2n(6e)�n=6 � 2n=4:5



Let K 0 = log2 6 + K, where K is the constant from Theorem 3.1. Clearly, for everynonempty A � A0, we have K 0 � log2(n=�(A0)) + K � log2(n=�(A)) +K. The desiredbound on Pr(~gk = f) will be proved separately for 0 � k � K 0 + 4 and K 0 + 4 � k � n=2starting with the latter range.If K 0 + 4 � k � n=2, choose any subset A � A0 such that2(k�K0)=2 � 1 � jAj � 2(k�K0)=2:The upper bound on jAj in this requirement implies k � k0(A), where k0(A) is the numberfrom Theorem 3.1. Hence, for every Boolean function f , we have by Theorem 3.1Pr(~gk = f) � Pr(~gkjA = f jA) � 22jAj :Hence, assuming log2 0 = �1 and using the lower bound on jAj, we havelog2Pr(~gk = f) � 1� jAj � 2� 2(k�K0)=2 � �2(k�K0)=2�1In other words, log2Pr(~gk = f) � �2�K0=2�1`(k)1=4: (1)If 0 � k � K 0 + 4, use Lemma 2.3 and the fact that for every f , Pr(~g0 = f) � 1=4 toderive for every flog2Pr(~gk = f) � �2 � �2(k�K0)=2�1 = �2�K0=2�1`(k)1=4:This, together with (1), implies the upper bound in the theorem, if we choose c = 22�K0=2�1 .24 Convergence to the uniform distributionIn this section Theorem 3.1 is proved. To this end, we use the discrete Fourier transformof the distribution of ~gk. For a random Boolean function with an arbitrary distribution,the discrete Fourier transform is de�ned as follows.De�nition 4.1 If w is a Boolean function and ~g a random Boolean function, then let�(~g; w) = E(�1)h~g;wi.One may easily see that j�(~g; w)j � 1 and �(~g; 0) = 1 holds for any ~g and w. Moreover,it is easy to verify the following formula for the inverse of the Fourier transform.Lemma 4.2 For every A � f0; 1gn and every f : A! f0; 1g, we havePr(~gjA = f) = 12jAj Xw�XA�(~g; w)(�1)hf;wi:6



Notice that if A is a nonempty subset of f0; 1gn and ~gjA has the uniform distributionon the functions A ! f0; 1g, then �(~g;XA) = 0. On the other hand, using Lemma 4.2,one can see that if �(~g;XB) = 0 for every nonempty subset B � A, then ~gjA is uniformlydistributed on the functions A! f0; 1g.In the following theorem, we express the Fourier coe�cients of the distribution of aparity and of a conjunction of two independent random Boolean functions. Note that fortwo random Boolean functions ~h1 and ~h2, �(~h1; ~h2) is a random variable depending onthe distribution of ~h1 and on the actual value of ~h2. It does not depend on the actualvalue of ~h1. In the context of random Boolean formulas, the identity (2) for the paritywas already used in [4].Lemma 4.3 Let ~h1; ~h2 be independent random Boolean functions. Then we have�(~h1 � ~h2; w) = �(~h1; w)�(~h2; w) (2)�(~h1~h2; w) = E~h2�(~h1; ~h2w) (3)Proof: Due to the independence of ~h1; ~h2, we haveE(�1)h~h1�~h2;wi = E(�1)h~h1;wi(�1)h~h2;wi = E(�1)h~h1;wiE(�1)h~h2;wi:This proves (2). Since h~h1~h2; wi = h~h1; ~h2wi, by using the expansion to the conditionalexpectations, we obtainE(�1)h~h1~h2;wi = Xv�w E �(�1)h~h1;~h2wij~h2w = v�Pr(~h2w = v):Since ~h1 and ~h2 are independent, the distribution of ~h1 under the condition ~h2w = v isthe same as the unconditional distribution of ~h1. Hence, the conditional expectation inthe sum above is equal to �(~h1; v). Hence,�(~h1~h2; w) = Xv�w�(~h1; v)Pr(~h2w = v):This implies (3). 2For simplicity, let us use the abbreviation �k(w) = �(~gk; w). Let ~hj for j = 1; 2; 3; 4be independent realizations of ~gk. Then, ~gk+1 = ~h1~h2 � ~h3 � ~h4 and by (2)�k+1(w) = �(~h1~h2; w)�k(w)2: (4)In particular, since j�(~h1~h2; w)j is always at most one, we havej�k+1(w)j � j�k(w)j2: (5)This implies that, by increasing k, j�k(w)j can be made arbitrarily small provided that itis initially strictly less than one.In the proof of Theorem 3.1, we use a real number � that satis�es 1 < � < 3=2. It isvery natural to present the proof with such a general value of this parameter, althoughthe theorem is �nally proved by setting � = p2.7



Theorem 3.1 is proved at the end of this section as a consequence of an upper boundon the Fourier coe�cients of the distribution of ~gk. The upper bound will have the formj�(~gk; w)j � qjwj��k�rm0for all w, 0 6= w � XA, and all k � r, where a real number q > 1 and integers r and m0are appropriately chosen. Extending an estimate in this form from any k � r to k + 1instead of k is guaranteed by Lemma 4.7 on the assumption that m0 is large enough. Thenumber r for which the bound is true for the required m0 and k = r is found using Lemma4.6. Let us start with two auxiliary statements.Lemma 4.4 Let ~h be a random Boolean function. Let q � 1 and m be some real numbers,let A be a subset of the Boolean cube and let j�(~h; u)j � qjuj�m be satis�ed for everynonzero u, u � XA. Then, for every function f : A! f0; 1g we have����Pr(~hjA = f)� 12jAj ���� � �q + 12 �jAj q�m:Proof: Since �(~h; 0) = 1, we have by Lemma 4.2 that the LHS of the inequality in thelemma is at most12jAj X06=u�XA j�(~h; u)j � 12jAj Xu�XA qjuj�m = 12jAj (1 + q)jAjq�m:2Theorem 4.5 Let ~h, q, m and A be as in Lemma 4.4. Let j�(~h; u)j � qjuj�m be satis�edfor every nonzero u, u � XA. Let ~h1; ~h2 be independent realizations of ~h. Then for everyBoolean function w satisfying w � XA, we havej�(~h1~h2; w)j � �12�jwj + 2�q + 12 �jwj q�m +  q2 + 12 !jwj q�2mProof: Let a Boolean function w � XA be given. First, let us prove the inequalityE hqj~hwji � �q + 12 �jwj +  q2 + 12 !jwj q�m: (6)Let v � XA be any function and denote B = v�1(1). Note that the assumption of Lemma4.4 is satis�ed also with B instead of A. Since v � ~h is equivalent to ~hjB � 1, Lemma 4.4implies Pr(v � ~h) � 12jvj + �q + 12 �jvj q�m:Hence, we have E hqj~hwji = E24 Xv�~hw(q � 1)jvj35 = Xv�w(q � 1)jvjPr(v � ~h)8



� Xv�w0@�q � 12 �jvj +  q2 � 12 !jvj q�m1A= �1 + q � 12 �jwj +  1 + q2 � 12 !jwj q�m:This proves (6).By (3) we have j�(~h1~h2; w)j � E~h2 j�(~h1; ~h2w)j. Using the bound j�(~h1; 0)j � 1 andfor v 6= 0 the bound j�(~h1; v)j � qjvj�m, we obtainj�(~h1~h2; w)j � Xv�w j�(~h1; v)j � Pr(~h2w = v)� Pr(~h2w = 0) + Xv�w qjvj�m �Pr(~h2w = v)= Pr(~h2w = 0) + E hqj~h2wj�mi :By Lemma 4.4 used for the set A = w�1(1), we havePr(~h2w = 0) = Pr(~h2jA � 0) � 12jwj + �q + 12 �jwj q�m:By (6) E hqj~h2wj�mi � �q + 12 �jwj q�m +  q2 + 12 !jwj q�2m:By combining these two contributions, we obtain the theorem. 2Lemma 4.6 For every real number q that satis�es 1 � q � 3, every natural number m �3, every nonzero Boolean function w and every integer r � log2(n=�(w))+ 5(m� 3)+ 1,we have j�r(w)j � qjwj�m.Proof: Throughout the proof, we assume q = 3. Clearly, proving this case is su�cient,since the inequality is weaker, if q < 3 and jwj � m. If jwj � m, the inequality is triviallysatis�ed.Let us �x some nonzero function w. In order to prove the lemma, we prove a slightlystronger statement. Namely, we prove that for every m � 3 and every integer r �log2(n=�(w)) + 5(m� 3) + 1, we havej�r(v)j � qjvj�m (7)for every nonzero v satisfying v � w.The estimate is proved by induction on m. Let us start with m = 3. In this case,j�r(v)j � qjvj�3 is trivially satis�ed for every v satisfying jvj � 3 and every r � 0. For thecases jvj = 1 and jvj = 2 assume that v � w.If jvj = 1, then v = Xfag for some a 2 f0; 1gn. By de�nition,�0(v) = E(�1)~gn;0(a) = Pr(~gn;0(a) = 0)� Pr(~gn;0(a) = 1) = 0:9



Using (5), j�r(v)j = 0 � qjvj�3 for all r � 0.If jvj = 2, then v = Xfa;bg for some distinct a; b 2 f0; 1gn. By de�nition,�0(v) = E(�1)~gn;0(a)�~gn;0(b) = 1� 2Pr(~gn;0(a) 6= ~gn;0(b)):The event ~gn;0(a) 6= ~gn;0(b) takes place if and only if ~gn;0 is equal to xi or �xi for some isuch that ai 6= bi. Since each value i = 1; : : : ; n appears with the probability 1=(2n), wehave �0(v) = 1��(a; b)=n, where � denotes the Hamming distance. Since v � w, we have�(a; b) = �(v) � �(w). Hence, 0 � �0(v) � 1� �(w)=n.Summarizing this and using (5), we obtainj�r(v)j � j�0(v)j2r � (1� �(w)=n)2r � e�2r�(w)=n:It follows that for every r � log2(n=�(w)) + 1 and every v satisfying jvj = 2 and v � w wehave j�r(v)j � e�2 � q�1 � qjvj�3:Now, let m � 4 and r � log2(n=�(w)) + 5(m� 3) + 1. It is su�cient to prove (7) forall v that satisfy additionally 1 � jvj � m� 1. The induction hypothesis says that for allnonzero v, v � w and every s � log2(n=�(w))+ 5(m� 4)+ 1, we have j�s(v)j � qjvj�m+1.If 1 � jvj � m � 2, then (5) and the induction hypothesis with s = r � 5 implyj�r(v)j � j�s(v)j32 � j�s(v)j2 � q2(jvj�m+1). This is at most qjvj�m by comparing theexponents. Let jvj = m� 1. By (5) we obtain j�r(v)j � j�s+1(v)j16. Moreover, using (4)and the induction hypothesis together with Theorem 4.5 used with m � 1 instead of mand with A = w�1(1), we obtainj�s+1(v)j � �12�m�1 + 2�q + 12q �m�1 +  q2 + 12q2 !m�1 :By a routine calculation, one can verify that for q = 3 and m � 4, this impliesj�r(v)j � j�s+1(v)j16 � q�1 = qjvj�m:This completes the proof of (7) and hence also of the lemma. 2Lemma 4.7 For every �, 1 < � < 3=2, there exists a real number q > 1 and a naturalnumber m0 � 1 such that for every k � 0, every real m � m0 and every A � f0; 1gn, thefollowing is true: if for every w, 0 6= w � XA, we have j�k(w)j � qjwj�m, then for everyw, 0 6= w � XA, we have j�k+1(w)j � qjwj��m.Proof: Let � be such that 0 < � < min(3=2� �; 1=6). Moreover, let us prove that thereis a number q > 1 satisfyingq + 12 < q1=2+� and q2 + 12 < q1+2�: (8)By taking the logarithm of both sides of both inequalities, the existence of such a numberq follows from the facts thatlimq!1+ ln q2+12ln q2 = limq!1+ ln q+12ln q = 12 < 12 + �:10



Let q > 1 be such that (8) and q < 1:618 is satis�ed. Note that 1 + q > q2. Moreover,let m0 be a large integer speci�ed later according to �, � and q. Let m be such thatm � m0. We are going to formulate conditions, which implyj�k+1(w)j � qjwj��m (9)for all w, 0 6= w � XA, provided j�k(w)j � qjwj�m holds for all w, 0 6= w � XA.To this end, we consider three cases: 1 � jwj � m=2, m=2 � jwj � m and m � jwj ��m. In the remaining case, jwj > �m, (9) is trivially satis�ed.If 1 � jwj � m=2, then 2(jwj � m) � jwj � �m and hence, using (5), we obtainj�k+1(w)j � j�k(w)j2 � q2(jwj�m) � qjwj��m.In the two remaining cases we use the identity (4). To obtain a bound on the �rstfactor of its RHS, we simplify the bound from Theorem 4.5 in the range of jwj and q nowconsidered. Since q+1 � q2 and jwj � m=2, we have (q+1)jwjq�m � 1. Hence, using also(8), j�(~h1~h2; w)j � 3�q + 12 �jwj q�m +  q2 + 12 !jwj q�2m� 3q(1=2+�)jwj�m + q(1+2�)jwj�2m: (10)In order to prove (9), we �rst derive a bound on the ratio of its LHS and RHS in bothcases now considered. If m=2 � jwj � m, we use (4), (10) and j�k(w)j � qjwj�m to obtainj�k+1(w)jq�jwj+�m � 3q(3=2+�)jwj+(��3)m + q2(1+�)jwj+(��4)mThe RHS of this is increasing in jwj. Hence, we obtain an upper bound by setting jwj = m.Thus j�k+1(w)jq�jwj+�m � 3q(��3=2+�)m + q(��2+2�)m: (11)If m � jwj � �m, we only know j�k(w)j � 1. Hence, by (4) and (10) we getj�k+1(w)jq�jwj+�m � 3q(�1=2+�)jwj+(��1)m + q2�jwj+(��2)mWe derive an upper bound on the RHS of this inequality by substituting an appropriatevalue of jwj in each of its two terms. In the �rst one we substitute the smallest value ofthe range (jwj = m) and in the second one the largest value (jwj = �m). Hence, we obtainj�k+1(w)jq�jwj+�m � 3q(��3=2+�)m + q(��2+2��)m: (12)Because of our choice of �, the RHS of both (11) and (12) converge to zero, if m!1.Since �, � and q are now �xed, it is possible to take a natural number m0 large enough toguarantee that (11) and (12) are both at most 1 and, hence, (9) is satis�ed. This completesthe proof of the lemma. 2Finally, here is the convergence result that we have been aiming toward.Proof of Theorem 3.1: Let �, 1 < � < 3=2, and a nonempty subset A � f0; 1gn begiven. Let q and m0 be some numbers for which the conclusion of Lemma 4.7 holds.As a basis for an iterative use of Lemma 4.7, we need a number r such that for all w,0 6= w � XA, the inequality j�r(w)j � qjwj�m011



is satis�ed. Lemma 4.6 guarantees that this is true for some r = log2(n=�(A)) + O(1).For every s � 0, by using the inequality from Lemma 4.7 s times, we obtainj�r+s(w)j � qjwj��sm0for every w, 0 6= w � XA. Since m0 � 1, assuming s = dlog� jAj+ log� 2e, we obtainj�r+s(w)j � qjwj�2jAjfor every w, 0 6= w � XA. Let t be such that q2t � 2 and u � 0. By using (5) t+ u times,we obtain j�r+s+t+u(w)j � �q2t+u�jwj�2jAj � �22u�jwj�2jAjfor every w, 0 6= w � XA. Let k0(A) = r + s + t, k � k0(A) and let u = k � k0(A). ByLemma 4.4 used with q = 22u and m = 2jAj, we have����Pr(~gkjA = f)� 12jAj ���� � 12jAj �1 + 22u�jAj �22u��2jAj � �2�2u�jAj :Since r = log2(n=�(A)) +O(1), s = log� jAj+O(1) and t = O(1), Theorem 3.1 is proved,if we assume � = p2. 2References[1] S. R. Buss, M. L. Bonet: Size-Depth Tradeo�s for Boolean Formulae IPL 11 (1994),pp. 151{155.[2] J. Friedman: Probabilistic Spaces of Boolean Functions of a Given Complexity: Gen-eralities and Random k-SAT Coe�cients, Research Report CS-TR-387-92, PrincetonUniversity, 1992.[3] H. Lefmann, P. Savick�y: On the typical behavior of large AND/OR Boolean for-mulas, to appear in RSA.[4] A. A. Razborov: Bounded-depth formulae over f^;�g and some combinatorialproblems. In Complexity of algorithms and applied mathematical logic (in Russian),Ser. Voprosy Kibernetiky (Problems in Cybernetics), ed.: S.I.Adian, Moscow, 1988,pp. 149-166.[5] J. Riordan and C. E. Shannon: The number of two terminal series-parallel networks,Journal of Math. and Physics 21, pp. 83{93, 1942.[6] P. Savick�y: Random Boolean Formulas Representing Every Boolean Function withAsymptotically Equal Probability, Discrete Mathematics 83 (1990), pp. 95{103.[7] P. Savick�y: Bent functions and random Boolean formulas, Discrete Mathematics147 (1995), pp. 211{234.[8] P. Savick�y: Improved Boolean formulas for the Ramsey graphs, Random Struct.Alg. 6 (1995), pp. 407{415.[9] P. Savick�y, A. R. Woods: The number of Boolean functions computed by formulasof a given size, preprint. 12
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