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Although the formula is large, it appears that, with high probability, the function com-puted by the formula is in fact determined only by a small part of the formula. Using this,we establish a close relation between the formula size complexity of any Boolean functionand its probability in the distribution described above.The study of the uniform distribution on AND/OR formulas of size approaching in�nitywas suggested by Woods [12]. He used a variant of the model described above. Namely, heused random formulas based on trees chosen from the uniform distribution on all noniso-morphic rooted trees of a given size and arbitrary degree. Woods proved [13] the existenceof the limit probabilities for all Boolean functions and the fact that all these probabilitiesare positive. Moreover, he asked [12], whether these probabilities are related to the formulasize complexity of the Boolean functions. In this paper, we present a natural distributionon trees, for which an a�rmative answer to the question of Woods may be proved.The distribution on functions represented by large AND/OR Boolean formulas was stud-ied also in [4]. The main question there concerns the distribution of the weight of thefunction represented by the random formula, i.e. the number of ones in its table. In par-ticular, the following is proved there. If both the size m of the formula and the number nof variables tend to in�nity, then, for any constants a; b with 0 � a < b � 1, the probabilityof the event that the weight of the random function is in the interval [a2n; b2n) convergesto a positive limit. This de�nes a probability measure on the interval h0; 1i. In [4], someproperties of this measure are investigated and a motivation for investigating this measure,from the point of view of reasoning with uncertain information, is discussed.A related model for studying the relation between the probability of Boolean functionsand their complexity was suggested by Friedman [2]. In his model, there is a sequence ofprobability distributions, where each of these distributions is de�ned on formulas of thesame size and with the same tree structure. The �rst distribution is de�ned on some simplefunctions. Each of the following distributions is formed by combining random functionschosen from some previous distributions using Boolean connectives. Hence, the complexityof formulas increases in the sequence. Friedman [2] suggests to study the moments of suchdistributions. A better understanding of the behaviour of these moments might yield lowerand upper bounds in complexity theory.In particular, Friedman investigated the moments of distributions involved in the randomk-SAT problem, which includes iterated conjunction of small random disjunctions. For thesemoments there is a formula involving coe�cients with a geometric interpretation. All ofthe 1-SAT coe�cients and some of the 2-SAT coe�cients are described in [2].A model based on a sequence of distributions on Boolean formulas of increasing size, suchthat in each of the distributions the tree structure of the formulas is �xed, was studied alsoin [8] and [10]. There it is proved that the studied sequence of distributions converges tothe uniform distribution on all Boolean functions. Moreover, in [10], using a sharp boundon the rate of this convergence, a relation is proved between the formula size complexity ofany Boolean function and the supremum of the probability of the occurence of this functionover all distributions in the sequence. On the contrary to the present result, the relationdoes not appear in the limit distribution, since it is the uniform one.The limit distribution on formulas described in the present paper has the property thatdisjoint subformulas of the random formula viewed as random variables are independent.2



Boolean formulas of this kind were already studied by Boppana, Razborov, Valiant andothers, and used to prove results on the formula size complexity of the majority functionand of the representation of Ramsey graphs, see [1], [7], [9] and [11]. In all these results,the independency of subformulas is the basic tool. Moreover, in a general setting, there isa connection to the study of nonlinear dynamical systems de�ned on �nite functions (see[5], [6]). The common point is again the combination of independent random functions viasimple rules.The outline of the present paper is as follows. In Section 2, we investigate a decompositionof a tree into segments and prove some properties of the distribution of segments in a largerandom tree. For the analysis of this random tree we use similar ideas as in [4], but we needmore accurate estimates. Using the decomposition of the tree into segments, we introduce adistribution on in�nite trees, determined by a sequence of independent choices of segmentsfrom some distribution. It turns out that the distribution on Boolean functions determinedby this distribution on in�nite trees is equal to the limit of the distributions on functionsdetermined by the uniform distribution on formulas of size m, if m tends to in�nity. Thischaracterization of the limit distribution is the crucial tool to derive in Section 3 lower andupper bounds for the probability P (f), that a given function f occurs, in terms of theformula size complexity L(f) of f . In particular, we will show that the negative logarithmsof the lower and upper bound di�er from the formula size complexity of the function atmost by a polynomial factor:Theorem 1.1 There exist positive constants c1; c2 > 0, such that for every large enoughpositive integer n the following is valid:For every Boolean function f of n variables satisfying L(f) � 
(n3), it ise�c1L(f) logn � P (f) � e�c2L(f)=n3 :Finally, in Section 4 we state some open problems.2 Approximation by an In�nite TreeFirst, we will investigate the tree structure of AND/OR formulas. For doing so, we needsome de�nitions. The size of a tree is the number of its nodes. A binary tree consisting oftwo nonempty subtrees connected to the root will be called 1-separable or only separable,if its two subtrees have di�erent size. In such a tree, the unique maximum subtree will becalled tail. If the tail is also separable, we say that the original tree is 2-separable, and so on.Hence, a k-separable tree allows k steps of such a decomposition. The tail obtained in thei-th step will be called i-th tail, where the 0-th tail is the whole tree. Moreover, the wholetree with the k-th tail replaced by a new leaf, which is a special leaf, distinguishable fromall the other leaves, will be called the k-head or, if k follows from the context, simply head.The special leaf is included in order to mark the position, where the tail was connectedto. We shall also consider the decomposition of the k-head into k segments, where the i-thsegment is the (i � 1)-st tail with the i-th tail replaced by the special leaf denoting theoriginal position of the i-th tail. We do not count the special leaves to the sizes of the3



segments. Hence, the size of a k-separable tree is the sum of the sizes of its k segments plusthe size of the k-th tail.In particular, we shall prove in the following that, if m tends to in�nity, then, withprobability approaching 1, a random binary tree of size 2m � 1 is 1-separable and thecorresponding tail has size at least (2m � 1 � t(m)), where t(m) � m is any functiontending to in�nity with m.Let g(x) = P1i=1 aixi be the generating function for the nonempty rooted binary trees.That is, ai counts the number of rooted binary trees of size i. A single node is the onlybinary tree with at most two vertices, hence a1 = 1 and a2 = 0. Note that ai = 0 forevery even i. Using the recursion ai = Pi�2j=1 ajai�j�1 for all i � 3, we obtain the identityg(x) = x(1 + g(x)2). From this and the fact that g(0) = 0, we infer thatg(x) = 12x � �1�p1� 4x2� :Using Taylor expansion, we obtain for 0 � x � 1=2 thatg(x) = 12x �  1� 1Xi=0 1=2i ! � (�4x2)i! = 1Xn=1C(2n� 1) � x2n�1; (1)where C(2n� 1) are the Catalan numbers,C(2n� 1) = 1n �  2n� 2n� 1 !;counting the number of rooted binary trees of size 2n� 1 for every n � 1.In every k-separable tree, each segment consists of its root and two children. One ofthem is the special leaf, the second is some nonempty binary tree. Since we do not countthe special leaf to the size, the size of a segment is 1 plus the size of the nonempty subtree.Hence, the size of the segment is always even. As there are two possible positions for thespecial leaf, the number of segments of size 2r is 2 �C(2 r� 1).Lemma 2.1 There exists an " > 0 such that the following is true. Let k and r1; r2; : : : ; rksatisfy ri � 1 for all i = 1; 2; : : : ; k and Pki=1 ri � "m. Let H be a k-head with i-th segmentof size 2ri for i = 1; 2; : : : ; k. Then, the probability that a random tree of size 2m � 1 isk-separable and that its k-head is H equals 1 + O 1m kXi=1 ri!! � kYi=1 2�2ri : (2)Proof: The required probability P is equal to the ratio of the number of k-separable treeswith the given head H over the number of all trees of size 2m� 1. Every k-separable treewith head H consists of H and a tail of size 2(m �Pki=1 ri) � 1. By our assumptions onPki=1 ri, composing H with any tail of this size yields a k-separable tree. Moreover, di�erenttails lead to di�erent trees. Hence, we haveP = C(2 (m�Pki=1 ri)� 1)C(2m� 1) : (3)4



Using Stirling's formula n! = p2�n(n=e)n(1 + O(1=n)), we obtain for n!1 thatC(2n� 1) = 14p�n�3=222n �1 + O� 1n�� : (4)This impliesC(2 (m�Pki=1 ri)� 1)C(2m� 1) =  1� 1m kXi=1 ri!�3=2 � 1 +O� 1m�Pki=1 ri�1 + O � 1m� � 2�2Pki=1 ri :Now, there is an " > 0 depending on the constant in the O-term from (4) such that, ifPki=1 ri � "m, then P =  1 +O 1m kXi=1 ri!! � kYi=1 2�2ri :This proves the lemma. 2By the following result, for k not too large, the tree is k-separable with probabilityapproaching 1 if m tends to in�nity.Lemma 2.2 Let k and r, possibly depending onm, be such that kr = o(m) and k = o(r1=2).Then, the probability P that the tree is k-separable and each of the k corresponding segmentshas size at most 2r, equals P = 1� O� kr1=2�+ O�krm� :Proof: In order to prove the lemma, we shall compute the sum of the probabilities fromLemma 2.1 for all k-heads H with the segments of size at most 2r. As a �rst approximation,let us consider the limits, when m approaches in�nity. By Lemma 2.1 used for k = 1, thelimit of the probability of the occurrence of an individual segment of size 2j is 2�2j . Thereare 2C(2j � 1) segments of size 2j. Using (1) for x = 1=2, i.e., g(1=2) = 1, we obtain1Xj=1 2C(2 j � 1)22j = 1 : (5)To express the probability required in the lemma, we will estimate the sum of the �rst rterms of this series. By (4) we have2C(2 j � 1)22j = O� 1j3=2�and hence 1Xj=r+1 C(2 j � 1)22j = O�Z 1r 1x3=2dx� = O� 1r1=2� : (6)5



By Lemma 2.1, the desired probability P is given byP = �1 +O�krm�� � X1�r1;:::;rk�r kYi=1 2C(2 ri� 1)22ri= �1 +O�krm�� �0@ rXj=1 2C(2 j � 1)22j 1Ak= �1 +O�krm�� � �1� O� 1r1=2��k by (6).As kr = o(m) and k = o(r1=2), we infer thatP = 1� O� kr1=2�+ O�krm� ;which yields the desired result. 2By Lemma 2.1, for m approaching in�nity the probability of the occurrence of eachindividual segment of size 2r converges to 2�2r. By (5), these limits determine a well-de�ned distribution on segments. For the random segments from this distribution considerthe usual random labeling of the inner nodes and the leaves, except of the special leaf, byconnectives AND/OR and literals containing the Boolean variables x1; x2; : : : ; xn. Fromnow on, let n be reserved for the number of these variables and assume that n is �xed. Theresulting distribution on labeled segments will be denoted by D1. Moreover, let Dk be thedistribution on labeled k-heads formed by choosing k segments independently from D1 andconnecting them via the special leaves in the straightforward manner.For a labeled head occurring either in the distribution Dk or as the k-head of a k-separabletree, we de�ne the function computed by the head as follows. Assume that the special leafis labeled by a new variable. Hence, we have a labeling of the head by n + 1 variables.Now, the function computed by the labeled head is the partial Boolean function (i.e., notde�ned everywhere in its possible domain) of n original variables, de�ned for those inputs,for which the value of the formula of n+ 1 variables does not depend on the new variable.If the head of a k-separable tree computes a total function (de�ned everywhere), we saythat the head is closed.For every total Boolean function f , the probability Pk(f) of its occurrence in the distri-butions Dk is nondecreasing with k, since adding a new segment may change the functionrepresented by the head only if the function determined by the previous segments is nota total function. Hence, the probabilities Pk(f) have some limits P (f) = limk!1 Pk(f).As every function is represented by some labeling of a su�ciently large closed head, theselimits are positive.Let D be the distribution on labeled in�nite trees, which are formed by connecting anin�nite sequence of labeled segments chosen independently fromD1. Note that a tree chosenfrom D contains exactly one in�nite path. We say that a tree chosen from the distributionD computes a function f , if for some integer k, the �rst k labeled segments in the tree forma closed k-head computing f . It is easy to see that this happens with probability one. It isalso easy to see that the probability that a tree from D computes f is equal to P (f).6



The size of a Boolean formula is de�ned as the number of occurrences of variables con-tained in the formula. Hence, a formula of size m is based on a tree of size 2m� 1.Theorem 2.3 Let f be a Boolean function of n variables and let m tend to in�nity. Then,the probability, that a random AND/OR formula chosen from the uniform distribution onformulas of size m computes f , converges to P (f).Proof: In order to prove the theorem, it su�ces to prove that for every total Booleanfunction f , the di�erence between the probability of computing f by a random formulachosen from the uniform distribution on formulas of size m and Pk(f) converges to zero, ifk and m both tend to in�nity in a controlled way.Fix some " with 0 < " < 1=3 and set k = dm1=3�" e. Moreover, we will use an auxiliaryparameter r = dm2=3 e. Denote by Pr1(A) the probability of some event A in the uniformdistribution on formulas of size m, while Pr2(A) will be the probability of A in the distribu-tion Dk. Let H(k; r) denote the set of all k-heads containing only segments of size at most2r. For any k-head H 2 H(k; r), by Pr1(H) we mean the probability of the event \the treeis k-separable and its k-head is equal to H". Similarly, Pr2(H) is the probability of theevent \the k-head H occurs". Moreover, by H(k; r), used either in Pr1(:) or in Pr2(:), wemean the disjunction of the events corresponding to all H 2 H(k; r).In order to compare the probabilities Pr1(f) and Pr2(f) of the event that the randomformula in the corresponding distribution computes the given total function f , we will �rstcompare the conditional probabilities Pr1(f j H) and Pr2(f j H). The assignments ofconnectives and literals, which guarantee the total function f in the second of these twoconditional events, are exactly the same as the assignments of the k-head H in the �rst eventthat makeH closed and give the function f . Hence, Pr2(f jH) = Pr1(f^(H is closed) jH).Therefore, 0 � Pr1(f j H)� Pr2(f j H) = Pr1(f ^ (H is not closed) j H)� Pr1(H is not closed j H) :In order to compute this probability, consider a �xed input x. Each of the k nodes on thepath from the root to the k-th tail computes either the AND or OR of two subformulas. Oneof them contains the tail and the second belongs completely to the head. The assignmentof connectives and literals is symmetric with respect to the values 0 and 1. Hence, thesubformula, which belongs to the head, computes on input x both the values 0 and 1 withprobability 1=2. Hence, with probability 1=2, the value of the subformula, which containsthe tail, has no in
uence on the value computed in the node. Since this happens for allk nodes in the path independently, the probability, that the tail is needed to compute thevalue of the function in the root, is at most (1=2)k.As there are 2n di�erent inputs, the probability that for at least one of them, the value ofthe function is not determined by the head is at most 2n�k . By combining the arguments,we obtain jPr1(f j H)� Pr2(f j H)j � 2n�k = O(2�m1=3�"); (7)as n is �xed. 7



For our choice of k and r, we have kr=m = O(m�"). Hence, by Lemma 2.1, we havePr1(H) = Pr2(H) � (1+O(m�")) for every k-head H 2 H(k; r). Moreover, Pr1(:H(k; r)) =O(m�") by Lemma 2.2. The leftmost expression in (6) is equal to the probability that therandom segment chosen from D1 has size at least 2r + 2. Hence, by the same argument asin the proof of Lemma 2.2, we have Pr2(:H(k; r)) = O(k=r1=2) = O(m�").Using (7), we summarize as followsPr1(f)� Pr2(f)= XH2H(k;r)[Pr1(f j H) �Pr1(H)� Pr2(f j H) �Pr2(H)] + O(m�")= XH2H(k;r)Pr2(H) � [Pr1(f j H)� Pr2(f j H) + Pr1(f j H)O(m�")] +O(m�")= O(m�") ;since PH2H(k;r)Pr2(H) � 1. This yields the desired result. 23 Bounding the Limit ProbabilitiesFor any Boolean function f , the formula size complexity L(f) is the minimum size of aformula representing f . The following lower bound on the probability P (f) of the occurrenceof f is a direct consequence of our construction of the distribution D.Theorem 3.1 Let f be a Boolean function of n variables. ThenP (f) � 14 �� 18n�L(f)+1 :Proof: Consider any formula � of size L(f) representing f and the two closed 2-heads�_ ((xi ^ :xi)^ y) and � ^ ((xi _ :xi)_ y), where 1 � i � n and y denotes the position ofthe special leaf. Each of these two heads consists of two segments, one of size 2L(f) and thesecond of size 4. Hence, the tree structure of the two segments together has the probability(1=4)L(f)+2 to occur. Since there are L(f)+2 leaves and 3 inner nodes in each of the heads,the labeling of each head has the probability 1=(2n)L(f)+2 � (1=2)3 to occur. There are npossibilities how to choose i and, due to the commutativity of the connectives, 8 equivalentvariants of each of the heads having the same probability. Altogether, we have described16n di�erent closed 2-heads computing f , each with probability18 � � 18n�L(f)+2 :This proves the theorem. 2Pick a random Boolean formula according to the distribution D and an arbitrary inputx. By considerations made already in the proof of Theorem 2.3, the �rst k segments of8



the formula are su�cient to determine the value of the whole in�nite formula in x withprobability 1�2�k. Thus, with probability at least 1�2n�k, the �rst k segments determinethe value of the whole formula for all inputs. This is close to 1 if k � n. Moreover, estimate(6) together with the de�nition of D1 implies that the probability that the size of a segmentis bigger than r, is at most O(1=r1=2). Hence, with high probability, only small parts (e.g.of polynomial size in n) of the formula are really needed to compute the function. It followsthat, with high probability, the computed function has small complexity. This may beused to prove an upper bound on the probability P (f) of the occurence of a function f ,if the formula size L(f) of f is large. However, this upper bound would be only one overa polynomial in L(f). In the following, an upper bound of the magnitude one over anexponential of L(f) will be given. To prove this, we demonstrate a way of pruning thein�nite formula from the distribution D. The resulting equivalent pruned formula is �nitewith probability 1 and, moreover, has size l with probability exponentially small in l.The pruning is controlled by assigning a set of conditions to each inner node of thetree. If the set of conditions assigned to a node is contradictory, the node will be deleted.The conditions are simply some requirements to the values of single variables and they arecomputed as follows. The root is assigned the empty set of conditions. Assume, an innernode v of the formula is assigned a set � of conditions. If both successors of v are innernodes, the set � of conditions is assigned to both of them without any change. If only one ofthe successors is an inner node, say the left one, let xi be the variable used in the literal inthe right successor. Then, the left successor is assigned the set �[ fxi = ag of conditions ,where a is the value of xi which does not force the AND or OR in the node v to a constant.In the remainder of this section, we always assume that the nodes of the formula from Dare assigned to the pruning conditions computed by these rules.By the construction of the pruning conditions, it is easy to see that the following is true.If some inner node v is assigned a set � of conditions and, for some input x, the inputvariables do not satisfy some of the conditions, then the value computed for x in the nodev has no in
uence to the value computed for x by the whole formula. If � contains bothxi = 0 and xi = 1 for some i, then the node v has no in
uence for any input and, hence,it may be deleted. The deletion is performed by replacing the node by any constant andwhen all such replacements are �nished, the formula is transformed to a formula withoutconstants using standard simpli�cation rules.Let � be a random Boolean formula labeled by the sets of conditions as described. Denoteby k�k the number of inner nodes in the formula � assigned to a consistent set of conditions.After the transformation described above, the number of inner nodes in the new equivalentformula is at most k�k and hence its formula size is at most k�k+ 1.In order to give a small upper bound on the probability that k�k is large, where � ischosen from the distribution D, we give an estimate of the expected valueE h(1 + ")k�ki ;where " is an appropriate positive real number. To this end, we represent the distribution Das a simple growing process on trees and �rst consider the expectation of a similar quantityin some �nite parts of �. 9



Consider the following two types of nodes, c-nodes and n-nodes (connecting and normal,respectively). We start with one c-node. In each step, each node is either expanded intotwo successors or stopped. A c-node is always expanded into one c-node and one n-node.With probability 1=2, the new c-node is either the left successor or the right successor of theold one. An n-node is either expanded or stopped, each with probability 1=2. If expanded,both successors are again n-nodes. It is easy to see that the resulting tree consists of anin�nite sequence of independently chosen (possibly in�nite) segments connected via c-nodes.Moreover, the event that a given individual segment occurs means that, during the process,in each node of the segment, the result of the random choice matches the given structure.In each node, this happens with probability 1=2 and the random bits used in the randomchoices are independent. Hence, the probability of a given segment of size 2r is (1=2)2r.Thus, the tree structure of a single segment is generated according to the distribution D1.In particular, each segment is �nite with probability 1. By assigning the random labelingby connectives and literals to all segments as before, we obtain a formula from D. We shallrefer to this process as to the basic growing process.The tree is generated level by level. If all the nodes in level j + 1 for some j are created,it is known for every node in level j, whether it is an inner node or a leaf. At this time,the random labeling of these nodes by connectives and the literals is chosen. Now, sinceall nodes in level j have their labels, the sets of conditions for all the nodes in level j maybe computed. Let v be an inner node of level j. Note that the distribution of the subtreebelow v including the labeling and the sets of conditions depend on the rest of the tree onlyvia the labeling of the node v. Hence, we can consider v as a starting node of a separateprocess. The initialization of the process is given by the type of node v (n-node or c-node)and by the set � of conditions in v. Note that v is known to be an inner node, so, if v is ann-node, the process starts by expanding v deterministicaly. We shall refer to this process asto the generalized growing process. The basic growing process generating formulas from Dis the special case, when the starting node is a c-node and � is the empty set of conditions.For a random formula � generated by the generalized growing process and any integerd, let k�kd mean the number of inner nodes of depth at most d in �, which are assigned aconsistent set of conditions. If � is generated by the growing process started with a set ofconditions �, then, by symmetry, the distribution of k�kd is the same for all other consistentstarting sets of conditions with the same number of elements. Hence, only the number ofelements of � is taken into account.In the following, let " > 0 be a real number, which will be speci�ed later.De�nition 3.2 Let �(d; k) = E h(1 + ")k�kdi, where � is generated by the generalizedgrowing process starting at an n-node with a consistent k-element set � of conditions.Recall that the starting n-node is always expanded by de�nition of the generalized growingprocess. Analogously, let �(d; k) = E h(1 + ")k�kdi, where � is generated from a c-node,with a consistent k-element set � of conditions.In the following two lemmas, we give recurrence relations for �(d; k) and �(d; k).10



Lemma 3.3 For every real " and for all integers d � 0 and k = 0; 1; : : : ; n�(0; k) = 1 + "�(d+ 1; k) = (1 + ")�14�(d; k)2 + k4n�(d; k) ++ 12 �1� kn��(d; k+ 1) + k4n + 14� :Proof: Assume that the starting node v is an n-node with a consistent k-element set � ofconditions. Hence, k�k0 = 1 and �(0; k) = 1 + ".In order to prove the second identity, we consider some cases according to the labelingof the successors v1 and v2 of the node v. Then, the expected value of (1 + ")k�kd+1 iscomputed by using the expansion to the conditional expectations according to these cases.Let �1 and �2 be the subformulas below v1 and v2. Note that k�kd+1 = 1+ k�1kd + k�2kdfor every nonnegative integer d.In case 1, both successors v1, v2 are expanded and, hence, become inner nodes. Thishappens with probability 1=4. Under this condition, the continuation of the process consistsof two independent processes, starting in v1 and v2, both with an initial k-element set � ofconditions. Therefore,E h(1 + ")k�kd+1 j case 1i � Pr(case 1) = (1 + ")�(d; k)2 � 14 :In case 2, v1 is expanded and v2 is stopped. This occurs with probability 1=4. Underthe condition that this happens, the set of conditions in v1 is created by adding the newcondition due to v2 to the set �. We distinguish three subcases according to the relationbetween � and the new condition.In case 2a, which happens with probability k=(2n) if case 2 occurs, the new condition isalready included in �. Then,E h(1 + ")k�kd+1 j case 2ai � Pr(case 2a) = (1 + ")�(d; k) � k8n :In case 2b, with probability k=(2n) if case 2 occurs, the new condition is contradictoryto some of the conditions in �. In this situation, there are no undeleted inner nodes belowv1. Hence, E h(1 + ")k�kd+1 j case 2bi � Pr(case 2b) = (1 + ") � k8n :In case 2c, with probability 1�k=n if case 2 occurs, the new condition involves a variablenot used in � and hence it is independent of �. In this case, the initial set of conditions inv1 has k + 1 elements. Hence,E h(1 + ")k�kd+1 j case 2ci � Pr(case 2c) = (1 + ")�(d; k+ 1) � 14 �1� kn� :Case 3, when v1 is stopped and v2 is expanded, is symmetric to case 2.In case 4, with probability 1=4, both v1, v2 are stopped. In this situation we have11



E h(1 + ")k�kd+1 j case 4i �Pr(case 4) = (1 + ") � 14 :By collecting the contributions of all four cases, we obtain the lemma. 2Lemma 3.4 For every real number " > 0, and for all nonnegative integers d and k,�(0; k) = 1 + "�(d+ 1; k) = (1 + ")�12�(d; k)�(d; k) + k4n�(d; k)++ 12 �1� kn� �(d; k+ 1) + k4n� :Proof: Assume that the starting node v is a c-node with a k-element set � of conditions.The starting node is expanded to a c-node and an n-node. It is not necessary to distinguishwhether the c-node is the left successor or the right successor, since it has no in
uenceon the distribution of the number of undeleted nodes. In the next step, the new c-nodeis always expanded. There are two cases, which we consider separately, according to thebehaviour of the n-node. The n-node is either expanded (case 10) or stopped (case 20), eachwith probability 1=2.In case 10, the conditional expectation of (1 + ")k�kd+1 is (1 + ")�(d; k)�(d; k), since theprocesses starting in the n-node and in the new c-node are independent.The case 20 will be splitted into subcases according to the in
uence of the condition dueto the literal in the n-node to the set �0 of conditions in the new c-node. With probabilityk=(2n) we have �0 = �, which gives the conditional expectation (1+")�(d; k). With the sameprobability, �0 is contradictory, which yields the conditional expectation 1 + ", since onlynode v is not deleted. With probability (1� k=n), it is j�0j = j�j+ 1, giving the conditionalexpectation (1+ ")�(d; k+1). Now, by combining these conditional expectations accordingto the probabilities of the corresponding conditions as in Lemma 3.3, we obtain Lemma 3.4.2Theorem 3.5 There exists a constant c > 1 such that for every positive integer n thefollowing is valid:For every Boolean function f of n variables, it isP (f) � (1 +O(1=n))c�L(f)=n3:Proof: In order to prove the theorem, we �rst show upper bounds on �(d; k) and �(d; k),if " is 1 over some polynomial in n.With foresight, set uk = 5(n� k + 1) and vk = 5(n� k + 2)2 for every k = 0; : : : ; n. Wewill �nd a range of ", in which the following inequalities hold�(d; k) � 1 + uk" (8)�(d; k) � 1 + vk" : (9)12



for k = 0; 1; : : : ; n and every nonnegative integer d.Both these inequalities are satis�ed for d = 0, any k = 0; 1; : : : ; n and any " > 0. Byinduction on d, we will show in the following that these two inequalities hold for all d � 0,provided " is small enough. The calculations will give a su�cient condition on ", whichguarantees the induction step.If (8) is satis�ed for some d = d0, the inequality(1 + ")�14(1 + uk")2 + k4n(1 + uk") + 12 �1� kn� (1 + uk+1") + k4n + 14� � 1 + uk" (10)implies (8) for d = d0 + 1, since, by Lemma 3.3, the LHS of (10) is an upper bound on�(d0+1; k). By expanding the products and collecting the terms "i with the same exponent,the di�erence between the RHS and the LHS of (10) can be transformed to��12 � k4n�uk � 12 �1� kn�uk+1 � 1� " +O(n2"2) �� �12 � k4n� (uk � uk+1 � 4)"+ O(n2"2) � 14"+ O(n2"2) :We conclude that there is a positive constant �1 such that for every " with 0 < " � �1=n2inequality (10) is satis�ed and so, for all d � 0, inequality (8) holds.To extend inequality (9) to all d � 0, a stronger condition on " is needed in the inductionstep, but the arguments are similar. The corresponding inequality, which guarantees (9) ford = d0 + 1 { if satis�ed for d = d0 { is, by Lemma 3.4,(1 + ")�12(1 + uk")(1 + vk") + k4n(1 + vk") + 12 �1� kn� (1 + vk+1") + k4n� � 1 + vk" :(11)Taking the di�erence of the RHS of this inequality and its LHS, we obtain��12 � k4n� vk � 12 �1� kn� vk+1 � 12uk � 1� " +O(n3"2) �� �12 � k4n� (vk � vk+1 � 2uk � 4)"+O(n3"2) � 14"+ O(n3"2) :Hence, there exists a positive constant �2 � �1 such that for every ", 0 < " � �2=n3,inequality (11) is satis�ed. It follows by induction that, for every such ", both inequalities,(8) and (9), hold for every d � 0. For the remainder of the proof let " = �2=n3.Let � be a formula from D. By de�nition of �(d; k), it follows that E h(1 + ")k�kdi =�(d; 0). Since k�kd � k�kd�1, the limitlimd!1E h(1 + ")k�kdiexists and, by (9), is bounded from above by 1 + 5(n+ 2)2".In order to obtain an upper bound on E h(1 + ")k�ki, we use the following well-knownresult: 13



Lemma 3.6 (see [3]) If P1d=0 E[jYdj] is convergent for a sequence of random variables Yd,then E " 1Xd=0 Yd# = 1Xd=0E[Yd] :Let Y0 = (1 + ")k�k0 and Yd = (1 + ")k�kd � (1 + ")k�kd�1 for every d � 1. Sincek�kd � k�kd�1, we have Yd � 0, and hence1Xd=0E[jYdj] = 1Xd=0E[Yd] = limd!1E h(1 + ")k�kdi � 1 + 5(n+ 2)2" = 1 +O(1=n) :This shows that the assumption of Lemma 3.6 is satis�ed, and it follows thatE h(1 + ")k�ki = E " 1Xd=0 Yd# = 1Xd=0E[Yd] � 1 + O(1=n) :Using this, we will �nish the proof of Theorem 3.5 as follows. If � computes f , thenL(f) � k�k+ 1. Hence, by Markov's inequality,Pr(� computes f) � Pr �(1 + ")k�k � (1 + ")L(f)�1�� E h(1 + ")k�ki(1 + ")L(f)�1 � (1 +O(1=n))�1 + �2n3��L(f) � (1 +O(1=n)) � c�L(f)=n3for any absolute constant c with 1 < c < e�2 and n large enough. 2As an immediate consequence of Theorems 3.1 and 3.5, we obtain Theorem 1.1.4 Open ProblemsOur results show a close relation between the probability of Boolean functions of n variablesin the distribution D and their formula size complexity provided the complexity is 
(n3).The situation for Boolean functions of complexity o(n3) is unknown. Also, closing the gapbetween the lower and the upper bound in Theorem 1.1 is an open problem. Anotheropen problem of particular interest is to compute estimates on the probability of explicitfunctions in the limit distribution, exact enough to have consequences for the complexityof these functions.Acknowledgement The authors would like to thank to Jan Kraj���cek for simplifyingthe limiting argument in the proof of Theorem 3.5.14
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