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Abstract

In this paper typical properties of large random Boolean AND/OR formulas are
investigated. Such formulas with n variables are viewed as rooted binary trees chosen
from the uniform distribution of all rooted binary trees on m nodes, where n is fixed
and m tends to infinity. The leaves are labeled by literals and the inner nodes by the
connectives AND/OR, both uniformly at random. In extending the investigation to
infinite trees, we obtain a close relation between the formula size complexity of any
given Boolean function f and the probability of its occurrence under this distribution,
i.e., the negative logarithm of this probability differs from the formula size complexity
of f only by a polynomial factor.

1 Introduction

In this paper we are going to study the distribution of Boolean functions determined by
large random AND/OR Boolean formulas with a given number n of variables. We consider
such formulas to be rooted binary trees chosen from the uniform distribution on trees with
m leaves, where m tends to infinity, labeled by connectives and variables. Fach of the
m — 1 inner nodes has degree two and is labeled by AND or OR with probability 1/2
and independently of the labeling of all the other nodes. FEach leaf is labeled by a literal,
i.e. a variable or its negation, chosen from the uniform distribution on the 2n literals and
independently of the labeling of all the other nodes.
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visiting Universitat Dortmund, FB Informatik, LS II.



Although the formula is large, it appears that, with high probability, the function com-
puted by the formula is in fact determined only by a small part of the formula. Using this,
we establish a close relation between the formula size complexity of any Boolean function
and its probability in the distribution described above.

The study of the uniform distribution on AND/OR formulas of size approaching infinity
was suggested by Woods [12]. He used a variant of the model described above. Namely, he
used random formulas based on trees chosen from the uniform distribution on all noniso-
morphic rooted trees of a given size and arbitrary degree. Woods proved [13] the existence
of the limit probabilities for all Boolean functions and the fact that all these probabilities
are positive. Moreover, he asked [12], whether these probabilities are related to the formula
size complexity of the Boolean functions. In this paper, we present a natural distribution
on trees, for which an affirmative answer to the question of Woods may be proved.

The distribution on functions represented by large AND/OR Boolean formulas was stud-
ied also in [4]. The main question there concerns the distribution of the weight of the
function represented by the random formula, i.e. the number of ones in its table. In par-
ticular, the following is proved there. If both the size m of the formula and the number n
of variables tend to infinity, then, for any constants a,b with 0 < a < b < 1, the probability
of the event that the weight of the random function is in the interval [a2",b2™) converges
to a positive limit. This defines a probability measure on the interval (0,1). In [4], some
properties of this measure are investigated and a motivation for investigating this measure,
from the point of view of reasoning with uncertain information, is discussed.

A related model for studying the relation between the probability of Boolean functions
and their complexity was suggested by Friedman [2]. In his model, there is a sequence of
probability distributions, where each of these distributions is defined on formulas of the
same size and with the same tree structure. The first distribution is defined on some simple
functions. Each of the following distributions is formed by combining random functions
chosen from some previous distributions using Boolean connectives. Hence, the complexity
of formulas increases in the sequence. Friedman [2] suggests to study the moments of such
distributions. A better understanding of the behaviour of these moments might yield lower
and upper bounds in complexity theory.

In particular, Friedman investigated the moments of distributions involved in the random
k-SAT problem, which includes iterated conjunction of small random disjunctions. For these
moments there is a formula involving coefficients with a geometric interpretation. All of
the 1-SAT coefficients and some of the 2-SAT coefficients are described in [2].

A model based on a sequence of distributions on Boolean formulas of increasing size, such
that in each of the distributions the tree structure of the formulas is fixed, was studied also
in [8] and [10]. There it is proved that the studied sequence of distributions converges to
the uniform distribution on all Boolean functions. Moreover, in [10], using a sharp bound
on the rate of this convergence, a relation is proved between the formula size complexity of
any Boolean function and the supremum of the probability of the occurence of this function
over all distributions in the sequence. On the contrary to the present result, the relation
does not appear in the limit distribution, since it is the uniform one.

The limit distribution on formulas described in the present paper has the property that
disjoint subformulas of the random formula viewed as random variables are independent.



Boolean formulas of this kind were already studied by Boppana, Razborov, Valiant and
others, and used to prove results on the formula size complexity of the majority function
and of the representation of Ramsey graphs, see [1], [7], [9] and [11]. In all these results,
the independency of subformulas is the basic tool. Moreover, in a general setting, there is
a connection to the study of nonlinear dynamical systems defined on finite functions (see
[5], [6]). The common point is again the combination of independent random functions via
simple rules.

The outline of the present paper is as follows. In Section 2, we investigate a decomposition
of a tree into segments and prove some properties of the distribution of segments in a large
random tree. For the analysis of this random tree we use similar ideas as in [4], but we need
more accurate estimates. Using the decomposition of the tree into segments, we introduce a
distribution on infinite trees, determined by a sequence of independent choices of segments
from some distribution. It turns out that the distribution on Boolean functions determined
by this distribution on infinite trees is equal to the limit of the distributions on functions
determined by the uniform distribution on formulas of size m, if m tends to infinity. This
characterization of the limit distribution is the crucial tool to derive in Section 3 lower and
upper bounds for the probability P(f), that a given function f occurs, in terms of the
formula size complexity L(f) of f. In particular, we will show that the negative logarithms
of the lower and upper bound differ from the formula size complexity of the function at
most by a polynomial factor:

Theorem 1.1 There exist positive constants ¢1,co > 0, such that for every large enough
positive integer n the following is valid:
For every Boolean function f of n variables satisfying L(f) > Q(n?), it is

e~ l(f)logn < P(f) < eme2L(H/n®

Finally, in Section 4 we state some open problems.

2 Approximation by an Infinite Tree

First, we will investigate the tree structure of AND/OR formulas. For doing so, we need
some definitions. The size of a tree is the number of its nodes. A binary tree consisting of
two nonempty subtrees connected to the root will be called 1-separable or only separable,
if its two subtrees have different size. In such a tree, the unique maximum subtree will be
called tail. If the tail is also separable, we say that the original tree is 2-separable, and so on.
Hence, a k-separable tree allows £ steps of such a decomposition. The tail obtained in the
t-th step will be called i-th tail, where the 0-th tail is the whole tree. Moreover, the whole
tree with the k-th tail replaced by a new leaf, which is a special leaf, distinguishable from
all the other leaves, will be called the k-head or, if k follows from the context, simply head.
The special leaf is included in order to mark the position, where the tail was connected
to. We shall also consider the decomposition of the k-head into k segments, where the i-th
segment is the (i — 1)-st tail with the i-th tail replaced by the special leaf denoting the
original position of the ¢-th tail. We do not count the special leaves to the sizes of the



segments. Hence, the size of a k-separable tree is the sum of the sizes of its k segments plus
the size of the k-th tail.

In particular, we shall prove in the following that, if m tends to infinity, then, with
probability approaching 1, a random binary tree of size 2m — 1 is l-separable and the
corresponding tail has size at least (2m — 1 — #(m)), where ¢{(m) < m is any function
tending to infinity with m.

Let g(x) = 3252, a;2" be the generating function for the nonempty rooted binary trees.
That is, a; counts the number of rooted binary trees of size ¢. A single node is the only
binary tree with at most two vertices, hence a; = 1 and ay = 0. Note that a; = 0 for
every even ¢. Using the recursion a; = Z;;zl aja;—;j—q for all + > 3, we obtain the identity
g(z) = z(1 + g(x)?). From this and the fact that g(0) = 0, we infer that

g(x):i-(l—\/l—élﬂ).

2z
Using Taylor expansion, we obtain for 0 < 2 < 1/2 that

o) = g5 (1 -3 (152) '(‘“W) = > cen-n-a, 1)

=0

where C'(2n — 1) are the Catalan numbers,

Cn—1)=+. (2"_2),

n n—1

counting the number of rooted binary trees of size 2n — 1 for every n > 1.

In every k-separable tree, each segment consists of its root and two children. One of
them is the special leaf, the second is some nonempty binary tree. Since we do not count
the special leaf to the size, the size of a segment is 1 plus the size of the nonempty subtree.
Hence, the size of the segment is always even. As there are two possible positions for the
special leaf, the number of segments of size 2r is 2-C(2r — 1).

Lemma 2.1 There exists an € > 0 such that the following is true. Let k and ry,rq, ... 1}
satisfy r; > 1 for alli =1,2,...,k and Zle r; < em. Let H be a k-head with i-th segment
of size 2r; for v = 1,2,...,k. Then, the probability that a random tree of size 2m — 1 is
k-separable and that its k-head is H equals

) I
1+0[— T . 27 2
[roase)) 1 &
Proof: The required probability P is equal to the ratio of the number of k-separable trees
with the given head H over the number of all trees of size 2m — 1. Every k-separable tree
with head H consists of H and a tail of size 2(m — Y2¥_, 7;) — 1. By our assumptions on
Zle r;, composing H with any tail of this size yields a k-separable tree. Moreover, different
tails lead to different trees. Hence, we have

C2(m—-yi r)-1)

r= C2m—1) ' ®)
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Using Stirling’s formula n! = v27n(n/e)"(1+ O(1/n)), we obtain for n — oo that

C(2n—1)= #n_?’ﬂ??n (1 e (%)) . (4)

This implies

Cm-Y ) -1) 1o
C2m—1) _(1_E;”)

Now, there is an ¢ > 0 depending on the constant in the O-term from (4) such that, if
Siy i < em, then

-3/2 140 (%)
m_Zf=1 "/ 92 Zle i

o (2]

1< S
P= (1 +0 (—Zri)) 127
m =1 =1
This proves the lemma. O

By the following result, for k& not too large, the tree is k-separable with probability
approaching 1 if m tends to infinity.

Lemma 2.2 Letk and r, possibly depending on m, be such that kr = o(m) and k = o(r'/?).
Then, the probability P that the tree is k-separable and each of the k corresponding segments

has size at most 2r, equals
k kr

Proof: In order to prove the lemma, we shall compute the sum of the probabilities from
Lemma 2.1 for all k-heads H with the segments of size at most 2r. As a first approximation,
let us consider the limits, when m approaches infinity. By Lemma 2.1 used for £ = 1, the
limit of the probability of the occurrence of an individual segment of size 2j is 2727, There
are 2C'(2j — 1) segments of size 2j. Using (1) for 2 = 1/2, i.e., g(1/2) = 1, we obtain

20251
PRIt Y (5)
=1

To express the probability required in the lemma, we will estimate the sum of the first r
terms of this series. By (4) we have

20(2]'4—1):0(;)

227
and hence
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By Lemma 2.1, the desired probability P is given by

po(eo(t) x i

1<ry,rp<r 1=1

_ (Ho(g)).(g M)

o) G0l e

As kr = o(m) and k = o(r/?), we infer that
por-o()vo(2).

which yields the desired result. O

By Lemma 2.1, for m approaching infinity the probability of the occurrence of each
individual segment of size 2r converges to 272", By (5), these limits determine a well-
defined distribution on segments. For the random segments from this distribution consider
the usual random labeling of the inner nodes and the leaves, except of the special leaf, by
connectives AND/OR and literals containing the Boolean variables xy,29,...,2,. From
now on, let n be reserved for the number of these variables and assume that n is fixed. The
resulting distribution on labeled segments will be denoted by D;. Moreover, let Dy be the
distribution on labeled k-heads formed by choosing k segments independently from Dy and
connecting them via the special leaves in the straightforward manner.

For a labeled head occurring either in the distribution Dy or as the k-head of a k-separable
tree, we define the function computed by the head as follows. Assume that the special leaf
is labeled by a new variable. Hence, we have a labeling of the head by n 4+ 1 variables.
Now, the function computed by the labeled head is the partial Boolean function (i.e., not
defined everywhere in its possible domain) of n original variables, defined for those inputs,
for which the value of the formula of n 4+ 1 variables does not depend on the new variable.
If the head of a k-separable tree computes a total function (defined everywhere), we say
that the head is closed.

For every total Boolean function f, the probability Pi(f) of its occurrence in the distri-
butions Dy is nondecreasing with k, since adding a new segment may change the function
represented by the head only if the function determined by the previous segments is not
a total function. Hence, the probabilities Py(f) have some limits P(f) = limg—oo Pr(f).
As every function is represented by some labeling of a sufficiently large closed head, these
limits are positive.

Let D be the distribution on labeled infinite trees, which are formed by connecting an
infinite sequence of labeled segments chosen independently from . Note that a tree chosen
from D contains exactly one infinite path. We say that a tree chosen from the distribution
D computes a function f, if for some integer k, the first k labeled segments in the tree form
a closed k-head computing f. It is easy to see that this happens with probability one. It is
also easy to see that the probability that a tree from D computes f is equal to P(f).



The size of a Boolean formula is defined as the number of occurrences of variables con-
tained in the formula. Hence, a formula of size m is based on a tree of size 2m — 1.

Theorem 2.3 Let f be a Boolean function of n variables and let m tend to infinity. Then,
the probability, that a random AND/OR formula chosen from the uniform distribution on
formulas of size m computes f, converges to P(f).

Proof: In order to prove the theorem, it suffices to prove that for every total Boolean
function f, the difference between the probability of computing f by a random formula
chosen from the uniform distribution on formulas of size m and Py(f) converges to zero, if
k and m both tend to infinity in a controlled way.

Fix some ¢ with 0 < ¢ < 1/3 and set k = [ m!/3=¢]. Moreover, we will use an auxiliary
parameter r = [ m?/?]. Denote by Pri(A) the probability of some event A in the uniform
distribution on formulas of size m, while Pry(A) will be the probability of A in the distribu-
tion Dy. Let H(k,r) denote the set of all k-heads containing only segments of size at most
2r. For any k-head H € H(k,r), by Pri(H ) we mean the probability of the event “the tree
is k-separable and its k-head is equal to H”. Similarly, Pro(H) is the probability of the
event “the k-head H occurs”. Moreover, by H(k, ), used either in Pry(.) or in Pry(.), we
mean the disjunction of the events corresponding to all H € H(k,r).

In order to compare the probabilities Pri(f) and Pra(f) of the event that the random
formula in the corresponding distribution computes the given total function f, we will first
compare the conditional probabilities Pri(f | H) and Pro(f | H). The assignments of
connectives and literals, which guarantee the total function f in the second of these two
conditional events, are exactly the same as the assignments of the k-head H in the first event
that make [ closed and give the function f. Hence, Pro(f | H) = Pry(fA(H is closed) | H).
Therefore,

Pri(f| H)—Pro(f | H)=Pri(f A (H is not closed) | )

<
< Pry(H is not closed | H) .
In order to compute this probability, consider a fixed input z. Each of the k& nodes on the
path from the root to the k-th tail computes either the AND or OR of two subformulas. One
of them contains the tail and the second belongs completely to the head. The assignment
of connectives and literals is symmetric with respect to the values 0 and 1. Hence, the
subformula, which belongs to the head, computes on input z both the values 0 and 1 with
probability 1/2. Hence, with probability 1/2, the value of the subformula, which contains
the tail, has no influence on the value computed in the node. Since this happens for all
k nodes in the path independently, the probability, that the tail is needed to compute the
value of the function in the root, is at most (1/2).

As there are 27 different inputs, the probability that for at least one of them, the value of
the function is not determined by the head is at most 2"~*. By combining the arguments,
we obtain

1/3—¢

Pro(f | H) = Pro(f [ H)| <27 =027 "), (7)

as n is fixed.



For our choice of k£ and r, we have kr/m = O(m~™"). Hence, by Lemma 2.1, we have
Pri(H) = Pry(H)-(1+0(m™°)) for every k-head H € H(k,r). Moreover, Prq(=H(k,r)) =
O(m™°) by Lemma 2.2. The leftmost expression in (6) is equal to the probability that the
random segment chosen from D has size at least 2r + 2. Hence, by the same argument as
in the proof of Lemma 2.2, we have Pry(=H(k, 7)) = O(k/r'/?) = O(m~*).

Using (7), we summarize as follows

Pri(f) — Pr2(f)
= > [Pry(f| H)-Pry(H)=Pro(f | H) Pro(H)]+ O(m ™)

= Y Pu(H)-[Pr(f | H) = Pro(f | H) 4+ Pry(f | H)O(m™)] + O(m™)

since 3 pep(k,r) Pr2(H) < 1. This yields the desired result. O

3 Bounding the Limit Probabilities

For any Boolean function f, the formula size complexity L(f) is the minimum size of a
formula representing f. The following lower bound on the probability P(f) of the occurrence
of f is a direct consequence of our construction of the distribution D.

Theorem 3.1 Let f be a Boolean function of n variables. Then

P > % (8%)L(f)+1 |

Proof:  Consider any formula ¢ of size L(f) representing f and the two closed 2-heads
OV ((z; A—zg) ANy) and ¢ A ((2; V -a;) Vy), where 1 <7 < n and y denotes the position of
the special leaf. Fach of these two heads consists of two segments, one of size 2L( f) and the
second of size 4. Hence, the tree structure of the two segments together has the probability
(1/4)2)+2 to occur. Since there are L(f)+2 leaves and 3 inner nodes in each of the heads,
the labeling of each head has the probability 1/(2n)X()+2.(1/2)? to occur. There are n
possibilities how to choose ¢ and, due to the commutativity of the connectives, 8 equivalent
variants of each of the heads having the same probability. Altogether, we have described
16n different closed 2-heads computing f, each with probability

1 [/ 1\F+2
(&)
This proves the theorem. O

Pick a random Boolean formula according to the distribution D and an arbitrary input
x. By considerations made already in the proof of Theorem 2.3, the first k segments of



the formula are sufficient to determine the value of the whole infinite formula in z with
probability 1 —27%. Thus, with probability at least 1 —27* the first k segments determine
the value of the whole formula for all inputs. This is close to 1if £ > n. Moreover, estimate
(6) together with the definition of Dy implies that the probability that the size of a segment
is bigger than r, is at most O(1/r/?). Hence, with high probability, only small parts (e.g.
of polynomial size in n) of the formula are really needed to compute the function. It follows
that, with high probability, the computed function has small complexity. This may be
used to prove an upper bound on the probability P(f) of the occurence of a function f,
if the formula size L(f) of f is large. However, this upper bound would be only one over
a polynomial in L(f). In the following, an upper bound of the magnitude one over an
exponential of L(f) will be given. To prove this, we demonstrate a way of pruning the
infinite formula from the distribution D. The resulting equivalent pruned formula is finite
with probability 1 and, moreover, has size [ with probability exponentially small in [.

The pruning is controlled by assigning a set of conditions to each inner node of the
tree. If the set of conditions assigned to a node is contradictory, the node will be deleted.
The conditions are simply some requirements to the values of single variables and they are
computed as follows. The root is assigned the empty set of conditions. Assume, an inner
node v of the formula is assigned a set p of conditions. If both successors of v are inner
nodes, the set p of conditions is assigned to both of them without any change. If only one of
the successors is an inner node, say the left one, let x; be the variable used in the literal in
the right successor. Then, the left successor is assigned the set p U {z; = a} of conditions ,
where a is the value of ; which does not force the AND or OR in the node v to a constant.
In the remainder of this section, we always assume that the nodes of the formula from D
are assigned to the pruning conditions computed by these rules.

By the construction of the pruning conditions, it is easy to see that the following is true.
If some inner node v is assigned a set p of conditions and, for some input z, the input
variables do not satisfy some of the conditions, then the value computed for = in the node
v has no influence to the value computed for z by the whole formula. If p contains both
z; = 0 and z; = 1 for some ¢, then the node v has no influence for any input and, hence,
it may be deleted. The deletion is performed by replacing the node by any constant and
when all such replacements are finished, the formula is transformed to a formula without
constants using standard simplification rules.

Let ¢ be a random Boolean formula labeled by the sets of conditions as described. Denote
by [|¢]| the number of inner nodes in the formula ¢ assigned to a consistent set of conditions.
After the transformation described above, the number of inner nodes in the new equivalent
formula is at most ||¢]| and hence its formula size is at most ||¢|| + 1.

In order to give a small upper bound on the probability that ||¢|| is large, where ¢ is
chosen from the distribution D, we give an estimate of the expected value

E [(1 1 5)II¢II] 7

where ¢ is an appropriate positive real number. To this end, we represent the distribution D
as a simple growing process on trees and first consider the expectation of a similar quantity
in some finite parts of ¢.



Consider the following two types of nodes, c-nodes and n-nodes (connecting and normal,
respectively). We start with one c-node. In each step, each node is either expanded into
two successors or stopped. A c-node is always expanded into one c-node and one n-node.
With probability 1/2, the new c-node is either the left successor or the right successor of the
old one. An n-node is either expanded or stopped, each with probability 1/2. If expanded,
both successors are again n-nodes. It is easy to see that the resulting tree consists of an
infinite sequence of independently chosen (possibly infinite) segments connected via c-nodes.
Moreover, the event that a given individual segment occurs means that, during the process,
in each node of the segment, the result of the random choice matches the given structure.
In each node, this happens with probability 1/2 and the random bits used in the random
choices are independent. Hence, the probability of a given segment of size 2r is (1/2)%".
Thus, the tree structure of a single segment is generated according to the distribution Dj.
In particular, each segment is finite with probability 1. By assigning the random labeling
by connectives and literals to all segments as before, we obtain a formula from D. We shall
refer to this process as to the basic growing process.

The tree is generated level by level. If all the nodes in level j + 1 for some j are created,
it is known for every node in level j, whether it is an inner node or a leaf. At this time,
the random labeling of these nodes by connectives and the literals is chosen. Now, since
all nodes in level j have their labels, the sets of conditions for all the nodes in level j may
be computed. Let v be an inner node of level j. Note that the distribution of the subtree
below v including the labeling and the sets of conditions depend on the rest of the tree only
via the labeling of the node v. Hence, we can consider v as a starting node of a separate
process. The initialization of the process is given by the type of node v (n-node or c-node)
and by the set p of conditions in ». Note that v is known to be an inner node, so, if v is an
n-node, the process starts by expanding v deterministicaly. We shall refer to this process as
to the generalized growing process. The basic growing process generating formulas from D
is the special case, when the starting node is a c-node and p is the empty set of conditions.

For a random formula ¢ generated by the generalized growing process and any integer
d, let ||¢||4 mean the number of inner nodes of depth at most d in ¢, which are assigned a
consistent set of conditions. If ¢ is generated by the growing process started with a set of
conditions p, then, by symmetry, the distribution of ||¢||4 is the same for all other consistent
starting sets of conditions with the same number of elements. Hence, only the number of
elements of p is taken into account.

In the following, let ¢ > 0 be a real number, which will be specified later.

Definition 3.2 Let a(d, k) = E [(1—|—5)”¢”d], where ¢ is generated by the generalized
growing process starting at an n-node with a consistent k-element set p of conditions.
Recall that the starting n-node is always expanded by definition of the generalized growing

process. Analogously, let §(d, k) = E [(1 + 5)”(‘5”61], where ¢ is generated from a c-node,
with a consistent k-element set p of conditions.

In the following two lemmas, we give recurrence relations for a(d, k) and §(d, k).

10



Lemma 3.3 For every real € and for all integers d > 0 and k =0,1,....n
a(0,k) = 1+4¢

a(d+1,k) = (1+e) (%a(d,k)ﬂ-%a(d,k)—k

1 2 Bl
- SVadk+ )+ 242
+2< n)a(’ + )+4n+4)

Proof: Assume that the starting node » is an n-node with a consistent k-element set p of
conditions. Hence, [|¢|lo =1 and a(0,k) =1+ €.

In order to prove the second identity, we consider some cases according to the labeling
of the successors v; and vy of the node v. Then, the expected value of (1 + ¢)ll?llatr is
computed by using the expansion to the conditional expectations according to these cases.
Let ¢1 and ¢3 be the subformulas below v; and v;. Note that ||¢||¢g+1 = 1+ [|¢1]la + ||P2]]4
for every nonnegative integer d.

In case 1, both successors vy, vy are expanded and, hence, become inner nodes. This
happens with probability 1/4. Under this condition, the continuation of the process consists
of two independent processes, starting in v and w9, both with an initial k-element set p of
conditions. Therefore,

E [(1 + e)léllarr | cage 1] - Pr(case 1) = (1 +¢)a(d, k)?* -

R

In case 2, vy is expanded and vg is stopped. This occurs with probability 1/4. Under
the condition that this happens, the set of conditions in vy is created by adding the new
condition due to vy to the set p. We distinguish three subcases according to the relation
between p and the new condition.

In case 2a, which happens with probability k/(2n) if case 2 occurs, the new condition is
already included in p. Then,

k
E [(1 + e)llellats | cage 2&] - Pr(case 2a) = (1 + ¢)a(d, k) - "
n
In case 2b, with probability k/(2n) if case 2 occurs, the new condition is contradictory
to some of the conditions in p. In this situation, there are no undeleted inner nodes below
v1. Hence,

E [(1 + e)lellatr | case Qb] - Pr(case 2b) = (14 ¢) - 8£ .
n

In case 2¢, with probability 1—k/n if case 2 occurs, the new condition involves a variable
not used in p and hence it is independent of p. In this case, the initial set of conditions in
v1 has k + 1 elements. Hence,

1 k
E [(1 + e)llellats | cage 2(:] - Pr(case 2¢) = (1 +¢)a(d, k+ 1) - 1 (1 — —) .
n

Case 3, when vy is stopped and v, is expanded, is symmetric to case 2.
In case 4, with probability 1/4, both vy, vy are stopped. In this situation we have

11



E [(1 + e)llellats | cage 4] -Pr(case 4) = (1+¢)- 1
By collecting the contributions of all four cases, we obtain the lemma. O

Lemma 3.4 For every real number ¢ > 0, and for all nonnegative integers d and k,
BOk) = 14e

B+ 10 = (140 (Gald s+ 1

™
1 k k

—(1-—= d.k+1 — .
+2< n)ﬂ(, +)+4n)

pd, k)+

Proof: Assume that the starting node v is a c-node with a k-element set p of conditions.
The starting node is expanded to a c-node and an n-node. It is not necessary to distinguish
whether the c-node is the left successor or the right successor, since it has no influence
on the distribution of the number of undeleted nodes. In the next step, the new c-node
is always expanded. There are two cases, which we consider separately, according to the
behaviour of the n-node. The n-node is either expanded (case 1’) or stopped (case 2'), each
with probability 1/2.

In case 1/, the conditional expectation of (1 + e)lllla+1 is (1 + e)a(d, k)3(d, k), since the
processes starting in the n-node and in the new c-node are independent.

The case 2’ will be splitted into subcases according to the influence of the condition due
to the literal in the n-node to the set p’ of conditions in the new c-node. With probability
k/(2n) we have p’ = p, which gives the conditional expectation (1+¢)3(d, k). With the same
probability, p’ is contradictory, which yields the conditional expectation 1 + ¢, since only
node v is not deleted. With probability (1 — k/n), it is |p| = |p|+ 1, giving the conditional
expectation (1+¢)3(d,k+1). Now, by combining these conditional expectations according
to the probabilities of the corresponding conditions as in Lemma 3.3, we obtain Lemma 3.4.
O

Theorem 3.5 There exists a constant ¢ > 1 such that for every positive integer n the
following is valid:
For every Boolean function f of n variables, it is

P(f) < (14 0(1/n))e M/

Proof: 1In order to prove the theorem, we first show upper bounds on a(d, k) and 5(d, k),
if € is 1 over some polynomial in n.

With foresight, set ux = 5(n — k + 1) and v = 5(n — k + 2)? for every k= 0,...,n. We
will find a range of ¢, in which the following inequalities hold

a(d, k) <14+ uge (8)

Bd, k) < 1+ e . (9)
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for K =0,1,...,n and every nonnegative integer d.

Both these inequalities are satisfied for d = 0, any £k = 0,1,...,n and any ¢ > 0. By
induction on d, we will show in the following that these two inequalities hold for all d > 0,
provided ¢ is small enough. The calculations will give a sufficient condition on e, which
guarantees the induction step.

If (8) is satisfied for some d = dp, the inequality

1 k 1 k Eoo1
1 ~(1 24+ (1 “(1=-=)(1 T2y <1 1
(1+¢) <4( + uge) —|-4n( —|—uk5)—|—2< n)( —|—uk+15)—|—4n—|—4) <1+ wue (10)

implies (8) for d = dy + 1, since, by Lemma 3.3, the LHS of (10) is an upper bound on
a(dp+1, k). By expanding the products and collecting the terms ¢ with the same exponent,
the difference between the RHS and the LHS of (10) can be transformed to

1 k 1 k
(G- m) g (1-7) wn =] e 0w 2

1 k 1
> - — — — — 2.2y > 2.2y
> (2 4n) (ug, — upy1 —4)e + O(n"e”) > 45—|—O(n £%)

We conclude that there is a positive constant é; such that for every e with 0 < ¢ < & /n?
inequality (10) is satisfied and so, for all d > 0, inequality (8) holds.

To extend inequality (9) to all d > 0, a stronger condition on ¢ is needed in the induction
step, but the arguments are similar. The corresponding inequality, which guarantees (9) for
d = dg + 1 — if satisfied for d = dy — is, by Lemma 3.4,

| k Lk k
(1+e) (5(1 Fune)(1+ vke) + (14 mee) (1 - 5) (14 vprre) + M) <14 vpe (1)

Taking the difference of the RHS of this inequality and its LHS, we obtain

1 k 1 k 1 3 9
- — - - — — - — — >
[(2 4n) VE 5 (1 n) Vf41 2uk 1:| 5—|—O(n £ ) >

1 k 1
> (5 - R) (vk = vhp1 — 2up — 4)e + O(ne?) > T O(n’c?) .

Hence, there exists a positive constant §; < & such that for every ¢, 0 < ¢ < é3/n>,
inequality (11) is satisfied. It follows by induction that, for every such ¢, both inequalities,
(8) and (9), hold for every d > 0. For the remainder of the proof let ¢ = 6,/n?.

Let ¢ be a formula from D. By definition of 3(d, k), it follows that E [(1 + 5)”(‘5”61] =
B(d,0). Since [|¢]|g > ||¢]|ld—1, the limit

dh—g)lo E [(1 + 5)||¢||d]

exists and, by (9), is bounded from above by 1 + 5(n + 2)2%.
In order to obtain an upper bound on E [(1 + 5)”¢”], we use the following well-known
result:

13



Lemma 3.6 (see [3]) If 352 E[|Y4]] is convergent for a sequence of random variables Yy,

then
E lz Yd] = > E[Y].
d=0 d=0

Let Yo = (1 4 g)ll?lle and ¥y = (1 4 ¢)ll¢lle — (1 4 g)ll9lla=1 for every d > 1. Since
|o|la > ||¢|la=1, we have Yy > 0, and hence

S E[Yi] = Y BNy = lim B (14 )l <14 5(n+2)% =1+ 0(1/n).
— —0 — 00
This shows that the assumption of Lemma 3.6 is satisfied, and it follows that
Bl(1+ell] =5 lz Yd] =Y BV <14+0(1/n).

Using this, we will finish the proof of Theorem 3.5 as follows. If ¢ computes f, then
L(f) <|l¢|| + 1. Hence, by Markov’s inequality,

Pr(¢ computes f) < Pr ((1 + 5)||¢|| > (1 + 5)L(f)—1)

£)llel
< (Ll;) 760 _] <(1+0(1/n)) (1+ 52) " < (1+0(1/n)) - LD

for any absolute constant ¢ with 1 < ¢ < %2 and n large enough. O

As an immediate consequence of Theorems 3.1 and 3.5, we obtain Theorem 1.1.

4 Open Problems

Our results show a close relation between the probability of Boolean functions of n variables
in the distribution D and their formula size complexity provided the complexity is Q(n?).
The situation for Boolean functions of complexity o(n?) is unknown. Also, closing the gap
between the lower and the upper bound in Theorem 1.1 is an open problem. Another
open problem of particular interest is to compute estimates on the probability of explicit
functions in the limit distribution, exact enough to have consequences for the complexity
of these functions.

Acknowledgement The authors would like to thank to Jan Krajicek for simplifying
the limiting argument in the proof of Theorem 3.5.
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