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Abstract

The main goal of this paper is to investigate methods of how to rank
words in a way that corresponds to an intuitive notion of “commonness”.
Since there is no formal definition of such a notion, our techniques may be
considered as a suggestion for such a definition.

The commonness of words is sometimes roughly substituted with their
frequency in a language corpus. In order to suggest a better measure, we
define a quantity, which we call corrected frequency. It depends not only
on the frequency of a word in a corpus, but also on its distribution within
the corpus. Unlike previous solutions of the same problem, we take the
corpus as an uninterrupted sequence of words with no regard to borders
between files, texts, genres, or any others.

We introduce three different corrected frequencies. Their definitions
are based on notions of information theory and analysis of random
processes. Their values for individual words depend on the corpus.
Hence, it is important to what extent they are stable with respect to the
selection of the corpus. In order to investigate the suggested corrected
frequencies from that point of view, we compare their values on five
different subcorpora of the whole corpus.

We present several examples of words taken from the Czech National
Corpus that demonstrate in which way the corrected frequencies
correspond to the intuitive commonness of these words.

Introduction

This research was motivated by a practical problem - how to decide which words
should be included in a universal dictionary of a specified size, and which not. At
first glance, the answer is simple: take the most common words until you reach
the given number. However, there is no well-defined measure for commonness
of words in the language.

Recently, large corpora are taken as a basis for making dictionaries.
For example, The New Oxford Dictionary of English (1998) was prepared



using the British National Corpus (BNC, http://www.hcu.ox.ac.uk/BNC/)
containing about 10® word occurrences and the Collins Cobuild English
Dictionary (1995) was prepared using the Bank of English - a corpus
containing more than 2 - 108 word occurrences at the time of its edition
(http://titania.cobuild.collins.co.uk /boe_info.html). The initial selection of
words which will be considered as possible dictionary entries is done according
to their frequency in the corpus. In that sense, the word frequency serves as a
first approximation of the word commonness.

The drawback of using frequency alone is that some words occur in one (or a
few) small part(s) of the corpus only. Even if they have a high frequency in the
corpus nobody would say that they are equally common in the language as words
with the same frequency but distributed evenly throughout the whole corpus.
In order to have an objective measure of word commonness it is necessary not
only to look at frequency, but also to take note of distribution within the corpus.

The word “souvrstvi” can serve as an example. It is the Czech geological
term whose English translation is “formation”. In the Czech National
Corpus (CNC, http://ucnk.ff.cuni.cz/) it has the same frequency (891) as the
words “vzruSujici” (“exciting”) or “kruéek” (diminutive of the word “step”).
Everybody feels that these words are not equally common. If we look at
the word “souvrstvi” more carefully, we find out that almost 96% of all its
occurrences in the corpus (namely 855) belong to one text only - popular guide
about interesting geological sites in Prague.

Lexicographers know this problem very well and make corrections to the
initial word selection, but on an intuitive basis. In this article we suggest three
measures that could help them make decisions more objectively. In other words,
the measures allow us to rank words of a corpus in a way which corresponds to
the concept of word commonness in the language.

Several different approaches have been undertaken towards measuring word
dispersion in a corpus, see e.g. Carroll et. al. (1971), Kralik (1978), or Oakes
(1998). They have, as far as we know, one common property - they require
pre-division of the corpus into genre groups. According to our experience with
building the representative corpus, any trial of a text annotation brings plenty
of problems, which are very difficult, if not even impossible, to resolve. It is hard
to decide how many genres to take into account. Moreover, there is no strict
border between genres, no matter how many of them we would have. For this
reason, we developed a method of measuring dispersion of word distribution in
a corpus that does not require classification of the texts.

For our method, the whole corpus is considered as one sequence of words
obtained by concatenation of all the texts forming the corpus. The information
about dispersion of the distribution of a concrete word is extracted from the
positions of the occurrences of the word in this sequence.

Our method of measuring dispersion of words assigns to the words special
values - corrected frequencies. Words that are evenly distributed, have the
corrected frequency close to their absolute frequency. For unevenly distributed
words, the corrected frequency is smaller. The exact definitions are in the
following section, where three different types of the corrected frequency are
presented.



The positions of the words depend, naturally, on the ordering of the
individual texts in the corpus. Our method is based on the observation that
the words that occur only in a specific type of text often occur in clusters and,
hence, have corrected frequency substantially smaller than pure frequency. The
chance that this happens is higher, if similar texts, for example texts from the
same source, are placed consequtively in the corpus.

In the paper, we describe three possible definitions of the corrected frequency
and present results of some experiments processed on the Czech National
Corpus. In the experiments, we investigated the three corrected frequencies
of all words in the corpus. We present some examples demonstrating that
corrected frequencies are more adequate measures of commonness than pure
frequency.

Further, we calculated the corrected frequencies for the same word on
several different corpora. This allows us to estimate for each of the corrected
frequencies, how much its values for the same word vary for different selections of
the corpus. The exact results and comparison of the three corrected frequencies
from this point of view are presented in the section Experimental comparison
of the stability of the measures.

Notation

In the following considerations, “word” can mean word form, lemma (basic form
of the word), or any other unit of text, even a morphologic tag, etc.

Let N be the length of the corpus, i.e. the number of words in it. We divide
the whole corpus into N positions numbered from 1 to N. Each position is
occupied by one word. Thus, the k-th word in the corpus sits in the position .

For simplicity of notation, we assume for the whole article that a word w is
selected and fixed, although it may be selected arbitrarily. This allows us not
to include the word into the notation.

Let f be the frequency of the selected word in the corpus, i.e. the number of
all its occurrences. For i = 1,..., f, let n; be the position of the i-th occurrence
of the word in the corpus. The word positions divide the corpus into intervals.
In order to have the intervals disjoint, each interval contains the occurrence
of w at its end, but not the occurrence at its beginning. The interval whose
end-point is n; will be called the left interval corresponding to the occurrence i.
For i =2,..., f, it is the interval [n;_; 4+ 1,7n;]. The left interval corresponding
to the first occurrence n; is defined using the cyclic order as the union of two
intervals [ny + 1, N]U [1,n].

Further, we use the following notation for the distance between two
consecutive occurrences of the selected word. Namely, let d; = n; — n;_1 for
every i = 2,..., f and let d; = n1+ (N —ny), which is the distance between the
last occurrence of the word and the first one in the cyclic order. Clearly, for all
1=1,...,f, d; is the length of the left interval corresponding to the occurrence
n;. Notice, that

Zdi = N. (1)



Corrected frequency

The corrected frequency will be defined in such a way that for an evenly
distributed word, it is equal to its frequency. On the other hand, for a word
occurring in one very small part of the corpus, the corrected frequency is close
to 1, regardless of the pure frequency. These two requirements specify the
corrected frequency in the two extreme cases. In order to specify the behaviour
of the corrected frequency also in intermediate cases, we used three different
techniques based on information theory and analysis of random processes,
leading to three different corrected frequencies (measures of commonness). At
first, in the following three sections, we introduce three different quantitative
measures of a word distribution: average reduced frequency (ARF'), average
waiting time (AWT) and average logarithmic distance (ALD). Then, we will
define the three corrected frequencies, based on these three measures.

Average reduced frequency

The first approach is the “reduced frequency” of the word defined as follows,
see also Hlavacovd, Rychly (1999), Hlavdcovd (2000). If the frequency of the
considered word is f, we divide all positions of the corpus into f segments of
roughly equal length. If N is divisible by f, then the segments are of equal
length. Otherwise, the lengths differ at most by one. If we denote v = N/f,
the length of each segment is either [v], the smallest integer not smaller than
v, or |v], the largest integer not larger than v. Reduced frequency is then the
number of segments containing at least one occurrence of the word. If the word
was distributed entirely evenly, its reduced frequency would be f, since each
segment would contain exactly one occurrence. On the other hand, if the word
occurred in one small part of the corpus only, its reduced frequency would be
1, if all the occurrences fall into one segment, or 2, if the border between two
segments is amidst the cluster of the word occurrences. Reduced frequency 2
means that the word occurs in 1 or 2 clusters, but not 3. We can make similar
statements for other small integers.

As the value of the reduced frequency depends on the beginning of the first
segment and there is no firm reason to start always at the first position, we use
“average reduced frequency” (ARF’) instead. In order to explain the definition
of ARF, we assume for a moment that v is an integer. The formula derived
under this assumption is then also used in the general case, when v is not an
integer.

The ARF is the arithmetic average of the reduced frequencies of the word
over all possible beginnings of the first segment. It is sufficient to consider only
the first v positions of the corpus as a possible beginning of the first segment,
because if the first segment starts at a position j, the reduced frequency would
be the same as if it started at any of the positions j 4+ v,j + 2v,.... Thus, we
can assume that the position j belongs to the first segment, in other words,
1 <j<w Forj=1,...,v, let RF; be the reduced frequency, if the first
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Figure 1: Long and short interval between word occurrences.

segment starts at the position j. Clearly,
1 v
ARF = - ) RF;. 2
s 2R 2)

In order to calculate RF; according to its definition, we need to determine for
all the segments that start at the positions 7,7 + v,j + 2v,...,5 + (f — 1)v,
whether they contain an occurrence of the word or not. Thus, in order to
calculate Z§:1 RF}, we need to consider all the segments that start at all
positions 1,2,..., N. For a moment, choose an occurrence n; of the word and
let us examine the group of the segments that start at every position of the
left interval corresponding to n;. There are d; such segments, since there are
d; positions in the left interval of n;. The contribution of these segments to
22:1 RF; depends on the distance d; as follows. If d; < v, then all d; segments
of the group contain the position n; and contribute to the sum. If d; > v, only v
segments of the group contribute. For an illustration of a situation with d; > v
and d; < v, see figure 1.
Altogether,

v /
> RF; =) min{d;,v}
j=1 i=1
and, hence,

i
1
ARF = — > min{d;, v}. (3)
=1

As mentioned above, this formula will be used to define ARF in the general
case, although the above explanation used the assumption that v is an integer.
Hence, let ARF be defined by formula (3).

The basic properties of ARF' are the same as those of the reduced frequency.
If the word occurs in one small part of the corpus, its ARF would be slightly
higher than 1, depending on the span between the first and the last occurrence
of the word within the cluster. The smaller the span, the lower value of ARF'.
If the cluster is large, ARF would be higher. If the word occurs in 2 clusters,
its ARF would be higher than 2, and so on for other integers.

Average waiting time

For every position of the corpus, let the “waiting time” be the number of
positions that have to be read starting at the given position in order to hit
the first consequent word occurrence. We assign the waiting time to every



position of the corpus. For the positions inside the left interval corresponding
to an occurrence n;, the waiting time achieves values d;,d; 1,...,2,1.

“Average waiting time” is the arithmetic average of waiting times of all
corpus positions:

1 f 4 . 1 /

i=1j=1

Thus, using (1)

AWT = — N+id2 -1 1+iid2
2N =72 N&=" )T

Any word with frequency 1 has the AWT equal to (N + 1)/2. AWT of words
with higher frequency depends on their distribution within the corpus. If all
the occurrences of the word are placed in a small part of the corpus, its AWT
is close to (N + 1)/2, even if its frequency is high. For more evenly distributed
words, the AWT decreases.

Average logarithmic distance

Contrary to the definition of waiting time, where we assigned a different value
to every position of the left interval corresponding to a word occurrence, in
this case we assign the same value — “logarithmic distance” log;, d; — to all the
positions of the left interval corresponding to the occurrence n;. “Average
logarithmic distance” ALD is then the arithmetic average of logarithmic
distances of all the positions within the corpus:

f
1

Any word with frequency 1 has the ALD equal to log,;; N. For more frequent
words the value of ALD depends again on clustering of their occurrences in the
corpus. A word that occurs in one small cluster has the ALD close to log;, N,
even if it has quite high frequency. More evenly distributed words have the
ALD smaller.

The formula for ALD resembles a formula for the entropy. Indeed, ALD
may be defined using entropy as follows. Consider a probability distribution on
the f occurrences of the word such that for 2 = 1,..., f the probability of n; is
p; = d;/N. The entropy of this distribution is

f
H=-) pilogyp (4)
i=1
and we have ALD = log,y N — H/log, 10. The entropy H increases, if the
distribution with the probabilities p; gets closer to the uniform distribution.
Hence, ALD decreases, if the word is distributed more evenly.



Definition of the corrected frequencies

In this section, we define three corrected frequencies corresponding to
ARF, AWT,ALD. Let w be any word and let M denote any of the measures
ARF,AWT, ALD for the word w. Then, let fas for w, the corrected frequency
of w with respect to M, be the “frequency” of an evenly distributed word
that has the same value of M as w. We have put the word frequency into
quotation marks, since we allow this quantity to be a non-integer in order to
obtain smooth functions in the formulas. For each possible M, the corrected
frequency fas may easily be expressed using the value of M. Let us present the
formulas for the individual cases.

For any word w, let ARF(w), AWT(w), and ALD(w) be the values of the
corresponding measures for the word w. Let a word w with frequency f in a
corpus of length N be given. We are looking for the “frequency” f' of an evenly
distributed word w' such that its respective measure has the same value as the
same measure of the word w. The following equalities should be fulfilled.

ARF(w') = f
1

AWT(w') = 2(N/f’+1)

ALD(w') = logo(N/f")

Using these formulas, one can solve the equations ARF(w') = ARF(w),
AWT(w') = AWT(w), ALD(w') = ALD(w) in the unknown f’ and obtain the
formula for farr, fawT, and farp. We come to the following definition, based
on formulas obtained in this way.

Definition 1 For any word w let fagr(w), fawr(w) and farp(w) be defined
as follows

farr(w) = ARF(w),

N
Tawr@) = S awr(w) =1
farp(w) = N-107ALP®)

Sometimes we omit the word w from the notation, if the word follows from
the context. Moreover, we use the notation ARF instead of fagrr. Using (3),
one can express ARF directly from d;. In order to express fawr and farp
directly from the distances d;, one can use the formulas

N2

E{:l ’? (5)

fawr =

and ;
d; . d;
faLp = exp (- > ﬁz In ﬁ) - (6)
i=1

Note that we also have farp = 2, where H is the entropy defined by (4).



The Czech National Corpus and the new measures

We calculated all three characteristics on the real data from the Czech National
Corpus, which contains 100,054,133 tokens. As Czech is a flective language with
a great number of word forms creating a lot of lemmas, we usually work with
lemmas rather than word forms themselves. So did we in this case too. In the
rest of the article, word will always mean lemma.

There are more than 330,000 different lemmas with frequency greater than
1. For the calculations we took only lemmas with frequency at least 5. This
reduced the number of lemmas to 174,313.

Graphs 1,2,3 in Fig. 2 show the relationships between frequency f of words
and their corrected frequencies farr, fawr, farLp respectively. For every
measure M among ARF, AWT, ALD, the corresponding graph consists of a
set of points corresponding to individual words in the corpus. For a word with
frequency f and corrected frequency fys, the corresponding point has horizontal
coordinate log( f and vertical coordinate log,( fas.

The sets of points in all three graphs have a similar shape. There is an
area containing a lot of points corresponding to small frequencies. This area
is “wide” in the vertical direction, which means that in this area, one can
find words with the same frequency, but quite different corrected frequencies.
This demonstrates the presence of words with the same frequency but different
distributions in the corpus.

More evenly distributed words are placed near the upper edge of the set
of points in all three graphs. These are the words that appear in a majority
of texts, not only in small clusters. Words that occur only in small clusters
have smaller values of the corrected frequencies. Hence they are placed below
the upper edge of the set of points. There is a “bottom line” at every graph,
depicting words with the lowest values of the corrected frequencies. These are
very close to 1. This means that each of these words occurs in one very small
cluster of the corpus (all its occurrences fall into a section not exceeding 2% of
the corpus size). The frequencies of the words at this line do not exceed 1000.

For high frequencies, the sets of points are “thin” which means that the
corrected frequencies of words with the same frequency do not differ much.
It can be shown analytically that this can happen only for words which are
distributed quite evenly throughout the whole corpus and do not occur in
clusters.

Clustering of words is best visible in graph 1, describing the relation between
f and farr. The horizontal lines depict words occurring (from the bottom) in
1, 2, 3, 4 clusters. For higher integers the lines merge with other points and are
not distinguishable easily.

Experimental comparison of the stability of the
measures
The corpus is just a sample of the language, which is used to make conclusions

about the whole language. Hence, it is important to which extent our measures
are stable with respect to the selection of the corpus. For this purpose, we have



to compare the values of the corrected frequencies of the same word in different
corpora. Although all three corrected frequencies of a word with pure frequency
f have values in the same interval [1, f], there is a systematic bias. For example,
on average, ARF is 1.2 times larger than f4rp. Since the intended application
of the corrected frequency is to rank words, the actual values of the corrected
frequencies are not important, if the ordering of the words according to these
values is known. In order to eliminate the influence of the bias, we compare the
ordering of words instead of the concrete values of their corrected frequencies.

In order to estimate the stability of the ordering, we have split the whole
corpus into five disjoint subcorpora. We tried to preserve approximately
the proportion of different styles in the subcorpora. For each of the five
subcorpora and each of the three corrected frequencies, we consider a list of
words from the subcorpus sorted in decreasing order according to the value
of the selected corrected frequency. We considered only words having at
least 2 occurrences in each subcorpus. For each of these words and each
of the three corrected frequencies, we have five indices. We denote them
indexapri(w), indexawr i(w), indexarpi(w), where i =1,...,5 is the number
of the subcorpus.

The stability of a given corrected frequency on a given word is measured as
the difference between the maximum and the minimum among the five indices
of the word. We call this difference the range. The range of ARF for a word w
is

range g (w) = max indexsrp;(w) — min indexa i (w)-

We define range 4yr(w) and range 47 p(w) in an analogous way.

We divide the words into several groups and compare the ranges of the
corrected frequencies in each group separately. The words are divided into the
groups depending on their pure frequency in the corpus and the five subcorpora
as follows. Since the subcorpora have slightly different sizes, we use the pure
frequency normalized to a million tokens. The pure frequency per million tokens
in the whole corpus will be denoted f(w), and the pure frequency per million
tokens in each of the five subcorpora will be denoted f;(w) for i = 1,...,5.
Moreover, let fiaz(w) = max;—1_ 5 fi(w) and foin(w) = min—;_5 f;(w). The
words were grouped together if they have similar values of both log f(w) and
1og fraz(w) — 10g fmin(w). More exactly, the interval containing the values of
log f(w) for all considered words was split into 19 subintervals of equal length.
Independently, the interval of the values of log fyaz(w) — 10g frin(w) for these
words was split into 14 subintervals of equal length. Two words belong to the
same group if they fall into the same interval in both considered parameters.

Results of the comparison are presented in graphs 4,5,6 in Fig. 3. Each of
the graphs corresponds to a pair of the corrected frequencies. The graph is a
map consisting of 14 times 19 squares, each of which corresponds to one group.
These groups are the same in all graphs. The axes in the graphs are labeled
with the two parameters used to split the words into groups.

The groups are marked by different hatching, which shows, for each graph
separately, which of the two compared corrected frequencies is more stable for
the words in the group. The algorithm determining the marking was as follows.



For each group, let my (respectively my) be the number of words in the
group, for which the first (respectively the second) of the compared corrected
frequencies has the smaller range of the corresponding index. For example, in
each group of the graph 4 comparing ARF and farp, we have:

1. my is the number of the words w for which range 4 pr(w) < range 47, p(w);
2. mg is the number of the words w for which range 4 pr(w) > range 47, p(w).

Empty squares in the graphs correspond to empty groups. Squares
corresponding to nonempty groups are marked by the name of the corrected
frequency, which is more stable for the words in the group. Using the definition
of significant difference described below, each nonempty square in the graph 4
is marked by

e ARF, if ny is significantly larger than no;
o farp, if no is significantly larger than nq;
e “indif”, if the difference between n and mo is not significant.

The other two graphs comparing ARF versus fawr and farp versus fawr are
constructed in a similar way.

The exact definition of what is a significant difference between n; and n9
was inspired by a statistical test for a binomial distribution. In other words,
we formally consider n; and no as the number of positive and negative results
of n1 + no independent coin flipping with probability p of the positive result.
If the numbers n; and ne are such that it is possible to reject the hypothesis
p < 0.5 at the 5% confidence level, we consider ny significantly larger than no.
Similarly, if we can reject p > 0.5, we consider n; significantly smaller. If it
is not possible to reject any of the hypotheses p < 0.5 and p > 0.5 at the 5%
confidence level, we consider the difference insignificant.

Let us describe the results presented in the graphs. The graph ARF versus
farp shows that for words with small variation between pure frequency per
million tokens in different subcorpora, ARF is more stable than f4;p. This
follows from the fact that the groups at the bottom part of the graph are marked
by ARF. Since the y-coordinate in the graph corresponds to the variation of
pure frequency per million tokens between subcorpora, these groups contain
words with low value of this variation.

On the other hand, for words having large differences between frequency per
million tokens in different subcorpora, fa47p is more stable. This follows from
the fact that the nonempty groups at the top part of the graph are marked by
farp. Words with large variation of the pure frequency are more problematic
and the graph shows that f47p should be used for them.

The graph ARF versus fawr shows that the relationship of f4wr and ARF
is similar to that of f4;p and ARF. However, the area where f4wr is more
stable than ARF' is smaller than the corresponding area in the graph farp
versus ARF. Hence fawT seems to be less stable than farp.

This is verified in the third graph. There are groups with no significant
difference between fawr and farp and there are also groups where fawT is
less stable. There is no group where f4wr is more stable than farp.

10



Examples

In this section, we present the values of corrected frequencies for a few concrete
words. Let us introduce another characteristic for every word — clustering
numbers V;. For any j = 1,..., f, let V; be the sum of its j largest distances
d;. We include V; for j = 1,...,4 in our tables, since these parameters allow
us to determine the number of clusters in which the word occurs, if it occurs in
at most 4 small clusters.

If the word appears in one small cluster, then the largest distance is close
to the length N of the whole corpus, since we take it cyclically. The remaining
d;’s are small, because the distances within the cluster are negligible compared
to the largest distance. It follows that V7 is close to N and the remaining V;’s
are only slightly larger than V.

For words occurring in exactly two clusters, Vi is the greater distance
between the two clusters (taken cyclically) and V% is close to N. The remaining
Vj’s are not much higher than V5. Similar statements can be made about V;
for other values of j.

Clustering of words is (naturally) typical especially for words with low
frequency. However, there are words with quite high corpus frequency that
occur in clusters, too. Those are very often proper names (for instance names
of novel heroes) or special terms.

Let us have a look at the characteristics of the three examples from the
introduction to this article - see Table 1.

word farr  fawr  farp | Vi Va V3 Vi
(in Czech) (%) (%) (%) (%)
souvrstvi 12.01 3.03 4.01 | 44.98 79.05 86.03 92.42
vzrusujici | 412.41 229.97 358.60 1.65 3.13 4.61 5.75
krucek 490.80 338.14 469.11 1.12 2.15 3.08 3.93

Table 1.

Table 1 presents the corrected frequencies and the numbers Vi,...,V, for
the three words mentioned in the introduction. Recall that these words have
the same frequency, 891. The numbers V; are expressed in percent of the size
of the whole corpus.

The word “souvrstvi” has remarkably low value of all three corrected
frequencies, since it is present in several (not more than 12, because farp is
slightly greater than 12) limited sections of the corpus. This uneven distribution
is clearly visible from the values of V. For example, the value V1 means that
there is a continuous section of the corpus of size 44.98% which contains no
occurrence of the word. The other two words have corrected frequencies much
greater, which means that they are distributed more evenly. Correspondingly
the V; are much smaller.

Table 2 shows another example of a collection of words with the same
frequency, but very different distribution in the corpus. The table presents
the corrected frequencies and the numbers V; expressed in percent of the size of
the whole corpus for the words “gliom” (gliom), “taoista” (taoist), “kocenka”
(a special word, see below), “akupresura” (acupressure), “meruitkovy” (apricot
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as an adjective), “stojanek” (small stand), “mlhavé” (misty, foggy), and
“martyrium” (agony, suffering), which all have the same frequency 137.

word farr  fawr fap | Wi Va V3 Va
(in Czech) (%) (%)  (B) (%)
gliom 1.03 1.00 1.00 | 99.97 99.98 99.98 99.98
taoista 3.03 1.94 2.28 1 66.95 91.54 99.97 99.98
kocenka, 4.64 1.22 1.55 | 90.16 94.70 98.63 99.53

akupresura | 19.41 11.51 14.09 | 16.16 27.31 38.24 48.40
merunkovy | 35.50 21.17 27.91 | 9.50 18.70 25.30 31.73
stojanek 51.51 29.23 42.09 | 7.71 14.72 21.10 26.50

mlhavé 74.45 5532 7434 | 4.86 9.11 1296 15.84
martyrium | 80.22 51.25 75.55 | 6.44 10.96 14.89 18.69
Table 2.

All the words in the table 2 are ordered according to fagrr. “Gliom” is a
very special medical term, which is present in one text only. Note that the
corresponding corrected frequencies are close to 1 and the values V; do not
differ much from the length of the whole corpus. The word “taoista” occurs in
three texts only. Its uneven distribution is again easily distinguishable from the
values of corrected frequencies and also V;. The word “koCenka” means a small
cat in a local dialect. As the Czech National Corpus contains a lot of novels
and stories of Bohumil Hrabal, who liked to use this word, “ko¢enka” has quite
high frequency. However, our characteristics reveal immediately that it is not
common at all. For a comparison, we included in the table five other words,
which are more common than the first three. This fact can easily be recognized
on the basis of any of the three corrected frequencies as well as the numbers V;.
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Figure 2: Scatter plots of ARF, fawT, and farp versus f in logarithmic scale.
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Figure 3: Comparison of stability of ARF, fawr, and farp.
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