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Abstract

The validation set of a formula in a fuzzy logic is the set of all truth values which this formula may
achieve. We summarize and extend recent results on characterizations of validation sets in various
fuzzy logics.
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1 Basic notions

One important way of representing vagueness of information is an enlargement of the set of truth values
from {0, 1} to the whole unit interval [0, 1]. This leads to fuzzy logics [3, 6, 11, 12, 13, 23, 27] which were
successfully applied in many areas, especially in fuzzy control. These logics allow to violate the excluded
middle law and achieve more degrees of satisfaction of a formula. E.g., the formula ϕ = ¬p ∨ p is a
tautology in the classical logic, evaluated always by 1. Consider the same formula in a fuzzy logic where
the negation and disjunction are interpreted by the standard operations considered by Zadeh [27], i.e., by
the standard fuzzy negation (x 7→ 1−x) and the maximum. Then ϕ may be evaluated by values less than
one, but always at least 1/2. More exactly, depending on the evaluation of p, the evaluation of ϕ may be
any number from the interval [1/2, 1]. We express this fact by saying that [1/2, 1] is the validation set of
formula ϕ. In this paper we study the question of which validation sets may occur in various fuzzy logics.

Let us recall the basic notions used in the sequel.

Definition 1.1 A (propositional) fuzzy logic is an ordered pair P = (L,Q) of a language (syntax ) L and
a structure (semantics) Q described as follows:

(i) The language of P is a pair L = (A,C), where A is a nonempty at most countable set of atomic
symbols and C is a tuple of connectives.

(ii) The structure of P is a pair Q = ([0, 1],M), where [0, 1] is the set of truth values, and the tuple M

consists of the interpretations (meanings) of the connectives in C.

The tuple of connectives always will contain at least a conjunction which is interpreted by a triangular
norm (t-norm for short), i.e., a commutative, associative, non-decreasing operation T : [0, 1]2 → [0, 1]
with neutral element 1 (see [26, 17]). Three basic t-norms are the minimum TG, the product TP, and
the  Lukasiewicz t-norm TL given, respectively, by TG(x, y) = min(x, y), TP(x, y) = xy, and TL(x, y) =
max(0, x+ y − 1).

∗The author was supported by the Czech Ministry of Education under project MSM 212300013, by the Grant Agency
of the Czech Republic under project GACR 201/02/1540, and by the Czech Technical University in Prague under project
CTU0208613.
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A triangular conorm (t-conorm for short) is a commutative, associative, non-decreasing operation
S : [0, 1]2 → [0, 1] with neutral element 0. There is an obvious duality between t-norms and t-conorms.
Let NS : [0, 1]→ [0, 1] be the standard negation defined by NS(x) = 1−x. For each t-norm T , the function
ST : [0, 1]2 → [0, 1] given by

ST (x, y) = NS(T (NS(x), NS(y)))

is a t-conorm, called the dual of T . The duals of the three important t-norms are the maximum SG, the
probabilistic sum SP, and the bounded sum SL given, respectively, by SG(x, y) = max(x, y), SP(x, y) =
x+ y − xy, and SL(x, y) = min(1, x+ y).

The class FP of well-formed formulas in a fuzzy logic P is defined in the standard way, starting from
the atomic symbols and constructing new formulas using the connectives. For each function e : A→ [0, 1]
which assigns a truth value to each atomic formula, there exists a unique natural extension of e to a truth
assignment (evaluation) e : FP → [0, 1].

Definition 1.2 Let ϕ be a formula and {p1, . . . , pn} be a set of atomic symbols occurring in ϕ. Then a
function fϕ : [0, 1]n → [0, 1] is called truth function of ϕ iff fϕ(e(p1), . . . , e(pn)) = e(ϕ) for each evaluation
e.

Here we concentrate on the properties of validations sets. The validation set of a formula ϕ is defined as

VP(ϕ) = {e(ϕ) | e ∈ [0, 1]A}.

This paper deals with the question of which validation sets may occur in various fuzzy logics. The sections
dealing with S-fuzzy and R-fuzzy logics summarize the results of [15] and [16] for comparison, while the
sections on R∆-fuzzy logics and RS-fuzzy logics contain new results.

Proposition 1.3 Let P1, P2 be a fuzzy logics with tuples of connectives C1, C2 such that C1 ⊆ C2. Let
the set of truth values and the interpretations of the common connectives coincide in P1, P2. Then each
validation set in P1 may occur as a validation set in P2.

proof: It is obvious because FP1 ⊆ FP2 . 2

The sets of all natural, rational, and real numbers will be denoted respectively by N, Q, and R.

2 S-fuzzy logics

The following construction of propositional fuzzy logics was presented in [3]:

Definition 2.1 A t-norm-based propositional fuzzy logic (S-fuzzy logic) is a fuzzy logic (in the sense
of Definition 1.1) in which the basic connectives are unary ¬ (negation) and binary ∧ (conjunction),
interpreted respectively by the standard fuzzy negation and a t-norm T .

The logics corresponding to the basic t-norms TG, TL and TP are Gödel S-fuzzy logic,  Lukasiewicz
S-fuzzy logic, and product S-fuzzy logic. Starting from the basic connectives we define binary disjunction,
resp. implication, by the expression a ∨ b = ¬(¬a ∧ ¬b), resp. a→ b = ¬a ∨ b. The interpretation of the
disjunction, resp. implication, is a t-conorm, resp. so-called S-implication.

Let us summarize results on validation sets from [3] and [15]:

Theorem 2.2 The validation sets in Gödel S-fuzzy logic are of one of the following forms:

[0, 1
2 ] , [ 1

2 , 1] , [0, 1] .

The validation sets in product S-fuzzy logic are of one of the following forms:

[0, a] , [b, 1] , [0, 1] ,

where a, b ∈ ]0, 1[. The validation sets in  Lukasiewicz S-fuzzy logic are of one of the following forms:

{0} , {1} , [0, a] , [b, 1] , [0, 1] ,

where a, b ∈ Q ∩ ]0, 1[. The possible values of the bounds a, b form a countable dense subset of [0, 1].
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3 R-fuzzy logics

A reasonable way of constructing connectives in fuzzy logics is to start with a continuous t-norm T and
to use the residuum (R-implication, see [7, 25]) defined by

RT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y} . (1)

as the interpretation of the implication.
The following approach to fuzzy logics with residual implications is described in detail in [13].

Definition 3.1 A residuum-based propositional fuzzy logic (R-fuzzy logic) is a fuzzy logic (in the sense
of Definition 1.1) in which the basic connectives are the nullary connective 0 (false statement) and the
binary connectives ∧ (conjunction) and → (implication) with respective interpretations 0, T , RT , where
T is a t-norm and RT is the corresponding residuum.

The R-fuzzy logics corresponding to the basic t-norms TG, TL, and TP are Gödel R-fuzzy logic,  Luka-
siewicz R-fuzzy logic, and product R-fuzzy logic.

Observe that the implication in  Lukasiewicz S-fuzzy logic coincides with the implication in  Lukasiewicz
R-fuzzy logic. So the interpretation of logical connectives in  Lukasiewicz S-fuzzy logic and  Lukasiewicz
R-fuzzy logic is identical (although not the same connectives are considered as the basic ones). One
difference between  Lukasiewicz S-fuzzy logic and R-fuzzy logic is that the nullary connective 0 is not
considered as a formula in  Lukasiewicz S-fuzzy logic. Nevertheless, it can be introduced as a derived
logical connective putting, e.g., 0 = ¬ϕ ∧ ϕ for a fixed formula ϕ.

In Gödel R-fuzzy logic, the interpretation RG of the implication is defined by

RG(x, y) =

{
1 if x ≤ y,
y otherwise.

The R-implication RG (called the Gödel implication) is not continuous in the points (x, x) with x ∈ [0, 1[.
In product R-fuzzy logic, we obtain the interpretation RP of the implication defined by

RP(x, y) =

{
1 if x ≤ y,
y

x
otherwise.

The R-implication RP (also called the Goguen implication) is not continuous in the point (0, 0).
Let us summarize results on validation sets from [16].

Theorem 3.2 The validation sets in  Lukasiewicz R-fuzzy logic are of one of the following forms:

{0} , {1} , [0, a] , [b, 1] , [0, 1] ,

where a, b ∈ Q ∩ ]0, 1[.
The validation sets in Gödel and product R-fuzzy logic are of one of the following forms:

{0} , {1} , {0, 1} , ]0, 1] , [0, 1] .

4 R∆-fuzzy logics

In this section we extend the language of R-fuzzy logics by a unary connective ∆ which is interpreted as
follows:

4x =

{
1, if x = 1,

0, otherwise.

This extension of R-fuzzy logics was introduced in [1].

Definition 4.1 A residuum-based propositional fuzzy logic with a unary operation ∆ (R∆-fuzzy logic)
is an R-fuzzy logic in which the set of basic connectives is extended by the unary connective ∆, with
interpretation 4.
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Using results of [16], we get the following theorem:

Theorem 4.2 The validation sets in Gödel and product R∆-fuzzy logic are of one of the following forms:

{0} , {1} , {0, 1} , ]0, 1] , [0, 1[ , [0, 1] .

proof: In comparison to Theorem 3.2, we have one additional form of validation set, [0, 1[. In the first
part, we have to prove that this validation set occurs. Let p be an atomic formula and let us take the
formula ϕ = p ∧ (∆p→ 0). The validation set of this formula is V (ϕ) = [0, 1[.

Now it is sufficient to show that this implication holds: If ϕ is a formula and e is an evaluation such
that e(ϕ) ∈ ]0, 1[ then for each b ∈ ]0, 1[ there is an evaluation eb such that eb(ϕ) = b. The proof of this
implication is analogous to the proof of [16, Theorem 3.3]. 2

The situation in  Lukasiewicz R∆-fuzzy logic is more complex than the situation in previous logics. We
know that all truth functions in  Lukasiewicz R-fuzzy logic are McNaughton functions, i.e. piecewise linear
continuous functions with integral coefficients (see for example [6]). We may divide the domain of each
truth function into finitely many polyhedra so that the function is linear on each polyhedron. Now, if we
add the connective ∆ to our set of connectives, we obtain again piecewise linear functions with integral
coefficients as truth functions but not necessarily continuous functions. However we can still divide the
domain of each truth function into finitely many polyhedra such that the function is again linear on each
polyhedron because of the interpretation of ∆.

Theorem 4.3 A subset V ⊆ [0, 1] is a validation set of some formula in  Lukasiewicz R∆-fuzzy logic if
and only if it satisfies the following conditions:

1. V ∩ {0, 1} 6= ∅,

2. V =
⋃n
i=1 Ii,

where n ∈ N and Ii are intervals (possibly open, closed or half-closed). The possible bounds of Ii form the
subset of rational numbers from [0, 1].

proof: The first condition only expresses the fact that  Lukasiewicz R∆-fuzzy logic works classically for
crisp values 0 and 1. For the proof of the second condition, we have to prove that all above-mentioned
cases may occur and furthermore we have to show that no other set may occur.

Firstly let p be an atomic formula. We will construct a formula τ of one variable p such that its truth
function fτ will be the characteristic function of the validation set V , i.e. fτ (x) = 1 if x ∈ V , fτ (x) = 0
otherwise. Let m,n ∈ N. Let us consider a formula ϕm,n of the variable p with the truth function

fϕm,n(x) =


0, if x ≤ m−1

n ,

nx−m+ 1, if m−1
n < x < m

n ,

1, if x ≥ m
n .

Such a formula exists because fϕm,n is a McNaughton function. Then the truth function of the formula
∆ϕm,n is

f∆ϕm,n(x) =

{
1, if x ≥ m

n ,

0, if x < m
n .

Thus we are able to construct the characteristic function of any interval [m/n, 1]. In the similar way, we
can construct the characteristic function of any interval [0, k/l], k, l ∈ N, if we take a formula ψk,l with the
truth function fψk,l(x) = −lx+ k + 1 for x ∈ [k/l, (k + 1)/l]. The characteristic functions of the intervals
[m/n, k/l] , ]m/n, k/l] , [m/n, k/l[ , ]m/n, k/l[ can be obtained respectively by the formulas:

∆ϕm,n ∧ ∆ψk,l ,

¬∆ψm,n ∧ ∆ψk,l ,

∆ϕm,n ∧ ¬∆ϕk,l ,

¬∆ψm,n ∧ ¬∆ϕk,l .
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Finally the formula τ can be constructed by taking the formulas with the truth functions representing the
characteristic functions of all intervals Ii and using the connective ∨.

Now we have the formula τ of one variable p and we want to construct a formula with the validation
set V . If we want the validation set to contain 0, resp. 1, then take a formula p ∧ τ , resp. p ∨ ¬τ , and we
obtain the desired result.

Secondly we have to show that no other form of validation set can occur. Since we know that the
domain of each truth function f can be split into finitely many convex polyhedra and f is linear with
integral coefficients on each polyhedron, the extreme point on each polyhedron has to lie at some vertex
of the polyhedron. Moreover each vertex of the polyhedra is determined by a system of linear equations
with integral coefficients. Therefore the coordinates of each vertex and the values of f in the vertices must
be rational numbers. 2

5 RS-fuzzy logics

In R-fuzzy logics in which conjunction is not interpreted by a nilpotent t-norm (i.e. in R-fuzzy logics
different from the  Lukasiewicz one), we have no disjunction dual to the conjunction. This has led recently
to a new concept, an R-fuzzy logic with an involutive negation (see [8]). In this approach, negation
¬ becomes an additional basic connective interpreted by a strong fuzzy negation. (Without any loss of
generality, we may interpret it by the standard fuzzy negation.) This negation can be used in the de Morgan
formula defining a dual disjunction which is interpreted by the dual t-conorm. Here we call these logics
RS-fuzzy logics in accordance with the preceding terminology—they possess both an R-implication (as a
basic connective interpreted by the residuum) and an S-implication (as a derived connective ¬(ϕ ∧ ¬ψ)
using the involutive negation).

Definition 5.1 A residuum-based propositional fuzzy logic with an involutive negation (RS-fuzzy logic) is
an R-fuzzy logic in which the set of basic connectives is extended by ¬ (negation) with interpretation NS.

Theorem 5.2 A subset V ⊆ [0, 1] is a validation set of some formula in Gödel RS-fuzzy logic if and only
if it satisfies the following conditions:

1. V ∩ {0, 1} 6= ∅ ,

2. V ∩ ]0, 1[ is an arbitrary union of the following sets:
]
0, 1

2

[
, { 1

2},
]

1
2 , 1
[
.

proof: First, we prove that all the above-mentioned cases occur. Let p be an atomic formula and let us
consider these formulas:

ϕ1 = p→ 0 ,

ϕ2 = ¬((¬(¬p→ p)→ 0) ∨ (p→ 0)) ,

ϕ3 = (¬(p→ ¬p)→ 0) ∧ (¬(¬p→ p)→ 0) ,

ϕ4 = ¬((¬(p→ ¬p)→ 0) ∨ (¬p→ 0)) ,

ϕ5 = ¬p→ 0 .

The truth functions of the formulas ϕ1, . . . , ϕ5 coincide with the characteristic functions of the following
sets M1 = {0}, M2 =

]
0, 1

2

[
, M3 = { 1

2}, M4 =
]

1
2 , 1
[
, M5 = {1}, respectively.

Now we can take formulas of the following form:

ψI,J =
(
p ∨

∨
i∈I

ϕi

)
∧
∧
j∈J
¬ϕj , (2)

where I, J ⊆ {1, 2, 3, 4, 5} and I ∩ J = ∅. The evaluation of the formula ψI,J gives us the desired results:

e(ψI,J) =


1 if e(p) ∈Mi, i ∈ I ,
0 if e(p) ∈Mj , j ∈ J ,
e(p) otherwise .

(3)
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This proves that each of the above-mentioned cases may occur.
Second, we have to prove that all validation sets are of one of the above forms. For this, it is sufficient

to prove the following implication:
If ϕ is a formula and e is an evaluation such that e(ϕ) ∈

]
0, 1

2

[
(resp. e(ϕ) ∈

]
1
2 , 1
[
) then for each

b ∈
]
0, 1

2

[
(resp. b ∈

]
1
2 , 1
[
) there is an evaluation eb such that eb(ϕ) = b.

The rest of the proof follows the method from [16, Theorem 3.3]; the only difference is that not all order
automorphisms commute with the standard negation ¬. Nevertheless, there are such automorphisms, i.e.
increasing bijections h : [0, 1]→ [0, 1] such that h(1− x) = 1− h(x). 2

Theorem 5.3 A subset V ⊆ [0, 1] is a validation set of some formula in product RS-fuzzy logic if and
only if it satisfies the following conditions:

1. V ∩ {0, 1} 6= ∅,

2. V =
⋃n
i=1 Ii,

where n ∈ N and Ii ⊆ [0, 1], i = 1, . . . , n, are intervals (open, closed or half-closed). The possible bounds
of Ii form a countable dense subset of [0, 1].

Before proving this theorem, we will prepare several statements which will be useful in the sequel. Let
p be an atomic formula, k, n ∈ N. Let us consider the following formulas:

ψn,k =

n∧
j=1

¬
k∧
i=1

p , n, k ∈ N .

Their truth functions are
fψn,k(t) = (1− tk)n .

Lemma 5.4 For each a, b, r ∈ ]0, 1[, a < b, there are k, n ∈ N such that fψn,k(r) ∈ ]a, b[.

proof: For fixed k and r, the values fψn,k(r) = (1 − rk)n, n ∈ N, form a geometric sequence with the

quotient 1−rk < 1. For a sufficiently large k we obtain rk < b−a, so at least one element of this sequence
belongs to the interval ]a, b[. 2

Proposition 5.5 All forms of the validation sets mentioned in Th. 5.3 may occur.

proof: It is obvious that every validation set must contain at least 0 or 1 because RS-fuzzy logic works
classically on crisp values 0 and 1.

In the similar way as in the proof of the Theorem 4.3, we will construct a formula τ of one variable p
such that its truth function fτ will be the characteristic function of the validation set V , i.e. fτ (x) = 1
if x ∈ V , fτ (x) = 0 otherwise. Let us consider an arbitrary number r ∈ ]0, 1[ and assign e(p) = r. Due
to Lemma 5.4, for any ε > 0 we may find k, n ∈ N such that e(ψn,k) ∈ ]r − ε, r + ε[. Now let us take the
following formulas:

α = p→ 0,

βn,k = ¬(ψn,k → p)→ 0,

γn,k = ¬(p→ ψn,k)→ 0,

δ = ¬p→ 0.

The truth functions of the formulas α, βn,k, γn,k, δ coincide with the characteristic functions of the fol-
lowing sets: {0}, [0, rn,k], [rn,k, 1], {1}, where rn,k ∈ ]0, 1[ , k, n ∈ N, is an algebraic number which satisfies
the equation rn,k = (1− (rn,k)k)n. Moreover, rn,k belongs to the interval ]r − ε, r + ε[ because the truth
function fψn,k is decreasing.

Now, starting with formulas α, βn,k, γn,k, δ for different values of n, k and using connectives ∧,∨,¬,
we can construct formula τ such that its truth function fτ is a characteristic function of a finite union of
the intervals Ii.
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Finally we will construct a formula with the validation set V . If we want the validation set to contain
0, resp. 1, then take a formula p ∧ τ , resp. p ∨ ¬τ , and we obtain the desired result. 2

Further we have to prove that all validation sets are of one of the above forms. We will need several
results and definitions from algebraic geometry (for details see [2]).

Definition 5.6 A semi-algebraic subset of Rn is a subset of the form

s⋃
i=1

qi⋂
j=1

{x ∈ Rn|fi,j ∗i,j 0} ,

where fi,j are polynomials in n variables and ∗i,j is either < or =, for i = 1, . . . , s and j = 1, . . . , qi.

Note that the semi-algebraic sets are closed under finite intersections, finite unions and complements.

Proposition 5.7 Let ϕ be a formula in product RS-fuzzy logic, A be a set of atomic symbols occurring in
ϕ, and n be the number of elements in A. If fϕ is the truth function of ϕ, then its domain, D = [0, 1]n,
can be written as a union of finitely many mutually disjoint connected semi-algebraic subsets Di ⊆ D,
D =

⋃m
i=1Di. The function fϕ is continuous on Di, i = 1, . . . , n, and fϕ|Di = Pi/Qi, where Pi, Qi are

polynomials in n variables.

proof: We will proceed by induction on the complexity of the formula. For ϕ = p, p ∈ A, D = [0, 1] is a
connected semi-algebraic set and fϕ(x) = x is continuous on D.

1. If ϕ = ¬ψ then by induction assumptions the domain D of fψ can be split into finitely many
connected semi-algebraic subsets, D =

⋃m
i=1Di. We may also split the domain of fϕ in the same

way as that of fψ because the interpretation of the negation is continuous. Let the truth function
of ψ be

fψ|Di =
Pi
Qi

.

Then

fϕ|Di = 1− fψ|Di = 1− Pi
Qi

=
Qi − Pi
Qi

,

and fϕ is continuous on each Di, i = 1, . . . , n.

2. Suppose that ϕ = ψ1∧ψ2. Then we can split the domains E,F of fψ1 , fψ2 by induction assumptions,

E =

m1⋃
j=1

Ej , F =

m2⋃
k=1

Fk .

We may construct new semi-algebraic subsets Di such that the domain D of fϕ can be written as D =⋃m
i=1Di. Let us take Di = Ej ∩Fk for every j = 1, . . . ,m1, k = 1, . . . ,m2, then Di is semi-algebraic

because it is an intersection of two semi-algebraic subsets which is again a semi-algebraic subset.
Moreover, the subset Di can be written as a finite union of connected semi-algebraic subsets due to
[2, Theorem 2.4.5]. Let the truth functions of ψ1 and ψ2 be

fψ1
|Ej =

Pj
Qj

, fψ2
|Fk =

Mk

Nk
,

where Pi, Qi,Mi, Ni are polynomials. As Di ⊆ Ej , Fk, the function

fϕ|Di = (fψ1 |Di)(fψ2 |Di) =
Pj
Qj

Mk

Nk

is continuous on Di.
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3. Finally, let ϕ = ψ1 → ψ2. Then we may construct new semi-algebraic subsets Di such that the
domain D of fϕ can be written as D =

⋃m
i=1Di in a similar way as in case 2. However, as the

interpretation of the implication is not continuous, we have to show that Di = Ej∩Fk, j = 1, . . . ,m1,
k = 1, . . . ,m2, can be written as a finite union of semi-algebraic subsets and fϕ is continuous on
every subset of Di. Let the truth functions of ψ1 and ψ2 be

fψ1
|Ej =

Pj
Qj

, fψ2
|Fk =

Mk

Nk
.

According to the interpretation of the implication, we can write for each (x1, . . . , xn) ∈ Di

fϕ(x1, . . . , xn) =

{
1 if fψ1

(x1, . . . , xn) ≤ fψ2
(x1, . . . , xn),

fψ2
(x1,...,xn)

fψ1
(x1,...,xn) otherwise.

The condition fψ1
(x1, . . . , xn) ≤ fψ2

(x1, . . . , xn) divides Di into two parts and it can be rewritten
as the following

Pj(x1, . . . , xn)Nk(x1, . . . , xn)−Mk(x1, . . . , xn)Qj(x1, . . . , xn) ≤ 0.

Since this condition is polynomial, both parts of Di are semi-algebraic and it follows from [2, Theo-
rem 2.4.5] that they can be split into finitely many connected semi-algebraic subsets. This completes
the proof.

2

Lemma 5.8 Let f : D → R be a continuous bounded function and the domain D be semi-algebraic and
connected. Then the range f(D) of the function f is an interval I ⊂ R.

proof: The domain D is semi-algebraic and connected set. By using [2, Proposition 2.5.13] it can be
shown that it is also path connected. It means that for each pair of points (x1, . . . , xn), (y1, . . . , yn) ∈ D
there exists a continuous mapping g : [0, 1] → D such that g(0) = (x1, . . . , xn) and g(1) = (y1, . . . , yn).
Then the interval [f(x1, . . . , xn), f(y1, . . . , yn)] is a subset of I due to the intermediate value theorem. The
set-theoretical supremum of the intervals obtained this way is I. 2

Now we are able to finish the proof of the Theorem 5.3.

Proof of Theorem 5.3: We know (due to Proposition 5.7) that if fϕ is an truth function of a formula
ϕ, then its domain D can be split into finitely many connected semi-algebraic subsets Di such that fϕ is
continuous on Di. If we apply Lemma 5.8 to each Di then we obtain that fϕ(Di) is an interval and f(D)
has to be a union of finitely many intervals which finishes the proof. 2

Remark 5.9 In [9], Godo, Esteva, and Montagna introduced so-called  LΠ logic joining  Lukasiewicz
R-fuzzy logic and product R-fuzzy logic. This logic was further developed in [4]. The results about
validation sets which we proved in the last section can be also used for  LΠ logic because  LΠ logic comprises
product RS-fuzzy logic (i.e. all connectives in product RS-fuzzy logic can be defined in  LΠ logic). As it
was shown in [5], the standard semantics of RS-fuzzy logic and  LΠ logic coincide. Thus we immediately
obtain that the validation sets in  LΠ logic are the same as in RS-fuzzy logic.

6 Concluding remarks

We studied four classes of frequently encountered fuzzy logics: S-fuzzy logics (where the basic connectives
are negation and conjunction), R-fuzzy logics (where the basic connectives are conjunction, implication
and the false statement), R∆-fuzzy logics (where the basic connectives are conjunction, implication, the
false statement, and ∆), and RS-fuzzy logics (which combine connectives of the first and the second type).
Each of these classes splits to numerous fuzzy logics depending on the interpretation of conjunction which
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we supposed to be a continuous t-norm. In all these fuzzy logics, we gave a characterization of validation
sets of formulas. This gives us an information for comparison of the semantical richness of these logics
and their ability to describe vagueness. Among other results, we observe that inclusion of an involutive
negation increases substantially possible degrees of partial satisfaction of formulas.
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