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S.Towers f , A.Vaiciulis g, W.Wittek a

aMax-Planck Institut für Physik, München

bCosmic Ray Division, Physics Institute, Yerevan

cInstitut de Fisica de Altes Energies, Barcelona

dInstitute of Computer Science, Academy of Sciences of the Czech Republic

eFachbereich Physik, Universität-GH Siegen

fState University of New York at Stony Brook

gUniversity of Rochester

Abstract

We present results from a case study comparing different multivariate classification
methods. The input is a set of Monte Carlo data, generated and approximately
triggered and pre-processed for an imaging gamma-ray Cherenkov telescope. Such
data belong to two classes, originating either from incident gamma rays or caused
by hadronic showers. There is only a weak discrimination between signal (gamma)
and background (hadrons), making the data an excellent proving ground for classi-
fication techniques.

The data and methods are described, and a comparison of the results is made.
Several methods give results comparable in quality within small fluctuations, sug-
gesting that they perform at or close to the Bayesian limit of achievable separation.
Other methods give clearly inferior or inconclusive results. Some problems that this
study can not address are also discussed.
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1 Introduction

Astronomy, astrophysics, and particle physics all have made rapid progress
as observational sciences in recent years. Much of this progress is due to the
development of detector technology, coupled with a parallel development of
analysis methods. Confronted with a daunting challenge of extracting a small
number of interesting events from an overwhelming sea of background, both
having very similar characteristics, physicists have become familiar with quite
sophisticated multivariate techniques such as probability density estimators,
regression (or classification) trees, kernel functions, neural networks, etc. Ded-
icated conferences like [1] have tried to create a close link between the obser-
vational sciences and recent developments in statistics.

Ground-based gamma-ray telescopes are an example of experiments exploring
a new research frontier, that are likely to benefit from the many multivariate
data analysis techniques developed in recent years. The following sections
describe very briefly some problems arising in the analysis of their data, and
the general characteristics of signal and background events in such devices.
In this case study, various multivariate techniques are applied to the same
set of data, in order to determine which techniques appear to afford the best
discrimination between signal and background.

2 Reference data

2.1 Ground-based imaging Cherenkov telescopes

Ground-based atmospheric Cherenkov telescopes using the imaging technique
are a comparatively recent addition to the panoply of instruments used by
astrophysicists. The first results were demonstrated in 1989. They observe
high-energy gamma rays, taking advantage of the radiation emitted by charged
particles as they are produced abundantly inside the electromagnetic showers
initiated by the gammas, and developing in the atmosphere. This Cherenkov
radiation (of visible to UV wavelengths) leaks through the atmosphere and
gets recorded in the detector, allowing reconstruction of shower parameters.

Cherenkov telescopes on the ground can be built with a much larger effective
collection area than detectors sent into orbit, and hence make them respond
better to the low fluxes of high-energy primary gamma-rays. On the other
hand, the number of observable Cherenkov photons for primary gammas of
lower energy (below 100 GeV) becomes comparatively small, and correspond-
ingly the problems of discrimination against background get enhanced. Opti-
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mal light collection and the best possible use of information thus are critical for
the success of this technique. The available information consists of pulses left
by the incoming Cherenkov photons on the photomultiplier tubes, arranged in
a plane, the camera. Depending on the energy of the primary gamma, a total
of few hundreds to some 10000 Cherenkov photons get collected, in patterns
(called the shower image), allowing to discriminate statistically those caused
by primary gammas (signal) from the images of hadronic showers initiated by
cosmic rays in the upper atmosphere (background). An early review on this
subject can be found in [2].

Hadron showers often contain an important, and sometimes even dominant
electromagnetic component. Also, both types of showers are subject to fluc-
tuations. Partly, they are due to the showering process itself; more fluctua-
tions are caused by the atmosphere, which acts like a permanently changing
calorimeter. Signal and background images thus are usually distinguishable
only with a non-zero probability of misclassification.

Typically, the image of a shower after some pre-processing (not the subject
of this note) is an elongated cluster; its long axis is oriented towards the
camera center if the shower axis is parallel to the telescope’s optical axis, i.e.
if the telescope axis is directed towards a point source. Hence, a principal
component analysis [3] is performed in the camera plane, which results in a
correlation axis and defines an ellipse (see figure 1). If the depositions were
distributed as a bivariate Gaussian, this would be an equidensity ellipse. The
characteristic parameters of this ellipse (often called Hillas parameters [2])
are among the image parameters that can be used for discrimination. The
energy depositions are typically asymmetric along the major axis, and this
asymmetry can also be used in discrimination. There are, in addition, further
discriminating characteristics, like the extent of the cluster in the image plane,
or the total sum of depositions.

2.2 Data used in this comparative study

For our case study, we used data sets generated by a Monte Carlo program,
Corsika, described in [4]. The program was run with parameters allowing to
observe events with energies down to well below 50 GeV. The subsequent
analysis, nevertheless, follows the known patterns proven for much higher en-
ergies: after applying calibration constants to the deposited energies, a trigger
algorithm is used, and some image cleaning on pixel clusters is applied. Image
cleaning eliminates local background, e.g. that caused by the night sky around
the source to be measured, or outliers. Subsequently, the analysis is simplified,
with hopefully little or no loss of information, by converting the pixel image of
a shower into few image parameters as described earlier [2]. These parameters
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constitute the only image characteristics to be used.

In the work presented here we perform a general study, applying different
multivariate classification methods to events described by 10 chosen image
parameters, without claiming the parameters to be optimal for these events.
Neither in triggering nor in the processing up to image parameters, has any
care been taken to optimize these Monte Carlo data. They are used only for
a relative comparison of discrimination methods. Also, no particular care was
taken to choose independent parameters since a robust discrimination method
should itself take care of correlations between parameters.

The data consist of two classes: gammas (signal) and hadrons (background).
Events were generated at shower energies from 10 GeV up to about 30 TeV,
and for zenith angles from zero to 20 degrees. The samples used by all methods
are identical, and consist of 12332 gamma events and 6688 hadron events 1 .

Each event is characterized by the following ten parameters (see fig. 1):

1 length : major half axis of ellipse [mm]

2 width: minor half axis of ellipse [mm]

3 size: 10-log of sum of content of all pixels [photon count]

4 conc2 : ratio of sum of two highest pixels over size [ratio]

5 conc1 : ratio of brightest pixel over size [ratio]

6 pdist : distance from brightest pixel to center, along major axis [mm]

7 m3long : 3rd root of third moment along major axis [mm]

8 m3trans : 3rd root of third moment along minor axis [mm]

9 alpha: angle of major axis with vector to origin [deg]

10 dist : distance from origin to center of ellipse [mm]

All multivariate methods studied here use identical disjoint training (learning)
and control (test) samples. The advantage of working with Monte Carlo events
is, of course, that results can be compared to the known classification of events.
The figures of merit used to compare methods are estimators derived from the
numerical relation between the hadron and gamma acceptances.

1 All data and their description are available from the authors on request (email to
rkb@mail.cern.ch)
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3 Multivariate classification

If confronted with a single test statistic, resulting in a one-dimensional proba-
bility density different for signal and background events (in our case gammas
and hadrons, respectively), the discrimination is simple: by applying a cut, i.e.
a selection that retains all events with this parameter larger (or smaller) than
a fixed cut value. For a small enough cut value one obtains zero acceptance
for both signal and background, for a large enough cut value an acceptance
equal to one for both samples. Cut values chosen in between will make the two
acceptances lie on a curve typically deviating from equal acceptance for the
two samples. The deviation is the larger the better the variable was chosen, i.e.
acceptances are higher for signal than for background events. This diagram
of signal vs. background acceptance (we use the terms εγ and εp) is known
under the name Neyman-Pearson diagram, decision quality diagram or Re-
ceiver Operator Characteristic (ROC) curve [5]. In statistical terms, the ROC
curve shows the probability of false alarm on the x-axis and the probability
of detection on the y-axis.

Note that these acceptances are directly related to statistical quantities like
power, purity, cost, contamination etc. Once the sample sizes are fixed, the
acceptances also define the significance, defined in section 5, a very important
measure for establishing the existence of an observed source.

The classification problem becomes considerably more involved when faced
with multiple variables, the multivariate discrimination problem. Mathemati-
cally, the problem can be formulated like this: measurements x = (x1, x2, ..xp)
are made and are known to belong to one of two groups, signal or background.
The task is to construct a classifier, which associates every x to one of the
groups such that misclassifications are minimized, on the basis of a training
sample of events with known classification.

Most of the multivariate methods provide a model, which assigns a real-valued
variable between 0 and 1 to each of the events, which may be understood as
a confidence that the event is signal. For these methods, a good model of
finding the new variable is the key issue, whereas the analysis may be done in
exactly the same way as for univariate methods, i.e. the computed confidence
may be considered a new, derived, variable fully describing the event. For
these methods, the decision quality may be represented by the ROC curve
defined above, i.e. by the relationship between Pr(accepted|background) and
Pr(accepted|signal).

For multivariate methods, which do not provide a real-valued confidence vari-
able, at least not by default, we have to construct several models using differ-
ent values of a learning parameter. For each of these models, we obtain a pair
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Pr(accepted|background), Pr(accepted|signal). These pairs represent points,
which may be used instead of an ROC curve.

Since the exact description of the distribution is not known, we cannot con-
struct the exact ROC curves even for methods, which, theoretically, allow
this. Hence, a more pragmatic approach has to be taken, applying the tested
methods to a standard benchmark sample. All methods used the first 2/3 of
the simulated (Monte Carlo) background and signal events to construct the
model (training sample) and the remaining 1/3 of the data to calculate the
ROC curve (control sample).

A numerical comparison of the methods in tabular form, which is based on
selected points of the ROC curve, is described in section 5.

4 Different classification methods

General multivariate classification methods are advertised in large numbers,
with little or no guidance about their virtues and shortcomings. Some of them
are available on the commercial market. This has motivated our case study: we
compare several methods below; some we have not tried are several variants
of discriminant analysis (see below) or variants of the kernel method, like
adaptive kernels. Also more ANN (artificial neural network) methods than
investigated here, are in widespread use.

4.1 Direct selection in the image parameters

Selecting by parameter cuts as in the one-dimensional case can, of course,
also be applied in the n-space of features (in our case image parameters),
one variable at a time or logically related like with AND or OR. The prob-
lem, however, gets unwieldy even at low n; nevertheless, this is a commonly
used method amongst physicists. Wide experience with such cuts exists for
all operating Cherenkov telescopes (e.g. [2,6,7]); any method claiming to be
superior must use results from these as yardstick. Working in one projection
at a time, correlations between the parameters, in particular non-linear cor-
relations, are not easy to take into account, although cuts in a variable are
often made dependent on the value of other parameters (supercuts or dynamic
cuts), or the n-dimensional space gets partitioned. Decorrelation by standard
methods (Principal Component Analysis, [3]) does not solve the problem in
general, being itself a linear operation. Defining new variables may also over-
come some difficulties. Usually, optimization leads to separate studies and
approximations for each new data set (past experience), which makes results
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sometimes difficult to reproduce. The direct selection method also does need
an optimization criterion, and will not normally result in a relation between
gamma acceptance and hadron acceptance, i.e. no single test statistic is de-
fined, although the acceptance plane can, of course, be populated by varying
the selection criteria.

In order to provide such a relation, we chose the cuteval method [8]. This
method finds the optimum combination of selection (cut) parameters (together
with the optimum cut values) on a test sample by numerical maximization of
the quality factor Q defined Q = εγ /

√
εp, with εγ and εp corresponding accep-

tances (efficiencies) for gammas (signal) and protons (hadron background), re-
spectively (equivalent to Pr(accepted|signal) and Pr(accepted|background)).
Q could be replaced as a quality factor by the more adequate statistical
significance σ = S/

√
2B + S where S and B are the unmber of signal and

background events in the sample retained after cuts; see also chapter 5. The
significance, however, depends on the size of the chosen samples.

Out of the group of np = 10 parameters, 20 possible cuts pi(i = 1 : 2 ∗ np)
were defined (each being allowed to cut in one or the other direction of the
one-dimensional projection of each parameter). In the spirit of [7], all parame-
ters except alpha and size were corrected for their energy (size) dependence,
yielding cuts on combinations with the parameter size (see figures 2 and 3).

In a first step, the most efficient (the one achieving the highest Q) selection
parameter s1 is determined (in this case: alpha < 11.8). Out of the pool of
now (2 ∗ np − 1) available cuts, a second parameter s2 is determined which
achieves the highest value of Q together with s1 and freely varying cut val-
ues 2 . Successively, more parameters are determined until the addition of new
parameters cannot improve Q any more. The thus obtained m parameters
sj(j = 1 : m) are called ”independent”. To each parameter sj belongs a cut
value cj(j = 1 : m). By this procedure correlations between cuts are taken
into account and the final number of cut parameters is reduced to a mini-
mum while at the same time maximizing the cut efficiency. Surprisingly, only
four “independent” parameters were obtained and 16 rejected. These four cuts
yield a quality factor of Q = 4.0 ± 0.15 on the control sample and are shown
in the following table:

2 The search for the global maximum used simulated annealing methods.

7



Nr. Parameter and selection

1 alpha < 7.8

2 length/(−67. + 40. ∗ size) < 1.35

3 width/(27.9 − 22.5 ∗ size + 6.7 ∗ size2) < 1.12

4 size > 3.2

In a second step, the optimum cut values of the ”independent” parameters are
calculated again, this time maximizing Q with imposed boundary conditions,
e.g. a minimum hadron acceptance εmin. The obtained cut values are then
fitted and parameterized as a function of εmin (see figure 4), a procedure
which defines a single event quality parameter comparable to the ”purity” of
the sample. The obtained parameterized path is given in the following table:

Parameter Path

alpha < 7.3 + 94.1 ∗ εmin

length/(−67. + 40. ∗ size) < 1.37 + 6.39 ∗ εmin − 12.42 ∗ ε2
min

width/(27.9 − 22.5 ∗ size + 6.7 ∗ size2) < 1.16 + 1.24 ∗ εmin

size > 3.1 − 13.6 ∗ εmin + 44.2 ∗ ε2
min

Note that the two parameters size and (corrected) length “saturate” at high
values of εmin, i.e. they are set to values with no rejection to signal or back-
ground at all.

4.2 Classification trees and forests

The basic classifier has the form of a binary decision tree. Its internal nodes
represent tests, each of which compares a single predictor to a fixed threshold.
Each of the leaves is labeled by one of the two classes: signal and background.
The tree may be constructed from the training set using different strategies
[9,10], which we briefly describe later. Classification of a new case starts at
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the root node of the tree. The test assigned to this node is evaluated and the
computation continues to the left or right subtree according to the answer.
This is performed repeatedly until a leaf is reached. Its label represents the
resulting prediction.

A significant improvement over the accuracy of a single classification tree may
be achieved by constructing a collection of several different trees (a forest or
an ensemble of predictors) and using a voting or an averaging procedure for
the classification of new cases [11,12]. Constructing an ensemble of predictors
may improve the accuracy of not only decision trees, but also other types of
predictors, when dealing with single predictors of low bias but large variance
[15].

Our experiments used three different strategies to construct forests. The first
two used the two classical techniques CART [9] and C4.5/C5.0 [10] to con-
struct several trees, which were further combined into a forest. In order to
obtain different trees using C5.0 and CART, we used bagging (bootstrap ag-
gregation), where each tree is grown on a random subsample of the training
data, drawn with or without replacement. The last experiment used Random
Forest technique, which is directly designed to construct a forest [13].

Let us briefly describe the construction of a single tree. The construction
begins with all cases being contained in the root node. The root node is then
split by a cut using one of the image parameters, into two successive nodes and
this process is repeated recursively. In each step, the split is selected in order to
achieve maximum decrease of average impurity. This partitioning is performed
until either all the obtained regions are approximately pure, i.e. contain a clear
majority of one class in the training data, or further splitting is not possible.
In order to avoid overfitting, the resulting tree is finally simplified by pruning.
The two tree-induction methodologies, namely CART [9] and C4.5 [10], use
similar or the same definition of average impurity, but differ significantly in
the strategy for pruning.

4.2.1 C5.0

We used C5.0 Release 1.15 (Linux PC) by RuleQuest Research 3 , which uses
the C4.5 algorithm for induction of individual trees, but extends C4.5, in
particular, by the option of using forests. Bagging using C5.0 was performed
by an external script, which called C5.0 for a sequence of different settings
of the cost for misclassification of a background event (i.e. as signal). For
each of these settings, C5.0 was called for 80 randomly selected subsamples,
constructing one tree for each subsample. The resulting forest of 80 trees was
then used to classify the control sample using see5-public, an open source

3 http://www.rulequest.com/
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utility provided together with C5.0. Each setting of the misclassification cost
gives one point in the ROC curve. The best results were obtained, if each
of the random subsamples contained 80% of the training data. This size of
subsamples was used to obtain the results given below.

4.2.2 CART

We used CART 4.0 (Windows) marketed by Salford Systems 4 which uses
a boostrap sample for growing the tree and the whole data set for pruning
(technically, the “test=nosample” option for pruning was used). A sequence
of settings of priors (prior probabilities of the two classes [9]) was selected and
for each of these settings an independent construction of a forest of 80 trees was
performed. Hence, we obtained a sequence of forest classifiers, each of which
was tested on the control sample and the result of each forest is represented
by one point in the graph. Since different settings of priors imply different
amounts of accepted background and signal events, a curve is obtained.

4.2.3 Random Forest

In the random forest method, again a large number of classification trees is
grown and combined. Two random elements serve to obtain a random forest,
bagging and random split selection.

Bagging is done here by sampling multiple times with replacement from the
original training data set. Thus in the resulting samples, a certain event may
appear several times, and other events not at all. About 2/3 of the data in the
training sample are taken for each bootstrap sample.

Random split selection is used in each tree’s growing process. The tree growing
begins with all cases being contained in the root node. The root node is then
split by a cut using one of the image parameters, into two successive nodes
to achieve a classification by separation of the classes. When using a total
of 10 image parameters, three (square root of total, an experimental best
value [16]) are chosen randomly (uniformly distributed) from the total 10.
The image parameter yielding the smallest Gini-index among these three is
used for splitting; [9] gives more information on the Gini-index. Using only
one random variable for selection was not sufficient, but using 2 or 4 yield
very similar result as 3 variables.

Subsequently, the same procedure is applied to each branch in turn. The tree
growing stops only when all nodes contain pure data, i.e. from one class only.

4 http://www.salford-systems.com/
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These nodes are then called terminal nodes and receive their class label from
the training data.

No pruning is performed. Using unpruned trees (in general poor classifiers)
requires a reasonably large number of them to be combined. For our data,
growing 50 trees turns out to be sufficient: the quality of the classification in
terms of the Neyman-Pearson plot remains unchanged after a certain number
of trees has been reached (see figure 5). Combining classifications from the
trees is simply done by calculating the arithmetic mean from the 50 classifi-
cations of all trees (considered as 0 and 1).

We used the original Breiman’s fortran sources for Random Forests technique
[14] and verified and extended the results using the package randomForest
3.3-2 in R 5 .

The simple arithmetic mean for combination seems to be adequate when deal-
ing with a reasonably large number of unpruned trees. We also tried weighted
combinations of trees using several different estimates of confidences of the
prediction in individual leaves, but this gave better results only for a very
small number of trees ≤ 10, which is too small a number to assure conver-
gence in classification error. This fits well into the assumption that a large
enough forest is less sensitive to variance than to bias.

4.3 Kernel methods

Kernel Probability Density Estimation (PDE) methods can be used as a non-
parametric multivariate classification technique, and are based on the premise
that the density function of the unknown distribution can be approximated
by a sum of some other, appropriately chosen, ‘kernel’ functions [17]. ‘Non-
parametric’, in this context, simply means that no other assumptions are made
about the form of the probability density functions (PDF’s) from which the
samples are drawn.

We restrict these studies to PDE methods based on a Gaussian kernel, which is
a natural choice for most physics analysis applications since nearly all variables
used in an analysis have usually been Gaussian smeared by detector resolution,
or other effects.

A typical application of Gaussian kernel PDE’s begins with a sample of N
Monte Carlo events generated in a k-dimensional parameter space. The Monte
Carlo events are distributed according to some (unknown) probability density
function (PDF). A Gaussian kernel PDE method estimates the value of the

5 http://www.r-project.org/

11



PDF at a point ~x by the sum of Gaussians centered at the Monte Carlo
generated points y1, . . . , yN :

f(~x) =
1

N |V |1/2(2π)k/2hk

N
∑

i=1

exp



−
~d T
i V −1~di

2h2



, (1)

where ~di = (~x − ~yi), V is a covariance matrix, and h is an additional scaling
factor. The optimal forms of V and h are a matter of debate, but a minimally
biased estimate of the original PDE can be obtained if one determines V from
the covariance matrix of the overall sample and the scale factor h is set to
N−1/(k+4)[18]. An attempt to optimize h showed that the result is robust with
respect to choices of h within a factor of 2. Because the parameters of the
resulting Gaussian kernel are the same for all points, this is known as a static
kernel method.

Given a data point in the k-dimensional parameter space, one can use Equation
1 to estimate, based on the Monte Carlo generated signal events, the signal
PDF at that point, Ps. One can similarly estimate, based on the Monte Carlo
generated background events, the background PDF at that point, Pb. A one-
dimensional discriminator can then be formed from Ps/(Ps + Pb).

Kernel PDE methods, in general, do an excellent job of modelling complex
inter-correlations in high-dimensional parameter spaces, as long as the PDF’s
are smoothly varying within that parameter space. They thus often perform
as well or even better than more sophisticated techniques such as classification
trees or artificial neural networks. Static kernel PDE methods tend to suffer
from the disadvantage, however, that the discriminant computational time
per data event grows linearly with the size of the Monte Carlo sample used as
reference. Techniques such as classification trees or artificial neural networks,
get ‘trained’ only once, and the discriminant computational time depends only
on the topology of tree or neural network, not the size of the Monte Carlo
samples.

4.4 Artificial neural networks (ANN-s)

This class of methods has been presented frequently in the past; ANN-s re-
semble the tree-based methods in that they define simultaneous selections in
variables, but instead of the original variables they work in locally linearly
transformed data, and the transformation itself is part of the optimization
(learning) process. Usually, the results match but are not superior in quality
to whatever reference results exist for comparison. So far, no convincing case
has been made for the use of ANN-s on Cherenkov telescope data, although
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the Whipple collaboration has tried the method (and remained with their su-
percuts). There is a substantial randomness in choosing the topology of the
net, in particular the depth of the tree, the number of nodes, the training
method, transfer function, etc.

4.4.1 The NeuNet package

As one neural network implementation the NeuNet-package for ROOT 6 by
J.P. Ernenwein was chosen [19]. This package allows for building multilayer
feed forward nets. For our study a 3-layer architecture with 10 input nodes
(for the 10 image parameters), 10 nodes in the hidden layer and 1 output node
(giving the classification) was adopted. Further features of this neural network
package are random initialization of weights and biases (boundaries for initial-
ization of weights are user-defined). The transfer function is implemented as
sigmoid, i.e. σ(x) = 1/(1 + exp(−x)). For teaching the neural net, error back
propagation with a user-defined learning rate is used.

The neural network output denoted by o can be written as

o = σ
( 9
∑

i=0

w1i0 · x1i + b
)

, where x1i = σ
( 9
∑

j=0

w0ji · x0j + b1i

)

.

Here the xkl are the input values for node l, layer k and the wklm are the
weights connecting node l, layer (k − 1) with node m, layer k. dkl denotes the
biases for the input values xkl. The program outputs training and validation
errors which are calculated as mean value of | otrue − o | of training or control
sample respectively. This is not the final classification error, which is obtained
taking int(o+1−c) with c being the cut value and int(.) the integer operator as
estimated class (and not o itself). One must also take care of the input values
to be scaled to [ 0, 1] because the program uses a default clipping operation.
For the benchmark, a learning rate of 0.1 and 10.000 training cycles were used.
In figure 6 one can see (left) the evolution of training and control sample errors
with the training cycles, and (right) a histogram of the ANN output (signal
probabilities) for signal and background events.

4.4.2 NNSU - Neural Network with Switching Units

The NNSU is a combination of a classical neural network architecture and a
classification tree. This network is actually an oriented acyclic graph whose
nodes are structures called building blocks. This acyclic graph will be refered
to as the outer graph. Each building block is a neural network consisting of

6 http://root.cern.ch/
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two types of nodes. These nodes are connected such that they form an acyclic
graph again, with the restriction that the output dimension of each building
block is the same for all building blocks in the outer graph. The first type
of node, which we call functional unit, makes a predefined mapping from the
input space corresponding to this node to the output space of this node. Hence
such a node can be described by a tuple of integers, input vector dimension
and output vector dimension, and by a transfer function. The definition of
this transfer function includes the parameters of this functional unit (weight
vectors, threshold etc. in current neural network terminology).

Functional units map corresponding inputs to outputs, by an internal trans-
fer function. This transfer function is linear, the coefficients differ for each
functional unit. The second type of nodes, switching units, collect all out-
puts from parent functional units, concatenate them to form one vector, and
search a predefined number of clusters in the set of such input vectors. We use
a non-deterministic procedure known as Jancey cluster algorithm.

After clustering, each cluster is joined with a corresponding child functional
unit; subsequently the parameters of this functional unit are adjusted using
patterns in the corresponding cluster only. In fact, the division of input pat-
terns into two or more disjoint sets, and the consecutive learning over these
subsets of patterns, put a separating hyper-surface into the input space. The
type of these hyper-surfaces is defined by the type of transfer functions of the
switching unit parents.

So each building block in turn is optimized, the output from each building
block is propagated to all children, and the output of the last building block
is considered to be the final output from the neural network.

4.4.3 GMDH - Group method data handling

The Group Method Data Handling is a polynomial approximator, with the
polynomial degree controlled according to the quality of the approximation
reached. The selection of an appropriate degree of polynomial is a well-known
problem of polynomial approximation. Because the degree of the polynomial
is inherently controlled according to the character of the task solved, also
the size of corresponding neural net is controlled. In description of the orig-
inal GMDH algorithm we quote [20] as follows (we use approximation in-
stead of prediction): ”We start by computing the regression equations y =
A + Bx1 + Cx2 + Dx1x1 + Ex1x2 + Fx2x2 for each pair of input variables
x1 and x2 and the output y. This will give us m(m − 1)/2 higher-order vari-
ables for predicting (approximating) the output y instead of the original m
variables x1, x2, ...xm. After finding these regression equations (from a set of
input/output observations), we then find out which one to save. This will give
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us a collection of quadratic regression models (say, m2) which best approxi-
mate y (note that each approximation depends on two independent variables).

We now use each of the quadratic equations that we have obtained and gener-
ate new independent observations (which will replace the original observations
of the variables x1, x2, ...xm). From these new independent variables we will
obtain combinations exactly as we did before. That is, we compute all of the
quadratic regression equations of y versus these new variables (two at a time).
This will give us a new collection of m2(m2 − 1)/2 regression equations for
approximating y from the new variables, which in turn are estimates of y from
the previous equations. Essentially what we have now is a collection of poly-
nomials of degree 4 in four variables. We now merely select the best of these
estimates, generate new independent variables from the selected equations to
replace the old, and combine all pairs of these new variables.”

The process will continue until some convergence criterion is reached. Each
regression equation arises from combining two variables from the preceding
set. One can see the process as building the neural net by adding two-input
neurons to the preceding. Instead of the standard summation function and a
transfer function, the quadratic function above is used [21,22].

4.4.4 MRS and MLP Neural Networks

Two more analyses with neural networks are included in our results (table 1 in
section 5): a feed-forward network [23] with multistart random search (MRS),
and a multilayer perceptron fit [24] (MLP). The MRS approach uses a subset
of parameters considered optimal, and selects multiple intial weights and net
configurations, of which it retains the one with the best result (on the control
sample). The MLP is part of the TerraFerMA package [25] and puts the accent
on powerful training methods and double-precision calculation.

4.5 Nearest Neighbours

The kernel density (see above) assigns weights to events in the reference sam-
ple, which quickly vanish, if the distance from the new point exceeds certain
radius controlled by the parameter h. A similar effect may be reached even
more directly by looking only at the events in a window of a given radius.
However, the density of points in different regions of the parameter space is
different. This has prompted us to also attempt a method using a fixed num-
ber of unweighted nearest neighbours. In fact, nearest-neighbour methods are
simple and hence popular, their problem being that of defining a valid metric.
Often, variables are simply scaled over their range so that they cover the do-
main from zero to one or normalized to have zero mean and unit variance. We
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have used a metric used also in the Gaussian kernel function above. We call
Cr the covariance matrix of the variables in the overall sample, and form the
sums Sg,p of squared distances ∆ = ((x− xr)

T C−1
r (x− xr), summing over the

k smallest distances in the reference samples g and p, and using Rg = Sp/Sg

as discriminating test statistic (gammaness).

One should note that a principal component transformation (PCA) of our ten
image parameters (making them linearly independent) and a suitable scaling
of the new variables making use of the eigenvalues, results in variables whose
variances all are the same and covariances are zero. The Euclidean distance
in this space fully corresponds to the kernel distance as introduced above:

∆ = (ξ − ξr)
T (ξ − ξr) = (x − xr)

T C−1
r (x − xr),

where

(ξ − ξr) = (x − xr)Er.

Er is the eigenmatrix of Cr, with each eigenvector (column) divided by the
square root of the corresponding eigenvalue.

The computational gain by this orthogonalization is, however, a minor one,
and partly compensated by the need to go through the linear transformation
using Er. The computation time in our implementation is entirely dominated
by the access to every event in the reference samples, which is the same as for
the kernel method.

A possible reduction of parameter space has also been explored with this
method, albeit superficially: there is only a small loss in classification quality
when reducing from ten to eight parameters, but beyond that, losses become
visible. The choice of which parameters (in PCA-transformed space) are left
out does not seem to be relevant; in particular, using this metric it does not
seem associated with the eigenvalues (regularization viz. reduction in dimen-
sionality often eliminates the eigenvectors with small associated eigenvalues).

The nearest-neighbour method requires as only choice that of a reference sam-
ple (like the kernel method), and in addition the number of nearest neighbours
to consider. We have used the training samples as defined for all other meth-
ods, but the results do not appreciably change if reference samples down to
1500 events are used, or if the control and training samples are the same.
Results are also remarkably robust with respect to the choice of the num-
ber of nearest neighbours: for our benchmark, we show results for 25 nearest
neighbours (also tried were 15, 50, and 100).
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4.6 Support Vector Machines

Support Vector Machines (SVM-s) (see [26]) are currently under very active re-
search within the fields of neural computation and machine learning. SVMs are
examples of a broader category of learning approaches which utilize the con-
cept of kernel substitution, thereby making the task of learning more tractable
by exploiting an implicit mapping into a high dimensional space. Motivated
by statistical learning theory they have been successfully applied to numerous
tasks within data mining, computer vision, and bioinformatics. An application
in particle identification has been reported about [27]. On our samples, only
a rudimentary first attempt was made with SVM, which was not conclusive.

4.7 Composite probabilities

This unpublished method [28] uses event probabilities obtained by comparing
the event data to two-dimensional probability densities obtained from a train-
ing sample. Densities are determined by histogramming the training data in
two dimensions, using bins that give constant bin content for signal data. All
2D projections are used that can be made from the image parameters, i.e. in
our case of ten parameters 45 projections. Each bin of each projection ends
up with a probability to be signal (due to the bin definition always nearly
the same, 1/nbins), and a probability to be background. An incoming event
thus has to be binned; the probabilities associated by the training sample to
the bins in each projection are multiplied, and the product, the composite
probability, is taken as a single test statistic (’signalness’).

The method was previously applied to data from running experiments (Whip-
ple, Hegra CT1), and (unpublished) results at least did match the best results
then existing (from tuned supercuts). On the benchmark data set, the perfor-
mance is inferior to several of the other methods tested.

Results on the training sample are clearly better with this method than on the
control sample. This effect is enhanced, if a systematic reduction of projec-
tions is attempted: a major gain is achieved in the training sample results, by
eliminating projections one at a time (typically, more than half the projections
turn out to be ’useless’ or even ’harmful’); this gain in the training sample,
however, translates into a small loss of quality in the control sample.

A method using bins for likelihood classification in n dimensions does also
exist [25] , but has not been applied to the data used in this study.
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4.8 Linear discriminant analysis (LDA)

This is a popular method mostly because it results in an elegant parametric
calculation. Its objective is to find a linear combination of the original image
parameters such that the hyperplane defined by the transformation maxi-
mizes the distance between the means of signal (gamma) and background
(hadron) samples, simultaneously minimizing the variance inside each sample.
The method is fast, simple and robust; it also does not depend on training
samples. However, it ignores non-linear correlations in n-dimensional space
(because of the linear transformation). The inferior results we achieved with
LDA indicate that at least higher-order variables must be introduced (e.g. pa-
rameters x, y can be used to obtain the additional parameter x2y). There are
variants to LDA like Quadratic Discriminant Analysis (QDA) and Regularized
Discriminant Analysis (RDA) which partly respond to this criticism; we have
not explored these.

The formalism of LDA is simple [29]: the transformation into the ’best sep-
arable space’ is performed by the eigenvectors of a matrix readily derived
from the data (for our application: in two classes, gammas g and hadrons p)
Given samples gi(i = 1, ng) for gammas and pj(j = 1, np) for hadrons, with
nvar elements each, find a linear transformation vector a such that the trans-
formed samples are g′ = a · g and p′ = a · p, and the discriminating power
d = (yT Sby) / (yT (Sb + Sw)y) gets maximized, where y is the joint set of g′

and p′. Sb(between-class variance) and Sw (within-class variance) are defined
by:

Sw =
∑

observations

(xi−µclass)(xj −µclass) and Sb =
∑

classes

(µi−µtot)(µj −µtot),

where µclass = class mean, µtot = overall mean, and x is the joint set of
observations g and p. This leads, for two classes, to the result:

a =

√
ngnp

(ng + np)
(Sb + Sw)−1(µtot1 − µtot2)

Like Principal Component Analysis (PCA, [3]), LDA is used for dimensionality
reduction: LDA reduces the high-dimensional space to a single variable of
best separation; PCA, reduces a high-dimensional space to a space in which
not all variables have the same significance, allowing to ignore some of them
(regularization). The prime application difference between LDA and PCA is
that PCA performs feature classification (e.g. some of the image parameters
from our Cherenkov telescope data are obtained by PCA), while LDA performs
sample classification.
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5 Comparing the different methods

Results are shown graphically in figure 7, and numerically in table 1 giv-
ing several figures of merit. The figure relates acceptances for signal (εγ) and
background (εp): the Neyman-Pearson diagram or ROC curve mentioned ear-
lier (section 3). Table 1 gives as figures of merit loacc, hiacc, significance σ,
and quality factor Q; their meaning is the following: loacc is the arithmetic
mean of values of signal (gamma) acceptances εγ obtained by interpolating the
curve at the points 0.01, 0.02, and 0.05 for background (hadron) acceptance
εp; hiacc is obtained in a similar way by averaging εγ at the points 0.1 and 0.2
(again for εp); Q is defined by Q = εγ /

√
εp, the value given is that obtained

at εγ = 0.5 (Q often takes very large values at low εγ); the significance σ is
defined by σ = S/

√
2B + S , where S = εγNS and B = εpNB are the number

of signal and background events that would be obtained by selecting events
in samples with NB = 10000 and NS = 500. We give the value of σ obtained
at εγ = 0.5, and the maximum value along the curve, along with the value
of εγ where it is found (in some cases this is at an unacceptably low εγ).
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Method loacc hiacc Q0.5 σ0.5 σmax εγ

Random Forest 0.452 0.852 2.8 8.44 8.74 0.412

C5.0 0.441 0.830 2.7 8.14 8.96 0.408

CART 0.414 0.810 2.6 7.94 8.03 0.538

Nearest Nb. 0.448 0.816 2.6 8.03 9.12 0.317

Kernel 0.443 0.803 2.8 8.43 8.64 0.390

NNSU 0.472 0.731 3.5 9.74 9.82 0.483

NeuNet 0.445 0.839 3.0 8.73 8.75 0.483

MRS 0.348 0.779 2.3 7.16 7.31 0.431

MLP 0.300 0.767 2.2 6.93 7.22 0.576

GMDH 0.280 0.736 2.0 6.55 6.77 0.574

Comp. prob. 0.332 0.728 2.1 6.78 6.83 0.585

Direct Sel. 0.306 0.636 1.8 5.91 7.52 0.153

LDA 0.195 0.638 1.6 5.47 5.80 0.710

SVM 0.124 0.586 1.4 4.81 5.76 0.784

Table 1: Summary of results (six quality parameters, or figures of merit) for
all methods, using the full sample. The quality parameters are described in
the text.

6 Dependence of results on energy

We have recorded in our sample, along with the parameters, the energy of
the incident particle (Monte Carlo value). This has been used to split our
samples into three bins of energy, using boundaries that give approximately
the same event count for the signal sample, resulting in boundaries at 63 and
126 GeV. The discrimination level obtained for events selected by energy is
different for the three bins, when using the overall result obtained for the full
sample containing all energies; the best results are obtained for high energies;
as shown here for the nearest-neighbor method (the quality parameters have
the same definition as shown above):
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loacc hiacc Q0.5 σ0.5 σmax εγ

high energy (≥ 126GeV ) 0.672 0.885 10.0 14.44 14.47 0.522

medium energy 0.455 0.780 2.5 7.77 10.25 0.280

low energy (≤ 63GeV ) 0.277 0.707 1.6 5.43 6.72 0.672

full sample (as in table 1) 0.448 0.816 2.6 8.03 9.12 0.317

Table 2: Results in three energy bins, for the nearest-neighbour method, us-
ing as reference events the full training sample. The quality parameters are
described in the text.

When splitting the samples and calculating separate selection algorithms, the
effect is very clearly enhanced, and all results are substantially improved: bet-
ter separation is possible for events in an energy range if a selection procedure
is derived for events in this range, than when mixing them with events of
different energies:

loacc hiacc Q0.5 σ0.5 σmax εγ

high energy 0.798 0.936 13.9 15.06 15.80 0.549

medium energy 0.539 0.825 4.0 10.56 12.42 0.384

low energy 0.325 0.759 2.3 7.18 7.44 0.535

Table 3: Results in three energy bins, for the nearest-neighbour method, us-
ing as reference events training samples of the same enery bin. The quality
parameters are described in the text.

7 Issues of algorithm implementation

The results of several methods seem to be qualitatively similar. Among the
well performing methods, ease of implementation, robustness, computer time
for classification, and maybe other secondary criteria may eventually have
to decide the method(s) to be used. We have been most convinced by the
simple implementation of the kernel and nearest-neighbour methods, and by
the fact that both do not need training samples, whose data are to be used
with some caution in the analysis. On the other hand, the substantially shorter
computer time per event decision may make classification forests an attractive
alternative.
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8 Conclusions and caveats

We observe from the above results that the results from classification trees,
kernel, and nearest neighbour methods are very close to each other; Neural
Net (ANN) methods give results over a wide range, between the very best
and rather mediocre. This effect is not fully understood, and probably show
that under the ANN umbrella name, very different methods exist, and that
ANN methods need deeper understanding, they certainly can not be used off
the shelf. They also seem more sensitive to highly correlated parameters in
the input (some of the results shown were obtained after reducing the number
of parameters). The last group of methods (composite probabilities, direct
selection, LDA and SVM) can be considered inferior.

The three classification tree methods all use multiple trees, results from single
trees are inferior and not shown. The Random Forest method clearly outper-
formed the two more classical tree growing methodologies C5.0 and CART.

A systematic comparison of methods, as we intended to perform, may give
a conclusive result for the given data set. Some of the methods under study
show to be superior to direct cuts in parameters, used so far in the analy-
sis of all Cherenkov telescope data, which confirms earlier results: [30,31,28].
The best results also are in good agreement among themselves, most likely
demonstrating that close to those results, there is a limit (the Bayesian limit)
in separability that can be attained.

However, the conclusions that can be drawn from the results are valid for
our input data, Monte Carlo events for a Cherenkov telescope. An extrapola-
tion of those conclusions to different data samples like observations in real-life
Cherenkov telescopes, must be validated anew. Generalization to other prob-
lems, obviously, is even less addressed by a case study like the present one. A
publication of results may, however, facilitate a future validation process, and
the study does perhaps allow to discard some of the inferior methods in some
generality.

The methods under study all assume an abstract space of image parame-
ters, which is well adapted to Monte Carlo situations - and maybe only to
these: real data are subject to influences that distort this space. In the case
of Cherenkov telescopes, the star field in the field of view and the night sky
background change during observation, the atmospheric conditions vary con-
siderably, unavoidable detector changes and malfunction will occur. Some of
these observational effects are taken care of by the transformation from pixel
contents to parameters, i.e. pre-processing. None of these distortions of the
parameter space have been the subject of our study, of course.

No classification method itself can, of course, substitute improvements in pre-
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processing of the image, or, for that matter, invent new, independent param-
eters containing more information. They may be derived from the image, but
could also be derived from new, independent observations, e.g. arrival time or
energy of (Cherenkov) photons: to find these requires intuition in physics and
good understanding of the detector.

9 Acknowledgements

We want to express our thanks to members of the MAGIC collaboration who
have produced and provided the early Monte Carlo programs and the data
used in this study. We are particularly indebted to O.Blanch (IFAE Barcelona)
and T.Bretz (Universität Würzburg). E. Kotrč was supported by the Min-
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of the Czech Republic. M.Jǐrina and F.Hakl were supported in part by the
Ministry of Education of the Czech Republik, project LN00B096.

References

[1] Proceedings of the Conference on Advanced Statistical Techniques in Particle
Physics, Durham, 18-22 March 2002, Durham IPPP/02/39.

[2] D.J.Fegan: Gamma/hadron separation at TeV energies, Topical Review,
J.Phys.G: Nucl. Part. Phys. 23 (1997) 1013.

[3] I.T.Jollife: Principal Component Analysis, Springer, New York, 1986.
Many textbooks explain PCA, e.g. C.M.Bishop: Neural Networks for
Pattern Recognition, Clarendon Press Oxford, 1995, or the web site
http://www.statsoftinc.com/textbook/stathome.html

[4] D.Heck et al., CORSIKA, A Monte Carlo code to simulate extensive air
showers, Forschungszentrum Karlsruhe FZKA 6019 (1998).

[5] J.P.Egan: Signal Detection Theory and ROC Analysis, Academic Press, New
York, 1975.

[6] D.Kranich: The temporal and spectral characteristics of the active galactic
nucleus Mkn 501 during a phase of high activity in the TeV range, Dissertation
an der Technischen Universität München, 2001.

[7] M.Kestel, A method to correct HILLAS parameters of imaging Cherenkov
telescope data taken at different background light levels, Proceedings of the
27th International Cosmic Ray Conference, ICRC 2001 Hamburg, Copernicus
Gesellschaft 2001.

23



[8] M.Gaug, AMANDA Event Reconstruction and Cut Evaluation Methods, 2nd

Workshop on Methodical Aspects of Underwater / Ice Neutrino Telescopes,
Hamburg, August 15-16, 2001, pp.123 - 130, DESY-PROC-2002-01.

[9] L.Breimann, J.H.Friedmann, R.A.Olshen, C.J.Stone: Classification and
Regression Trees, Wadsworth, 1983.

[10] J.R.Quinlan, C4.5: Programs for Machine Learning, San Mateo: Morgan
Kaufmann (1993).

[11] L.Breiman: Bagging Predictors, Machine Learning 24 (2) pp. 123-140 (1996).

[12] J.R.Quinlan, Boosting, Bagging, and C4.5. Proceedings of AAAI’96 (1996).

[13] L.Breiman, Random Forests, Machine Learning 45 (1), pp. 5-32 (2001).

[14] L.Breiman, FORTRAN program Random Forests, Version 3.1, available at
http://oz.berkeley.edu/users/breiman

[15] L.Breiman, in: Combining Artificial Neural Nets, Amanda J.C.Sharkey (Ed.),
Springer-Verlag 1999.

[16] L.Breiman, Manual On Setting Up, Using, And Understanding Random
Forests V3.1, available at http://oz.berkeley.edu/users/breiman

[17] T. Hastie et al, The Elements of Statistical Learning, Springer Verlag (2001).

[18] B. Knuteson et al, (2001), abstracts in physics,
http://arxiv.org/abs/physics/0108002.

[19] J.P.Ernenwein, NeuNet package for ROOT, available at
http://e.home.cern.ch/e/ernen/www/NN

[20] S.J.Farlow, Self-Organizing methods in Modelling - GMDH-Type Algorithms.
Marcel Dekker Inc. New York, 1984.
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Fig. 1. Cherenkov telescope: sketch and definition of some image parameters
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Fig. 2. Energy correction of the parameter length: A first order polynomial was
fitted to the distribution of length values vs. size obtained from simulated gamma
showers (top left). The corrected values show a smaller energy dependence (top
right) and better separation between the proton and gamma samples. The lower
graphs show the one-dimensional projections of the parameters length (left) and
corr.length (right).
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Fig. 3. Energy correction of the parameter width: A second order polynomial was
fitted to the distribution of width values vs. size obtained from simulated gamma
showers (top left). The corrected values show a smaller energy dependence (top
right) and better separation between the proton and gamma samples. The lower
graphs show the one-dimensional projections of the parameters width (left) and
corr.width (right).
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Fig. 4. Obtained cut values of the four “independent” cut parameters by imposing
a boundary condition εp > εmin. Two parameters (size and corr.length) saturate
which is indicated by the horizontal lines. Also, the results of the experimental
optimization are drawn as dashed horizontal lines (they are independent from εmin).
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