
PRODUCT  LUKASIEWICZ LOGIC

ROSTISLAV HORČÍK AND PETR CINTULA

Abstract.  Lukasiewicz logic plays a fundamental role among many-valued

logics. However, the expressive power of this logic is restricted to piecewise
linear functions. In this paper we enrich the language of  Lukasiewicz logic

by adding a new connective which expresses multiplication. The resulting

logic, P L, is defined, developed, and put into the context of other well-known
many-valued logics. We also deal with several extensions of this propositional

logic. A predicate version of P L logic is introduced and developed too.

1. Introduction

 Lukasiewicz logic [16, 11] is one of the most important logics in the broad fam-
ily of many-valued logics. Its corresponding algebraic structures of truth values
(MV-algebras) are well-known and deeply studied. Mundici’s famous result [2] es-
tablished an important correspondence between MV-algebras and Abelian l-groups
with strong unit. There is an obvious question if there is a logic, whose correspond-
ing algebras of truth values are in the analogous correspondence with l-rings.

There are several papers dealing with so-called product MV-algebras. Mon-
tagna’s papers [17, 18, 20] are fundamental to our aims. There is also a paper by
Di Nola and Dvurečenskij [5]. A product MV-algebra (PMV-algebra for short) is
an MV-algebra enriched by a product operation in such a way that the resulting
structures correspond to the f -rings with strong unit. In [17], Montagna proved
the subdirect representation theorem for PMV-algebras and established a corre-
spondence between linearly ordered f -rings with strong unit and linearly ordered
PMV-algebras. Later in [18], he introduced PMV4-algebras (PMV-algebras en-
riched by the 0-1 projector 4) and proved the categorical equivalence between
PMV4-algebras and certain extension of f -rings (so-called δ-f -rings). Finally in
[20], it was shown by Montagna and Panti that the variety of PMV4-algebras is
generated by the standard PMV4-algebra (over the real unit interval).

In the forthcoming paper [19], Montagna introduced a quasi-variety PMV+

containing only the PMV-algebras without non-trivial zero-divisors and showed that
PMV+ is generated by the standard PMV-algebra (over the real unit interval).

However, so far there is no logic corresponding to the all above-mentioned alge-
bras. The main aim of this paper is to define and develop such a logic. Our logic,
which corresponds to PMV-algebras, is called P L logic. Further, we introduce P L′

logic corresponding to the algebras from PMV+. We also study extensions of P L
and P L′ logics by Baaz’s 4 (P L4 and P L′4 logics). The algebras of truth values of

P L′4 logic correspond to PMV4-algebras. This, together with the fact that there
are also several other different algebraic structures called PMV-algebras, is the rea-
son why we call P L-algebras the algebras of truth values corresponding to P L logic.
Analogously, we introduce P L′-algebras, P L4-algebras, and P L′4-algebras.

We use the above-mentioned algebraic results to obtain completeness of all of
these logics and standard completeness for P L′ and P L′4 logic. Further, we show
an example of the P L-algebra which demonstrates that P L logic is not standard
complete.
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Figure 1. Relations between logics of this paper.

Then we show a relation of our logics to the well-known  LΠ logic which was
defined in [7]. Roughly speaking, the logic  LΠ is the extension of P L′ by the
product residuum.

Furthermore, we extend these logics by rational constants in the same way as the
Rational Pavelka’s logic (RPL) extends  Lukasiewicz logic (see [22], [21], and [11,
Section 3.3]). We obtain RPP L, RPP L′, RPP L4, and RPP L′4 logics. We prove
Pavelka-style completeness of these logics and show that the logics RPP L4 and
RPP L′4 coincide. Further, we prove standard completeness of RPP L4 and show

the relation of these logics to R LΠ (the extension of  LΠ by rational constants; see
[7]) and RPL.

Then we investigate the predicate versions of all logics mentioned above with
the exception of P L′ (the problem is that we can prove only completeness of this
logic w.r.t. all P L′-algebras, but we are not able to prove it w.r.t. linearly ordered
P L′-algebras). We prove completeness for P L∀, P L4∀ and P L′4∀, Pavelka style
completeness for RPP L∀, RPP L4∀ and even standard completeness for RPP L4∀.
Then we deal with the arithmetical complexity of the set of tautologies of these
logics which entails that P L∀, P L4∀ and P L′4∀ logics do not have the standard
completeness property. Finally, we show a relation of these logics to the predicate
versions of  LΠ and R LΠ logics (which were introduced in [3]) and the well-known
logic of Takeuti and Titani [23].

All logics considered in this paper lie between  Lukasiewicz logic and R LΠ logic
[3, 7]. Their mutual relations are depicted in Figure 1.

2. Preliminaries

In this section we summarize the basic notions and results from several systems
of propositional fuzzy logic that will be used throughout this paper.

2.1.  Lukasiewicz logic and  Lukasiewicz logic with 4.  Lukasiewicz logic was
introduced in [16]. In this paper we will understand this logic as an extension of the
basic logic BL introduced by Hájek in [11]. As usual, the language of BL contains a
set of propositional variables, a conjunction ⊗, an implication→, and the constant
0. Further connectives are defined as follows:



PRODUCT  LUKASIEWICZ LOGIC 3

ϕ ∧ ψ is ϕ⊗ (ϕ→ ψ),
ϕ ∨ ψ is ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ),
¬ϕ is ϕ→ 0̄,

ϕ ≡ ψ is (ϕ→ ψ)⊗ (ψ → ϕ),
ϕ⊕ ψ is ¬ϕ→ ψ,
ϕ	 ψ is ϕ⊗ ¬ψ,

1 is ¬0.

The following formulas are the axioms of BL:
(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) ,
(A2) ϕ⊗ ψ → ϕ ,
(A3) ϕ⊗ ψ → ψ ⊗ ϕ ,
(A4) ϕ⊗ (ϕ→ ψ)→ ψ ⊗ (ψ → ϕ) ,
(A5a) (ϕ→ (ψ → χ))→ (ϕ⊗ ψ → χ) ,
(A5b) (ϕ⊗ ψ → χ)→ (ϕ→ (ψ → χ)) ,
(A6) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ) ,
(A7) 0̄→ ϕ .

The only deduction rule of BL is modus ponens.
The notions of theory, proof, provability, and theorem are defined as usual. We

use also the notion of complete theory which is defined as follows: theory T is
complete if for each pair ϕ,ψ of formulas, T ` ϕ→ ψ or T ` ψ → ϕ. These notions
will be used in the same meaning through out the paper up to several exceptions
which will be mentioned explicitly.

In [11] it was shown that the  Lukasiewicz logic, denoted by  L, is the extension
of BL by the axiom

( L) ¬¬ϕ→ ϕ .
Now we recall several theorems of  Lukasiewicz logic used in the sequel (see [11]).

PROPOSITION 2.1. In  L the following formulas are provable:
(H1) ϕ→ (ψ → ϕ⊗ ψ) ,
(H2) (ϕ→ ψ)→ (ϕ⊗ χ→ ψ ⊗ χ) ,
(H3) ((ϕ1 → ψ1)⊗ (ϕ2 → ψ2))→ (ϕ1 ⊗ ϕ2 → ψ1 ⊗ ψ2) ,
(H4) ϕ→ ϕ ∨ ψ, ϕ ∨ ψ → ψ ∨ ϕ ,
(H5) ϕ ∧ ψ → ϕ, ϕ ∧ ψ → ψ ∧ ϕ, ϕ⊗ ψ → ϕ ∧ ψ ,
(H6) ((ϕ→ χ) ∧ (ψ → χ))→ (ϕ ∨ ψ → χ) ,
(H7) (ϕ→ ψ)→ (¬ψ → ¬ϕ) ,
(H8) (1→ ϕ) ≡ ϕ ,
(H9) (ϕ→ ψ)→ (ϕ→ ϕ ∧ ψ) .

In [11], Hájek also studies the extension of  Lukasiewicz logic by the unary con-
nective 4 (0-1 projector). The axioms of the extended  Lukasiewicz logic  L4 are
those of  Lukasiewicz logic  L plus:

( L41) 4ϕ ∨ ¬4ϕ ,
( L42) 4(ϕ ∨ ψ)→ (4ϕ ∨4ψ) ,
( L43) 4ϕ→ ϕ ,
( L44) 4ϕ→44ϕ ,
( L45) 4(ϕ→ ψ)→ (4ϕ→4ψ) .

Deduction rules of  L4 are modus ponens and necessitation for 4: from ϕ derive
4ϕ.

2.2. MV-algebras and MV4-algebras. Here we introduce the definition of MV-algebras.
They represent the semantics of  Lukasiewicz logic. By abuse of language, we use
the same symbols to denote logical connectives and the corresponding algebraic
operations.
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DEFINITION 2.2. An MV-algebra is a structure L = (L,⊕,¬,0) such that, letting
x	 y = ¬(¬x⊕ y), and 1 = ¬0 the following conditionas are satisfied:

(MV1) (L,⊕,0) is a commutative monoid,
(MV2) x⊕ 1 = 1 ,
(MV3) ¬¬x = x ,
(MV4) (x	 y)⊕ y = (y 	 x)⊕ x .

In each MV-algebra, we define the additional connectives: x⊗ y = ¬(¬x⊕ ¬y),
x→ y = ¬x⊕y, x∨y = (x	y)⊕y, x∧y = ¬(¬x∨¬y). We also define the relation
≤ as a natural lattice order with top element 1 and bottom element 0 w.r.t. the
lattice operations ∨ and ∧ (because (L,∨,∧,0,1) forms a lattice).

Now we list several useful claims (see [2]).

PROPOSITION 2.3. In every MV-algebra, the following conditions hold:

(1) x	 0 = x ,
(2) x	 x = 0 ,
(3) 0	 x = 0 ,
(4) the following conditions are equivalent: x ≤ y, x	 y = 0, x→ y = 1 ,
(5) if x ≤ y, then x⊕ z ≤ y ⊕ z, x	 z ≤ y 	 z, and z 	 y ≤ z 	 x ,
(6) (x	 y) ∧ (y 	 x) = 0 ,
(7) x⊗ (y ∨ z) = (x⊗ y) ∨ (x⊗ z) ,
(8) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z) ,
(9) 1	 x = ¬x ,

(10) a = (a⊕ ¬a)	 ¬a .

The algebraic structures corresponding to  L4 logic are so-called MV4-algebras
(for details see [11]).

DEFINITION 2.4. An MV4-algebra is a structure L = (L,⊕,¬,0,1,4) such that
(L,⊕,¬,0,1) is an MV-algebra and the unary operation 4 satisfies the following
conditions:

(41) 4x ∨ ¬4x = 1 ,
(42) 4(x ∨ y) ≤ 4x ∨4y ,
(43) 4x ≤ x ,
(44) 4x ≤ 44x ,
(45) 4(x→ y) ≤ 4x→4y ,
(46) 41 = 1 .

PROPOSITION 2.5. In each MV4-algebra, we have: 4(x⊗ y) = 4x ∧4y .

2.3.  LΠ-algebras and the  LΠ logic. In this subsection we recall the definitions
of  LΠ-algebras and  LΠ logic. This logic was introduced by Esteva, Godo and
Montagna in [7].

DEFINITION 2.6. An  LΠ-algebra is a structure: L = (L,⊕,¬,→Π ,�,0,1) such
that:

(1) (L,⊕,¬,4,0) is an MV4-algebra,
(2) (L,�,1) is a commutative monoid,
(3) x� (y 	 z) = (x� y)	 (x� z) ,
(4) 4(x ≡ y) ∧4(z ≡ t) ≤ ((x ∗ z) ≡ (y ∗ t)), where ∗ ∈ {→Π , �} ,
(5) x ∧ (x→Π 0) = 0 ,
(6) 4(x→ y) ≤ (x→Π y) ,
(7) 4(y → x) ≤ (x� (x→Π y) ≡ y) .

The operation 4 is defined by ¬x →Π 0 and 	, ≡, →, ∧, ⊗ are defined as in
the MV-algebra.
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Now we define  LΠ logic. The basic connectives of this logic are⊕, ¬, �,→Π . The
derived connectives are defined in the same way as the corresponding  LΠ-algebraic
operations.

DEFINITION 2.7. The logic  LΠ is given by the following axioms and deduction
rules:

( LΠ1) Axioms of the  Lukasiewicz logic with 4 ,
( LΠ2) 4(ϕ ≡ ψ) ∧4(χ ≡ δ)→ ((ϕ ∗ χ) ≡ (ψ ∗ δ)), for ∗ ∈ {→Π ,�} ,
( LΠ3) (ϕ� ψ)→ (ψ � ϕ) ,
( LΠ4) (ϕ� ψ)� χ ≡ ϕ� (ψ � χ) ,
( LΠ5) ϕ ∧ (ϕ→Π 0)→ 0 ,
( LΠ6) ϕ� (ψ 	 χ) ≡ (ϕ� ψ)	 (ϕ� χ) ,
( LΠ7) 4(ϕ→ ψ)→ (ϕ→Π ψ) ,
( LΠ8) 4(ψ → ϕ)→ (ϕ� (ϕ→Π ψ) ≡ ψ) .

The deduction rules are modus ponens and the necessitation of 4 (from ϕ infer
4ϕ).

The R LΠ logic is given by the rules and axioms of the  LΠ logic plus the axiom
1
2 ≡ ¬

1
2 and the infinitary deduction rule (IR): from ϕ→ r or each r < 1 infer ϕ,

where 1
2 is a new basic nullary connective and for each r ∈ Q∩ [0, 1], r is a derived

nullary connective.

The  LΠ logic is sound and complete w.r.t.  LΠ-algebras. The completeness of
the  LΠ logic was shown in [7]. A simplification of this axiomatic system was shown
by one of the authors in [4].

THEOREM 2.8. Let ϕ be a formula of  LΠ. Then ϕ is a theorem of the  LΠ logic
iff ϕ is an L-tautology w.r.t. each  LΠ-algebra L.

THEOREM 2.9. Each  LΠ-algebra is subdirect product of linearly ordered  LΠ-algebras.

2.4. Groups and rings. In this section, we introduce o-monoids, o-groups, and
o-rings which are the totally ordered l-monoids, l-groups, and l-rings respectively
(see [9]).

DEFINITION 2.10. The structure (S,+, 0,≤) is an o-monoid if (S,+, 0) is commu-
tative linearly ordered monoid with neutral element 0 and x ≤ y implies x+z ≤ y+z.

DEFINITION 2.11. A linearly ordered Abelian group (o-group for short) is a struc-
ture (G,+, 0,−,≤) such that (G,+, 0,−) is an Abelian group and the following is
satisfied:

(i) (G,≤) is a linearly ordered lattice,
(ii) if x ≤ y, then x+ z ≤ y + z for all z ∈ G.

DEFINITION 2.12. A linearly ordered commutative ring with strong unit
(o-ring for short) is a structure (R,+,−,×, 0, 1,≤) such that (R,+, 0,−,≤) is an
o-group, (R,+,−,×, 0, 1) is a commutative ring with strong unit, and the following
is satisfied: if x ≥ 0 and y ≥ 0, then x× y ≥ 0.

DEFINITION 2.13. Let R = (R,+,−,×, 0, 1,≤) be an o-ring and let L = {x ∈
R | 0 ≤ x ≤ 1}. For all x, y ∈ L define x ⊕ y = min{1, (x + y)} and ¬x = 1 − x.
By � we denote the operation × restricted to L. Then the algebra (L,⊕,�,¬, 0, 1)
is called the interval algebra of R.

3. P L and P L′ logics

3.1. Syntax – P L logic and P L′ logics. In this section, we introduce the P L
logic (P L for short), an extension of  Lukasiewicz logic by a new binary connective
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�. This connective plays the role of multiplication. Thus the basic connectives are
⊗,→,�, 0̄. Additional connectives ⊕,	,¬,∧,∨,≡, 1̄ are defined as in  Lukasiewicz
logic. We also introduce the P L′ logic (P L′ for short), an extension of P L by one
additional deduction rule. The reason for this extension is that the P L logic does
not possess the standard completeness property.

DEFINITION 3.1. The axioms of P L logic are the axioms of  Lukasiewicz logic, i.e.
(A1)–(A7), ( L), and the following axioms:

(P1) (χ� ϕ)	 (χ� ψ) ≡ χ� (ϕ	 ψ) ,
(P2) ϕ� (ψ � χ) ≡ (ϕ� ψ)� χ ,
(P3) ϕ→ ϕ� 1̄ ,
(P4) ϕ� ψ → ϕ ,
(P5) ϕ� ψ → ψ � ϕ .

The only deduction rule is modus ponens.
The P L′ logic is obtained from P L by adding a new deduction rule (ZD): from

¬(ϕ� ϕ) infer ¬ϕ.

It is obvious that all theorems of  Lukasiewicz logic are also theorems of P L and
all theorems of P L are also theorems of P L′.

Further, we show several useful theorems of P L logic. The most important one
is theorem (TP4) stating that the connective ≡ is a congruence w.r.t. the product
� (the fact that ≡ is a congruence w.r.t. the other connectives is known from [11]).

LEMMA 3.2. The following are theorems of P L logic:
(TP1) (ϕ→ ψ)→ (ϕ� χ→ ψ � χ) ,
(TP2) (ϕ ≡ ψ)→ (ϕ� χ ≡ ψ � χ) ,
(TP3) (ϕ1 → ψ1)⊗ (ϕ2 → ψ2)→ (ϕ1 � ϕ2 → ψ1 � ψ2) ,
(TP4) (ϕ1 ≡ ψ1)⊗ (ϕ2 ≡ ψ2)→ (ϕ1 � ϕ2 ≡ ψ1 � ψ2) ,
(TP5) ϕ⊗ ψ → ϕ� ψ ,
(TP6) (ϕ ∧ ψ)� χ ≡ (ϕ� χ) ∧ (ψ � χ) .

Proof. (TP1 ): We start with one direction of equivalence (P1) (χ�ϕ)	(χ�ψ)→
χ� (ϕ	ψ). By (P4) and (A1) we get (χ�ϕ)	 (χ�ψ)→ (ϕ	ψ). Using (H7) we
obtain ¬(ϕ	 ψ)→ ¬((χ� ϕ)	 (χ� ψ)). This is what we want to prove (because
¬(ϕ	 ψ) ≡ (ϕ→ ψ)).

(TP2 ): We use (TP1) and (TP1) with ϕ,ψ exchanged. Using (H3) we get
(ϕ→ ψ)⊗ (ψ → ϕ)→ (ϕ� χ→ ψ � χ)⊗ (ψ � χ→ ϕ� χ).

(TP3 ): Let us start with (TP1) (ϕ1 → ψ1)→ (ϕ1 � ϕ2 → ψ1 � ϕ2) and (TP1)
again (ϕ2 → ψ2)→ (ψ1�ϕ2 → ψ1�ψ2). Now using (H3) we get (ϕ1 → ψ1)⊗(ϕ2 →
ψ2)→ (ϕ1�ϕ2 → ψ1�ϕ2)⊗ (ψ1�ϕ2 → ψ1�ψ2). By axiom (A1) (after applying
axiom (A5)) we get (ϕ1�ϕ2 → ψ1�ϕ2)⊗(ψ1�ϕ2 → ψ1�ψ2)→ (ϕ1�ϕ2 → ψ1�ψ2).
Axiom (A1) completes the proof.

(TP4 ): This is an analogy of the proof (TP2), except that we use (TP3) instead
of (TP1).

(TP5 ): We start with (TP1) in the form (1→ ϕ)→ (1�ψ → ϕ�ψ). By (H8)
and (A5) we obtain ϕ⊗ (1� ψ)→ ϕ� ψ. The rest is obvious.

(TP6 ): We start with the first direction: by (H9) and (TP1) we obtain (ϕ →
ψ)→ (ϕ�χ→ (ϕ∧ψ)�χ). By (H5) and (A1) we get (ϕ→ ψ)→ ((ϕ�χ)∧(ψ�χ)→
(ϕ ∧ ψ)� χ). Analogously we get (ψ → ϕ) → ((ϕ� χ) ∧ (ψ � χ) → (ϕ ∧ ψ)� χ).
Axiom (A6) completes the proof of this direction.
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Reverse direction: by (T1) and (H9) we get (ϕ → ψ) → (ϕ � χ → (ϕ � χ) ∧
(ψ � χ)). By (H5) and (TP1) we get (ϕ ∧ ψ) � χ → ϕ � χ. By (A1) we get
(ϕ→ ψ)→ ((ϕ ∧ ψ)� ϕ→ (ϕ� χ) ∧ (ψ � χ)). The rest of the proof is analogous
to the first part. � �

Since we have the same deduction rules in P L as in BL, we obtain also the same
deduction theorem for P L. See [11, Theorem 2.2.18] for details.

However, in the P L′ logic the situation is quite different. After we introduce the
semantics we show that the deduction in the same form as in P L does not hold.

THEOREM 3.3 (Deduction theorem). Let T be a theory over P L and ϕ, ψ be
formulas. Then T ∪ {ϕ} ` ψ iff there is an n such that T ` ϕn → ψ, where
ϕn = ϕ⊗ . . .⊗ ϕ.

Due to the same reasons as in the previous theorem, we may reread the proof of
[11, Lemma 2.4.2] and get the following theorem for P L. We will prove an analogy
of this theorem for P L′ at the end of the next section (cf. Corollary 3.19).

THEOREM 3.4. Let T be a theory over P L and ϕ a formula such that T 6` ϕ. Then
there is a complete extension T ′ of T such that T ′ 6` ϕ.

3.2. Semantics – P L-algebras. Now we define the algebras corresponding to P L
and P L′ logics – the P L-algebras. They coincide with PMV-algebras which were
introduced in Montagna’s paper [17]. Furthermore, P L-algebras are also a subclass
of more general algebras introduced by Dvurečenskij and Di Nola in paper [5] (they
do not require 1 to be a neutral element for the product � and commutativity of
�). However, we decided to use the name P L-algebras, because some authors use
the name PMV-algebras for the different structures (e.g. pseudo MV-algebras).

The P L′-algebras coincide with PMV+-algebras introduced in forthcoming Mon-
tagna’s paper [19]. These are the subreducts of  LΠ-algebras.

DEFINITION 3.5. A P L-algebra is a structure L = (L,⊕,¬,�,0,1), where the
reduct L∗ = (L,⊕,¬,0,1) is an MV-algebra and the following identities hold:

(1) (a� b)	 (a� c) = a� (b	 c) ,
(2) a� (b� c) = (a� b)� c ,
(3) a� 1 = a ,
(4) a� b = b� a .

where a	 b = ¬(¬a⊕ b) = a⊗¬b and a⊗ b = ¬(¬a⊕¬b) . Moreover, we say that
L is a P L′-algebra if it fulfills the following quasi-identity:

(5) if a� a = 0 then a = 0 .

Observe that the P L-algebras form a variety and the P L′-algebras form a quasi-variety.

EXAMPLE 3.6. If ([0, 1],⊕,¬, 0, 1) is the standard MV-algebra (i.e. x ⊕ y =
min(1, x + y) and ¬x = 1 − x) and � is the usual algebraic product of reals
then [0, 1]S = ([0, 1],⊕,¬,�, 0, 1) is called the standard P L-algebra. The stan-
dard P L-algebra [0, 1]S is also P L′-algebra, thus we will also call it the standard
P L′-algebra.

Notice that a linearly ordered P L-algebra is P L′-algebra iff it has only trivial
zero-divisors.

Now we recall several known results about P L and P L′-algebras. In [17, Lemma
4.3 (a)], Montagna showed that there is a correspondence between linearly ordered
P L-algebras and o-rings. The analogous result for P L′-algebras is a consequence of
[19, Corollary 4.3].

THEOREM 3.7. An algebra L is a linearly ordered P L-algebra if and only if L is
isomorphic to the interval algebra of some o-ring RL. Furthermore, L is P L′-algebra
iff RL is a domain of integrity.
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The following fact is a corollary of the previous theorem and was proved in [19,
Corollary 4.4].

THEOREM 3.8. The quasi-variety of P L′-algebras is generated by [0, 1]S.

THEOREM 3.9. Let C be either P L or P L′. Then every C-algebra is a subdirect
product of linearly ordered C-algebras.

Proof. The claim for P L-algebras is proved in [17, Theorem 5.1]. The claim for
P L′-algebras is a trivial consequence of Theorem 2.9 and the fact that P L′-algebras
are exactly the subreducts of  LΠ-algebras (cf. [19, Theorem 4.2]). �

Now we will study the relation between nontrivial zero-divisors and infinitesimal
elements of P L-algebras. We recall the definition of an infinitesimal element and
continue with the lemma showing the distributivity of � w.r.t. ⊕.

DEFINITION 3.10. An element a in a P L-algebra is said to be infinitesimal iff
a > 0 and na ≤ ¬a for each n ∈ N, where na = a⊕ · · · ⊕ a.

LEMMA 3.11. In each P L-algebra the following inequality holds:

b� (x⊕ y) ≤ (b� x)⊕ (b� y) .

Proof. The inequality is equivalent to (b � (x ⊕ y)) 	 ((b � x) ⊕ (b � y)) = 0.
Now (b � (x ⊕ y)) 	 ((b � x) ⊕ (b � y)) = (b � (x ⊕ y)) ⊗ ¬(b � x) ⊗ ¬(b � y) =
[(b� (x⊕ y))	 (b�x)]	 (b� y) = b� [((x⊕ y)	x)	 y] = b� [(x⊕ y)⊗¬x⊗¬y] =
b� [(x⊕ y)	 (x⊕ y)] = 0. � �

PROPOSITION 3.12. Let L be a linearly ordered P L-algebra, and a ∈ L, a > 0. If
a is a zero-divisor then a is an infinitesimal.

Proof. Let us suppose that a is a zero-divisor which is not infinitesimal. Then there
exists n ∈ N such that na = 1. By Lemma 3.11 a�na ≤ (a�a)⊕· · ·⊕ (a�a) = 0
because a is a zero-divisor. Thus a = a� 1 = a� na = 0, a contradiction. �

Further we will show interesting examples which have important consequences
in the sequel.

EXAMPLE 3.13. Let us take the following set:

L1,∞ = {0, 1, 2, . . . ,∞,∞− 1,∞− 2, . . .} ,
where we identify ∞ with ∞− 0. The operations are defined as follows:

n ∈ N: ¬n =∞− n,
¬(∞− n) = n.

k, n ∈ N: k ⊕ n = k + n,
(∞− k)⊕ (∞− n) =∞,

k ⊕ (∞− n) =

{
(∞− n+ k) if k ≤ n,
∞ otherwise.

k, n ∈ N: k � n = 0,
k � (∞− n) = k,
(∞− k)� (∞− n) = (∞− k − n).

The structure (L1,∞,⊕,�,¬, 0,∞) is a P L-algebra. Observe also that this algebra
possesses nontrivial zero-divisors, thus it is not a P L′-algebra. Notice that the
MV-reduct of this algebra is the well-known Chang algebra, thus the elements of
L1,∞ are ordered as follows: 0 < 1 < 2 < · · · <∞− 2 <∞− 1 <∞.

We show how to generate this P L-algebra with nontrivial zeros-divisors from
the standard P L-algebra. It is the well-known fact that each algebra in a variety
generated by [0, 1]S can be obtained as A ∈ HSP ([0, 1]S), where P means the direct
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product, S a subalgebra, and H a homomorphic image. So we will construct the
example in the following three steps.

(1) Step P : Take the algebra of all functions L = [0, 1][0,1].
(2) Step S: Restrict to the subalgebra S ⊆ L of all continuous piecewise poly-

nomial functions with integer coefficients such that either f(0) = 0 or
f(0) = 1.

(3) Step H: Factorise by the equivalence ∼, where f ∼ g iff f(0) = g(0) and
f ′(0) = g′(0). By f ′(0), we denote the right-derivative of f in 0.

EXAMPLE 3.14. Now we will show an example of a P L-algebra which cannot be
generated from the standard P L-algebra. Firstly, we construct an o-monoid and
then we construct the algebra of polynomials over this monoid. In this way, we
obtain a ring; its interval algebra is the desired P L-algebra (cf. Theorem 3.7).

The following example of an o-monoid can be found in [8]. For any a, b, c, d ∈ N,
〈a, b, c〉 will denote the sub-o-monoid of N generated by a, b, c, and 〈a, b, c〉/d will
denote the o-monoid obtained by identifying with infinity all elements of 〈a, b, c〉
that are greater than or equal to d.

Let S = {32∗} ∪ 〈9, 12, 16〉/30 denote the o-monoid obtained from
〈9, 12, 16〉/30 by adding one additional element, denoted by 32∗. This element sat-
isfies 16 + 16 = 32∗, 32∗ + z = ∞, and the whole monoid is to be ordered as
follows:

0 < 9 < 12 < 16 < 18 < 21 < 24 < 25 < 27 < 28 < 32∗ <∞ .

All the relations that do not involve 32∗ are as in N, so we have only to check
that x ≤ y implies x+ z ≤ y + z if x, y, or z is equal to 32∗, but it is easy to see.

Let R be the o-ring of integers. Then the monoid ring R[S] is the set of all finite
formal sums r1X

s1 + · · ·+rnX
sn , where X is an indeterminate, ri ∈ R and si ∈ S.

Multiplication is defined by XsXt = Xs+t and by distributivity (so X0 = 1). An
element r1X

s1 +· · ·+rnXsn is said to be in normal form if ri 6= 0 and s1 < · · · < sn.
We identify X∞ with 0 and denote the resulting quotient of R[S] by R[S]h. An

element r1X
s1 + · · · + rnX

sn in normal form is positive iff r1 > 0. Thus for all
a, b ∈ S, a < b implies Xa > Xb.

It can be checked that R[S]h is an o-ring. Finally, we get the desired P L-algebra
L as the interval algebra of R[S]h. In L the following identity, which is valid in
[0, 1]S, does not hold:

(1) (x1 � z1 	 y1 � z2) ∧ (x2 � z2 	 y2 � z1) ∧ (y1 � y2 	 x1 � x2) = 0

Indeed, let us evaluate the variables as follows:

x1 = X16 y1 = X18 z1 = X16

x2 = X12 y2 = X9 z2 = X12

Then the terms in brackets in (1) attain the following values:

x1 � z1 	 y1 � z2 = X16 �X16 	X18 �X12 = X32∗ > 0 ,

x2 � z2 	 y2 � z1 = X12 �X12 	X9 �X16 = X24 	X25 > 0 ,

y1 � y2 	 x1 � x2 = X18 �X9 	X16 �X12 = X27 	X28 > 0 .

To see that (1) is valid in the standard P L-algebra [0, 1]S, just observe that
whenever one of the variables xi, yi, zi is 0, then the equality trivially holds. Further,
if x1z1 > y1z2 and x2z2 > y2z1, then

∏
xi

∏
zj >

∏
yi
∏
zj and this implies∏

xi >
∏
yi.
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The following theorem is a consequence of the previous examples. Let P L′,
P L, and [0,1]S respectively denote the quasi-variety of P L′-algebra, the variety of
P L-algebras, and the variety generated by [0, 1]S resp.

THEOREM 3.15. The following holds:

(1) P L′ is not a variety.
(2) P L′ $ [0,1]S $ P L.

Proof. (1) The proof can be found in [19, Theorem 3.1]. However, we give a
very simple alternative proof: Example 3.13 shows that P L′ is not closed
under HSP , so it is not a variety.

(2) The first inequality is a consequence of Theorem 3.8, the second is obvious.
The strictness of the first inequality is demonstrated by Example 3.13 and
the strictness of the second one is demonstrated by Example 3.14.

�

REMARK 3.16. The fact that the variety of P L-algebras is not generated by [0, 1]S is
already mentioned in Montagna’s paper [17, Problem 1], but there is no proof, only a
reference to Isbell’s paper [15]. In that paper, Isbell proved that the equational theory
of formally real f -rings (lattice-ordered rings satisfying all lattice-ring identities that
are true in a totally-ordered field) does not have a finite base, or even a base with
a finite number of variables. Thus it seems to us that the connection between the
second part of Theorem 3.15 and Isbell’s paper is not so straightforward. For this
reason, we gave an alternative proof of the second part of Theorem 3.15 which is
easier for the reader to follow.

3.3. Completeness. In this section, we are going to deal with the strong com-
pleteness theorem for P L and P L′ logic. We start with the proof of soundness and
then we introduce Lindenbaum P L-algebra and P L′-algebra.

THEOREM 3.17. P L logic is sound w.r.t. P L-algebras, i.e. if ϕ is a theorem of
P L then ϕ is an L-tautology for each P L-algebra L.

Furthermore, P L′ logic is sound w.r.t. P L′-algebras.

Proof. Let L be a P L-algebra. Since L∗ is an MV-algebra, we know that the
axioms of  Lukasiewicz logic hold in L and modus ponens is a sound deduction rule.
Axioms (P1)–(P3) and (P5) are obviously L-tautologies (cf. conditions (1)–(4) in
the definition of P L-algebra).

We check L-tautologicity of (P4). By Proposition 2.3,4, we know that a � b →
a = 1 iff a � b ≤ a = a � 1. Now using [17, Lemma 2.9(ii)], the proof of the first
statement is done.

To prove the second statement, just observe that the rule (ZD) is obviously sound
in each P L′-algebra. � �

This theorem has two important corollaries. The first states the connection of
our logics and  Lukasiewicz logic and the second is the promised proof that the
deduction theorem does not hold in P L′.

COROLLARY 3.18. P L and P L′ are conservative extensions of  Lukasiewicz logic.

Proof. We show the proof for P L. The proof for P L′ is analogous. Let ϕ be a for-
mula of  Lukasiewicz logic which is a theorem of P L. Due to 3.17, ϕ is an L-tautology
for each P L-algebra L. Thus it is a tautology in the standard P L-algebra. Since ϕ
is a formula of  Lukasiewicz logic, it is also a tautology in the standard MV-algebra.
Using the standard completeness theorem of  Lukasiewicz logic we conclude that ϕ
is a theorem of  Lukasiewicz logic. � �
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COROLLARY 3.19. P L′ does not satisfy the deduction theorem in the same form
as P L.

Proof. Since obviously {¬(v � v)} ` ¬v, the deduction theorem would give us that
for some n the formula (¬(v � v))n → ¬v is a theorem of P L′. Hence (¬(v �
v))n → ¬v is [0, 1]S-tautology (by the latter theorem), i.e., there is n such that
(¬(x�x))n ≤ ¬x for each x ∈ [0, 1]. Notice that the derivatives of (¬(x�x))n and
¬x at the point 0 are equal to 0 and −1, respectively. Thus for each n, there is x
such that (¬(x� x))n > ¬x, a contradiction. � �

DEFINITION 3.20. Let C be either P L or P L′ and T a theory over C. For each
formula ϕ, let [ϕ]T denote the set {ψ | T ` ϕ ≡ ψ}. Let LT be the set of all classes
[ϕ]T . We define the operations as: [ϕ]T ∗ [ψ]T = [ϕ ∗ ψ]T , where ∗ on the left is a
defined operation and on the right side is the corresponding connective in P L. The
resulting structure LT = (LT ,⊕,¬,�,0,1) is called the Lindenbaum P L-algebra of
T -equivalent formulas.

The above definition of the operations is correct due to known properties of
Lindenbaum MV-algebra and theorem (TP4).

LEMMA 3.21. Let C be either P L or P L′ and T a theory over C. Then LT is a
C-algebra. Furthermore, LT is a linear C-algebra iff T is complete.

The proof is a straightforward generalization of the proof of an analogous lemma
for BL-algebras (see [11]). Now we are ready to prove the strong completeness
theorem.

THEOREM 3.22 (Strong Completeness). Let C be either P L or P L′, T a theory
over C, and ϕ a formula. Then the following are equivalent:

(1) T ` ϕ,
(2) e(ϕ) = 1L for each linearly ordered C-algebra L and each L-model e of

theory T ,
(3) e(ϕ) = 1L for each C-algebra L and each L-model e of theory T .

Proof. The implication (1⇒2) follows from soundness (Theorem 3.17).
We prove the implication (2⇒3) indirectly. Assume there is a C-algebra L and

an L-model e of theory T such that e(ϕ) < 1L. Since L is the subdirect product
of the family (Ai)i∈I of linearly ordered C-algebras (cf. Theorem 3.9), there must
be an index i and a projection π : L → Ai such that π ◦ e is a model of T and
π ◦ e(ϕ) < 1Ai

.
Finally, we prove the implication (3⇒1). Assume that T 6` ϕ and LT is the

Lindenbaum algebra of T . Define the LT -evaluation e by e(v) = [v]T . Since
e(ϕ) = [ϕ]T , e is an LT -model of T . Since e(ϕ) < 1LT

, the proof is done. � �

COROLLARY 3.23 (Completeness). Let C be either P L or P L′ and ϕ a formula.
Then the following are equivalent:

(1) C ` ϕ,
(2) ϕ is an L-tautology for each C-algebra L,
(3) ϕ is an L-tautology for each linearly ordered C-algebra L.

The question whether our logics possess the standard completeness is answered
by the following two theorems. The first is a consequence of Theorem 3.15. The
proof of the second is based on Theorem 3.8.

THEOREM 3.24. P L-logic does not fulfil the standard completeness property.

THEOREM 3.25 (Finite Strong Standard Completeness). Let T be a finite theory
over P L′ and ϕ be a formula. Then
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(1) T ` ϕ iff e(ϕ) = 1 for each [0, 1]S-model e of theory T ,
(2) P L′ ` ϕ iff ϕ is [0, 1]S-tautology.

Proof. (1) One direction is obvious. To prove the second, recall that if T 6` ϕ
then there is a linearly ordered P L′-algebra L and an L-model e of theory T such
that e(ϕ) < 1L. Let us denote by tψ the term corresponding to the formula ψ.
Then the inequality e(ϕ) < 1L is equivalent to the fact that the quasi-identity∧
ψ∈T (tψ = 1) ⇒ (tϕ = 1) is not valid in L (the symbols

∧
and ⇒ stand for the

classical logical connectives). Due to Theorem 3.8, the same quasi-identity does
not hold in [0, 1]S and the rest of the claim easily follows.

(2) Trivial. � �

COROLLARY 3.26. The logic P L′ is strictly stronger than the logic P L.

At the end of this section we present a corollary of the strong completeness
Theorem 3.22, namely the analogy of Theorem 3.4 for the P L′ logic, we promised.

THEOREM 3.27. Let T be a theory over P L or P L′ and ϕ a formula such that
T 6` ϕ. Then there is a complete supertheory T ′ such that T ′ 6` ϕ.

Proof. We show the proof for the P L′ logic. Since T 6` ϕ, there is a linearly ordered
P L′-algebra L and the L-model e such that e(ϕ) < 1L. Take T ′ = {ψ | e(ψ) = 1L}.
Observe that T ⊆ T ′ (because e is the L-model of T ) and T ′ 6` ϕ (if T ′ ` ϕ
then e(ϕ) = 1 (due to the completeness theorem)—a contradiction). Finally, T ′ is
complete (each pair (ϕ,ψ) satisfies either e(ϕ) ≤ e(ψ) or e(ψ) ≤ e(ϕ), thus either
ϕ→ ψ ∈ T ′ or ψ → ϕ ∈ T ′). � �

4. P L4 logic

In this section, we extend the language of P L logic by a unary connective 4 and
introduce P L4 logic. The connective was introduced in Gödel logic by Baaz (see
[1]) and generalized to BL by Hájek (see [11]).

DEFINITION 4.1. Let C be either P L or P L′. The C4 logic results from C by
adding axioms ( L41) – ( L45) and the deduction rule of necessitation.

LEMMA 4.2. The formulas 4ϕ⊗ψ ≡ 4ϕ∧ψ and 4ϕ�ψ ≡ 4ϕ∧ψ are theorems
of the P L logic.

Proof. The first formula is the known theorem of L4. For the proof of the second
one, use the first formula and theorem (TP5). �

THEOREM 4.3. The P L′4 logic can be equivalently defined as an extension of P L4
by the following axiom:

(P4) 4¬(ϕ� ϕ)→ ¬ϕ .

Proof. Firstly, we show that the deduction rule (ZD) can be derived in P L4 ex-
tended by axiom (P4). Let ¬(ϕ�ϕ) be a theorem. Then 4¬(ϕ�ϕ) is a theorem
as well and so ¬ϕ is provable (by modus ponens and axiom (P4)).

Converse direction: It is sufficient to prove ¬(¬(P4) � ¬(P4)) (let us denote
this formula by F ). Then proof is done by the use of (ZD). Observe that ¬(P4) ≡
4¬(ϕ�ϕ)⊗ϕ. Thus by Lemma 4.2 we get ¬F ≡ (4¬(ϕ�ϕ)∧ϕ)�(4¬(ϕ�ϕ)∧ϕ).
After repeated use of theorem (TP6) we get ¬F ≡ (4¬(ϕ � ϕ) � 4¬(ϕ � ϕ)) ∧
(4¬(ϕ� ϕ)� ϕ) ∧ (ϕ�4¬(ϕ� ϕ)) ∧ (ϕ� ϕ).

By use of Lemma 4.2 we may write ¬F ≡ 4¬(ϕ � ϕ) ∧ ϕ ∧ (ϕ � ϕ). Finally,
by the obvious fact that ϕ ∧ (ϕ � ϕ) ≡ ϕ � ϕ is a theorem (use (H9), (H5)) and
using Lemma 4.2, we get F ≡ ¬(4¬(ϕ� ϕ)⊗ (ϕ� ϕ)) ≡ 4¬(ϕ� ϕ)→ ¬(ϕ� ϕ).
Since 4¬(ϕ � ϕ) → ¬(ϕ � ϕ) is an instance of axiom ( L43), the formula F is a
theorem. � �
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Due to the previous result, we can prove the deduction theorem for P L4 and
P L′4 in the same way as for  L4. See [11, Theorem 2.4.14] for details.

THEOREM 4.4 (Deduction theorem). Let T be a theory over P L4 or P L4 and ϕ,
ψ be formulas. Then T ∪ {ϕ} ` ψ iff T ` 4ϕ→ ψ.

Now let us introduce the algebras corresponding to P L4 and P L′4.

DEFINITION 4.5. A P L4-algebra is a structure L = (L,⊕,¬,�,4,0,1), where the

reduct L∗ = (L,⊕,¬,4,0,1) is an MV4-algebra and the reduct L̂ = (L,⊕,¬,�,0,1)
is a P L-algebra. A P L′4-algebra is a P L4-algebra where the following identity holds:

(1’) 4¬(ϕ� ϕ) = 4¬ϕ .
It can be shown that our P L′4-algebras and PMV4-algebras defined in Mon-

tagna’s paper [18] coincide. Montagna proved that there is a categorical equiva-
lence between categories of PMV4-algebras and δ-f -rings (f -rings extended by an
operation corresponding to 4).

An alternative way to introduce P L′4-algebras is to define P L′4-algebras as

P L4-algebras satisfying quasi-identity (5) from Definition 3.5. The proof that both
definitions coincide is easy.

REMARK 4.6. If (L,⊕,¬,�,0,1) is a linearly ordered P L-algebra, then we may
introduce the operation 4 by setting 4(x) = 1 iff x = 1 and 4(x) = 0 otherwise
(see [11]). Then the structure (L,⊕,¬,�,4,0,1) is a linearly ordered P L4-algebra.

EXAMPLE 4.7. According to Remark 4.6, we may extend the definition of the
standard P L-algebra [0, 1]S by 4. Then we obtain the standard P L4-algebra which
we denote [0,1]S4 = ([0, 1],⊕,¬,�,4, 0, 1).

THEOREM 4.8. Every P L4-algebra is a subdirect product of linearly ordered P L4-algebras.

Proof. Just observe that the following formula holds in every P L4-algebra:

4(x ≡ y) ∧4(a ≡ b) ≤ (x� a) ≡ (y � b) .
Indeed, by (TP4) we get (x ≡ y) ⊗ (a ≡ b) → (x � a) ≡ (y � b) = 1. Then by
(45) and Proposition 2.5 we obtain 4(x ≡ y) ∧4(a ≡ b) ≤ 4((x� a) ≡ (y � b)).
Finally we use (43).

Thus we have satisfied the conditions of [7, Lemma 3] and we can follow the
proof of [7, Theorem 4]. � �

As the corollary, we obtain the subdirect representation theorem for
P L′4-algebras which was already proven by Montagna in [18, Proposition 2.4 (i)].

COROLLARY 4.9. Every P L′4-algebra is a subdirect product of linearly ordered

P L′4-algebras.

THEOREM 4.10 (Strong Completeness). Let C be either P L4 or P L′4, T be a
theory over C and ϕ be a formula. Then the following are equivalent:

(1) T ` ϕ,
(2) e(ϕ) = 1L for each C-algebra L and each L-model e of theory T ,
(3) e(ϕ) = 1L for each linearly ordered C-algebra L and each L-model e of

theory T .

Proof. The implication (1⇒2) is soundness which is obvious. The implication
(2⇒3) is trivial. Finally, we prove the implication (3⇒1). Assume T 6` ϕ. Then
we found a complete supertheory T ′ 6` ϕ (this can be done by the straightforward
modification of Theorem 3.4—due to the deduction theorem). Let us take the Lin-
denbaum C-algebra LT ′ of T ′ (its construction is analogous to the construction of
the Lindenbaum P L-algebra). Then LT ′ is linearly ordered and e(v) = [v]T ′ is
obviously an LT ′ -model of T ′. Since e(ϕ) < 1LT ′ , the proof is done. � �
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THEOREM 4.11. The P L′4 logic is strictly stronger than P L4 logic.

Proof. This as an obvious consequence of Corollary 3.26. However, the connective
4 allows us to find a simpler proof. According to Remark 4.6 and Example 3.13,
we have a P L4-algebra L with an element c > 0 such that c � c = 0. Then
¬c = (∞− c) < ∞, thus 4¬c = 0. Since ¬(c � c) = ∞ and so 4(¬(c � c)) = ∞,
we know that the axiom (P4) is not an L-tautology. Thus (P4) is not a theorem
of P L4. � �

THEOREM 4.12 (Finite Strong Standard Completeness). Let T be a finite theory
over P L′4 and ϕ be a formula.

1. P L′4 ` ϕ iff ϕ is the [0, 1]S4-tautology.

2. T ` ϕ iff e(ϕ) = 1 for each [0, 1]S4-model e of T .

Proof. (1): Montagna and Panti proved that the standard P L′4-algebra [0, 1]S4
generates the whole variety of P L′4-algebras (see [20, Theorem 2.4]). Thus the
statement follows easily.

(2): Again we prove the non-trivial implication only. Let T = {ϕ1, . . . , ϕn}
and let e be an [0, 1]S4-evaluation. Firstly, if e is a [0, 1]S4-model of T , then
e(ϕ) = 1. Thus e(4ϕ1⊗· · ·⊗4ϕn → ϕ) = 1. Secondly, if e is not a [0, 1]S4-model,
then e(4ϕ1 ⊗ · · · ⊗ 4ϕn → ϕ) = 1 as well. Thus 4ϕ1 ⊗ · · · ⊗ 4ϕn → ϕ is a
[0, 1]S4-tautology and by (1): P L′4 ` 4ϕ1 ⊗ · · · ⊗ 4ϕn → ϕ. Thus T ` 4ϕ1 ⊗
· · · ⊗4ϕn → ϕ and, because T ` 4ϕ1 ⊗ · · · ⊗4ϕn, the proof is complete. � �

Now we summarize known facts about connections between our logics and  Lu-
kasiewicz and  LΠ logic.

THEOREM 4.13.

(1) P L, P L′, P L4, and P L′4 logics are conservative extensions of  Lukasiewicz
logic.

(2) P L4 and P L′4 logics are conservative extensions of  Lukasiewicz logic with4.

(3) P L4 logic is a conservative extension of P L logic and P L′4 logic is a con-

servative extension of P L′ logic.
(4) P L′4 logic is not a conservative extension of P L logic.

(5)  LΠ logic is a conservative extension of P L′ and P L′4 logics.

(6)  LΠ logic is not a conservative extension of P L and P L4 logics.

Proof. (1): For P L it is already proven in Theorem 3.18, the proof for the remaining
logics is analogous.

(2) Analogous to (1).
(3) It follows from the fact that we can extend each linearly ordered P L-algebra

by 4 and from the completeness theorems for both logics.
(4) Since P L′4 is a conservative extension of P L′ and P L′ is strictly stronger

than P L, the proof easily follows.
(5) A consequence of Theorems 2.8, 3.25, and 4.12.
(6) A consequence of (5) and the fact that P L4 is strictly weaker than P L′4 (and

that P L is strictly weaker than P L′). � �

5. Pavelka style extension of P L

In this section we add rational constants into our language together with the
book-keeping axioms. Rational Pavelka logic (RPL) was introduced in the series
of papers by Pavelka [22] and simplified to its modern form in [11]. RPL has
interesting properties and has been widely studied.
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A lot details about this logic can be found in the recent book by Novák, Perfilieva
and Močkoř [21]. In this section we will fix the algebra of truth values to the
standard algebra of the respective logic.

DEFINITION 5.1. Let L be one of the logics P L, P L′, P L4, P L′4. The language
of the logic RPL arises from the language of L by adding a truth constant r for
each r ∈ Q∩ [0, 1]. The notion of evaluation extends by the condition e(r) = r. The
axioms of RPL logic are the axioms of L plus the following book-keeping axioms
for each rational r, s ∈ [0, 1] :

(r ⊕ s) ≡ min(1, r + s) ,

(r � s) ≡ r · s ,
¬r ≡ 1− r ,
4r ≡ 4r (in the case of RPP L4 and RPP L′4).

The deduction rules of RPL are the same as the deduction rules of L. The logics
RPP L4 and RPP L′4 have one additional infinitary deduction rule (IR):

from r → ϕ for all r < 1, derive ϕ.

Since we added the infinitary deduction rule IR, we have to change the notion
of proof. Let T be a theory, then the set CRPL(T ) of all provable formulas in T is
the smallest set of formulas, which contains T , axioms of RPL and is closed under
all deduction rules. For simplicity, we shall write T ` ϕ to denote ϕ ∈ CRPL(T ).

Now we have to prove that our infinitary deduction rule doesn’t violate the
deduction theorem. We cannot use the standard way of proving this theorem since
our notion of proof is now different.

THEOREM 5.2 (Deduction theorem). Let ϕ and ψ be formulas.

(1) Let T be a theory over RPP L. Then T ∪ {ϕ} ` ψ iff there is n such that
T ` ϕn → ψ.

(2) Let T be a theory over RPP L4 or RPP L′4. Then T ∪ {ϕ} ` ψ iff T `
4ϕ→ ψ.

Proof. Statement 1 is proved as usual (see [11, Theorem 2.2.18]).
Statement 2 is more complex because of the infinitary deduction rule (IR). We

prove this for RPP L4 (the proof for RPP L′4 is analogous). Let K = {ψ | 4ϕ →
ψ ∈ CRPL(T )}. We shall show that K = CRPL(T ∪ {ϕ}). One direction—K ⊆
CRPL(T ∪ {ϕ})—is obvious. We prove the reverse direction by showing that K
is a set containing T ∪ {ϕ}, axioms of RPL and closed under all deduction rules.
The first two conditions obviously hold. We prove that K is closed under modus
ponens. Assume ψ,ψ → χ ∈ K. Then T ` 4ϕ → ψ and T ` 4ϕ → (ψ → χ).
Thus T ` 4ϕ⊗4ϕ→ ψ ⊗ (ψ → χ) which leads to T ` 4ϕ→ χ. Hence χ ∈ K.

Now we prove that K is closed under the necessitation. Assume ψ ∈ K. Then
T ` 4ϕ → ψ. Thus T ` 4(4ϕ → ψ) (because CRPL(T ) is closed under the
necessitation). Then T ` 44ϕ → 4ψ (by axiom ( L45)) which leads to T `
4ϕ→4ψ (by axiom ( L43)). Hence 4ψ ∈ K.

Finally, we prove that K is closed under (IR). Assume r → ψ ∈ K for each
r < 1. Then T ` 4ϕ→ (r → ψ) which leads to T ` r → (4ϕ→ ψ) for each r < 1.
Since CRPL(T ) is closed under (IR), we get T ` 4ϕ→ ψ. Hence ψ ∈ K.

�

DEFINITION 5.3. Let L be one of the P L, P L′, P L4, P L′4, and T a theory over
RPL and ϕ be a formula.
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(1) The truth degree of ϕ over T is ||ϕ||T = inf{e(ϕ) | e is a model of T} (by the
word “model” we mean the [0, 1]S-model in the case of RPP L, RPP L′, and the
[0, 1]S4-model in the case of RPP L4, RPP L′4).

(2) The provability degree of ϕ over T is |ϕ|T = sup{r | T ` r → ϕ}.

LEMMA 5.4. Let T be a theory over either RPP L4 or RPP L′4 and ϕ a formula.

Then |ϕ|T = 1 iff T ` ϕ.

Proof. Since |ϕ|T = sup{r | T ` r → ϕ} = 1, T ` r → ϕ for all r < 1. Thus by the
deduction rule (IR) we obtain T ` ϕ. The reverse implication is trivial. � �

LEMMA 5.5. Let L be one of the P L, P L4, P L′4. Let T be a consistent complete
theory over RPL. Then

(1) For each ϕ, |ϕ|T = sup{r|T ` r → ϕ} = inf{r|T ` ϕ→ r}.
(2) The provability degree commutes with all connectives, i.e.,

|¬ϕ|T = 1− |ϕ|T , |ϕ→ ψ|T = |ϕ|T → |ψ|T , |ϕ� ψ|T = |ϕ|T � |ψ|T .

Moreover, in the case of RPP L4 and RPP L′4, the following holds:

|4ϕ|T = 4|ϕ|T .

Thus the evaluation e(v) = |v|T is a model of T .

Proof. (1) See [11, Lemma 3.3.8(1)].
(2) For the proofs for negation and implication see [11, Lemma 3.3.8(2)]. The proof
for �: |ϕ|T � |ψ|T = sup{r|T ` r → ϕ} � sup{s|T ` s→ ψ} = sup{r � s|T ` r →
ϕ, T ` s→ ψ} ≤ sup{r � s|T ` r � s→ ϕ� ψ} (since we know that if T ` r → ϕ
and T ` s → ψ then T ` r � s → ϕ � ψ, cf. theorem (TP3)). Conversely, assume
that |ϕ|T � |ψ|T < t < t′ < |ϕ � ψ|T . Then there are r, s such that t = r � s,
r > |ϕ|T , and s > |ψ|T . Due to (1), T ` ϕ → r, T ` ψ → s. Using (TP3) we
get T ` ϕ � ψ → t. We also know that T ` t′ → ϕ � ψ. Thus T ` t′ → t.
Since t′ → t < 1, we get that T is inconsistent, a contradiction. If T ` t′ → t,
then T ` t′ → t⊗ . . .⊗ t′ → t for any n-fold conjunction. As ⊗ is an Archimedean
t-norm, T ` 0.

Finally, we have to show the proof for 4. Firstly, assume |ϕ|T < 1. Then
4|ϕ|T = 0 and T ` ϕ → r for some r < 1 (cf. (1)). Further, T ` 4(ϕ → r) and
T ` 4ϕ → 0 (by necessitation, axiom (45), and the book-keeping axiom for 4).
Thus |4ϕ|T = 0 as well.

Secondly, assume that |ϕ|T = 1. Then 4|ϕ|T = 1 and, by Lemma 5.4, T ` ϕ.
Thus T ` 4ϕ and |4ϕ|T = 1 as well. � �

THEOREM 5.6. Let L be one of the P L, P L′, P L4, P L′4 and T a theory over

RPL and ϕ be a formula. Then |ϕ|T = ||ϕ||T .

Proof. For RPP L, RPP L4, and RPP L′4, see the proof of completeness of RPL [11,

3.3.9].
For RPP L′, we have the following chain of inequalities: ||ϕ||T = |ϕ|T ≤ |ϕ|′T ≤

||ϕ||′T , where |ϕ|T and |ϕ|′T is the provability degree in RPP L, RPP L′, respectively
(analogously for the truth degrees). Since ||ϕ||T = ||ϕ||′T , |ϕ|′T = ||ϕ||′T � �

REMARK 5.7. The proof of Pavelka style completeness for RPP L could be obtained
as a corollary of [21, Corollary 4.6], but this is not possible for RPP L4 and RPP L′4.

We can also obtain Pavelka style completeness for RPP L from [11, Section 3.3],
where the author defines the logic RPL(�). It is  Lukasiewicz logic plus book-keeping
axioms of RPP L and the axioms:

(ϕ→ ψ) → (ϕ� χ→ ψ � χ) ,

(ϕ→ ψ) → (χ� ϕ→ χ� ψ) .
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This logic enjoys the same Pavelka’s style completeness as RPPL (see [11, Theorem
3.3.19]).

Thus we have three different logics, namely RPP L, RPP L′, RPL(�). All of them
enjoy the same Pavelka’s style completeness. However, the question whether these
logics (as sets of theorems) coincide seems to be open for us.

Now we prove the strong standard completeness for RPP L4 and RPP L′4 and
show that these logics coincide.

THEOREM 5.8. Let T be a theory over RPP L4 or RPP L′4 and ϕ be a formula.

Then T ` ϕ iff e(ϕ) = 1 for all standard models e.

Proof. The proof follows from Theorem 5.6 and Lemma 5.4. � �

COROLLARY 5.9.

(1) The RPP L4 and RPP L′4 logics coincide.

(2) RPP L′ is a conservative extension of P L′ and RPP L4 is a conservative
extension of P L′4.

(3) RPP L4 is a conservative extension of RPL.
(4) R LΠ is a conservative extension of RPP L4.

Proof. (1) This is an obvious consequence of the latter theorem and the fact
that standard algebras for these logics are the same.

(2) Let ϕ be a formula of the language of P L′ such that RPP L′ ` ϕ. Then ϕ
is a [0, 1]S-tautology. By Theorem 3.25 we get that P L′ ` ϕ (for RPP L′4
the proof is analogous).

(3) As RPL also enjoys standard completeness (cf. [11, Theorem 3.3.14]), we
may proceed in the same way as in 2.

(4) It is the consequence of [7, Corollary 5] and the latter theorem. �
�

6. The predicate logics

This section deals with a predicate version of the P L, P L4 and P L′4 logics. The
following definitions are analogous to the definitions of the corresponding concepts
in [11].

DEFINITION 6.1. A predicate language is a pair ((P, A), C), where P is a
non-empty set of predicates, each predicate P together with a positive natural num-
ber n = A(P ) called the arity of P, and C is a potentially empty set of the object
constants. The logical symbols are object variables x, y, . . . , logical connectives
⊕,¬, � (and 4 in case of P L4 or P L′4 logic), truth constant 0 and the quantifier

∀ (the quantifier ∃ is defined as ¬∀¬).

DEFINITION 6.2. Terms of the predicate language I = ((P, A), C) are the object
constants and variables. Atomic formulas have the following form: P (t1, t2, . . . , tn),
where P is a predicate, n its arity, and t1, t2, . . . , tn are terms. The truth con-
stants are atomic formulas as well. Let ϕ and ψ be formulas, x an object variable.
Then ϕ⊕ψ, ¬ϕ, ϕ�ψ, (∀x)ϕ (and 4ϕ in case of P L4 or P L′4 logic) are formulas.
Each formula is constructed from the atomic formulas by iterating these rules.

DEFINITION 6.3. Let I be a predicate language, C either P L, P L4 or P L′4, L
a linearly ordered C-algebra. An L-structure M for I has the following form M
= (M, (rP )P∈P, (mc)c∈C), where M is a non-empty domain, rP is n-ary fuzzy
relation Mn → L for each n-ary predicate P from P, and mc ∈ M for each object
constant c from C.
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DEFINITION 6.4. Let I be a predicate language, C either P L, P L4 or P L′4, L
a linearly ordered C-algebra and M an L-structure for I. An M-evaluation of the
object variables is a mapping v from the set of the object variables into the domain
M. Let v and v′ be two M-evaluations. Then v ≡x v′ means that v(y) = v′(y) for
each object variable y different from x.

DEFINITION 6.5. Let I be a predicate language, C either P L, P L4 or P L′4, L a
linearly ordered C-algebra, M an L-structure for I, v an M-evaluation. The value
of the term is defined as follows: ||x||LM,v = v(x) and ||c||LM,v = mc. A truth value
of the formula ϕ in M for an evaluation v is defined as follows:

||P (t1, t2, . . . , tn)||LM,v = rP (||t1||LM,v, ||t2||LM,v, . . . , ||tn||LM,v) ,

||ϕ⊕ ψ||LM,v = ||ϕ||LM,v ⊕ ||ψ||LM,v ,

||¬ϕ||LM,v = ¬||ϕ||LM,v ,

||ϕ� ψ||LM,v = ||ϕ||LM,v � ||ψ||LM,v ,

||0||LM,v = 0 ,

||4ϕ||LM,v = 4||ϕ||LM,v , in the case of P L4 or P L′4 ,

||(∀x)ϕ||LM,v = inf{||ϕ||LM,v′ | v′ ≡x v} .
If the infimum does not exist, we take its value as undefined.

DEFINITION 6.6. Let I be a predicate language, C either P L, P L4 or P L′4, L a
linearly ordered C-algebra, M an L-structure for I and ϕ a formula of I. A truth
value of the formula ϕ in M is defined as follows:

||ϕ||LM = inf{||ϕ||LM,v | v is an M-evaluation}.
We say that M is a safe L-structure, if ||ϕ||LM,v is defined for each ϕ and v, and

that ϕ is an L-tautology if ||ϕ||LM = 1 for each safe L-structure M.

LEMMA 6.7. Let I be a predicate language, C either P L, P L4 or P L′4, L a linearly
ordered C-algebra, M a safe L-structure for I, and v an M-evaluation. Then

||(∃x)ϕ||LM,v = sup{||ϕ||LM,v′ | v′ ≡x v}.

Proof. We start with the proof that inf ¬bv = ¬ sup bv. First, we show that ¬ sup bv
is a lower bound: bv ≤ sup bv for each v iff ¬bv ≥ ¬ sup bv for each v.

Second, we show that ¬ sup bv is the greatest lower bound. Let us suppose
z ≤ ¬bv for each v. Then ¬z ≥ bv for each v. Hence ¬z ≥ sup bv and obviously
z ≤ ¬ sup bv for each v.

The proof can be completed by the following set of equations: ||(∃x)ϕ||LM,v

= ||¬((∀x)¬ϕ||LM,v = ¬ inf{¬||ϕ||LM,v′ |v′ ≡x v} = ¬¬ sup{||ϕ||LM,v′ |v′ ≡x v} =

sup{||ϕ||LM,v′ |v′ ≡x v}. � �

Here we finally define the axiomatic system of our predicate logic. For the fol-
lowing definition, we suppose that the reader is familiar with the notion of free and
bounded occurrence of an object variable in a formula and the notion of substi-
tutable term into the formula ϕ.

DEFINITION 6.8. Let C be either P L, P L4 or P L′4, and I be a predicate language.
The logic C∀ isgiven by the following axioms and the deduction rules:

(i) the formulas resulting from the axioms of C by the substitution
of the propositional variables by the formulas of I,

(ii) (∀1) (∀x)ϕ(x)→ ϕ(t), where t is substitutable for x in ϕ,
(iii) (∀2) (∀x)(χ→ ϕ)→ (χ→ (∀x)ϕ), where x is not free in χ,
(iv) deduction rules are modus ponens, generalization (from ϕ(x) infer

(∀x)ϕ(x)), and necessitation of 4 in case of P L4 or P L′4 logic.
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LEMMA 6.9. Let C be either P L, P L4 or P L′4. Then the logical axioms of quanti-
fiers are L-tautologies for each linearly ordered C-algebra L and the deduction rules
are sound.

Proof. The axioms (∀1) and (∀2) are L-tautologies for each MV-algebra. Each
C-algebra is an expansion of an MV-algebra, and in both axioms only  Lukasiewicz
connectives are used (as structural connectives between formulas ϕ and χ; the
internal structure of these formulas is unimportant), so the claim holds. Soundness
of deduction rules is obvious. � �

Now we are ready to prove the completeness theorem of our predicate logic. The
proof of completeness of our predicate logics is analogous to the proof of complete-
ness of the basic predicate logic (cf. [11, Theorem 5.2.9]).

We need to recall the definition of theory and of complete and consistent theory
from propositional logic. These definitions remain as they stand, with only one
exception—we restrict ourselves to the theories of closed formulas.

We also need to give a definition of model.

DEFINITION 6.10. Let I be a predicate language, C either P L, P L4 or P L′4, L a
linearly ordered C-algebra, M an L-structure for I, and T a theory over C∀. Then
we say that M is an L-model of T if ||ϕ||LM = 1 for each ϕ from T .

THEOREM 6.11 (Strong Completeness). Let I be a predicate language, C either P L,
P L4 or P L′4, T a theory over C∀, ϕ a closed formula. Then T ` ϕ iff ||ϕ||LM = 1
for each linearly ordered C-algebra L and each safe L-model M of T .

Proof. Inspect the corresponding proof for the basic predicate logic in [11, Section
5.2]. � �

THEOREM 6.12. It holds:

(1) P L4∀ logic is a conservative extension of P L∀ logic.
(2) P L′4∀ logic is strictly stronger than P L4∀ logic.

(3)  LΠ∀ logic is a conservative extension of P L′4∀ logic.1

(4)  LΠ∀ logic is not a conservative extension of P L4∀ logic.

Proof. (1) It follows from the fact that we can extend each linearly ordered P L-algebra
by 4 and from the completeness theorems for both logics.

(2) An obvious consequence of Theorem 4.11.
(3) As it was shown by Montagna (cf. [19, Theorem 4.2]), the P L′-algebras are

exactly subreducts of  LΠ-algebras, thus obviously P L′4-algebras are also subreducts

of  LΠ-algebras. In other words, we can extend each linearly ordered P L′4-algebra
to an  LΠ-algebra. The completeness theorems for both logics complete the proof
(cf. Theorem 6.11 and [3, Corollary 3.1.17]).

(4) A trivial consequence of (2) and (3). � �

The questions whether P L∀ is a conservative extension of the  Lukasiewicz pred-
icate logic, and whether  LΠ∀ is a conservative extension of P L∀ logic seems to be
open. The standard completeness of P L∀, P L4∀, and P L′4∀ logics is a related
problem. But this question can be answered. Here we assume that the reader is
familiar with the basic concepts of undecidability and arithmetical hierarchy ([11,
Section 6.1] is satisfactory for our needs). In the following we assume that our
predicate language is at most countable.

THEOREM 6.13. The set of [0, 1]S-tautologies of P L∀ is Π2-complete.

1For the definition and details about  LΠ∀, see [3].
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Proof. The Π2-hardness is an obvious corollary of [11, Theorem 6.3.4], where it is
proven that the set of [0, 1]S-tautologies of  L∀ is Π2-complete.

The fact that the set of [0, 1]S-tautologies of P L∀ is in Π2 is a corollary of
upcoming Theorem 6.19 (of the Pavelka style completeness of the extension of P L∀
by rational constants). Thus we know that ϕ is the [0, 1]S-tautology iff (∀r ∈
Q ∩ [0, 1))(∃ proof ω)(ω is the proof of r → ϕ). � �

THEOREM 6.14. The set of [0, 1]S4-tautologies of P L4∀ is not arithmetical.

Proof. The proof is an obvious modification of the analogous proof for product
predicate logic (see [12, Corollary 2]). � �

COROLLARY 6.15. Let C be either P L, P L4 or P L′4. Then the C∀ logic has not
the standard completeness property.

Another corollary is that all our logics (understood as sets of [0, 1]S or [0, 1]S4-tautologies)
are undecidable. We present a partial answer to the problem of decidability of our
logics understood as sets of theorems.

THEOREM 6.16. Let C be either P L4 or P L′4. Then the C∀ logic (as set of

theorems) is undecidable.

Proof. The formula ϕ′ is created from the formula ϕ by replacing each atomic
formula P (t1, . . . , tn) with the formula 4P (t1, . . . , tn). Notice that formula ψ of
a classical predicate language is provable iff formula ψ′ is provable in C4∀ (this is
obvious from the definition of 4 and completeness of the C4∀). Thus if the C4∀
logic would be decidable, it would be a contradiction to the undecidability of the
classical predicate logic. � �

6.1. Rational Pavelka style of predicate logic. In this section we build Ratio-
nal Pavelka’s style extension of the predicate logics defined in the previous subsec-
tion. Our approach will be analogous to the one that of Section 5. As we proved
there, adding of the infinitary rule (IR) turns the rational extensions of P L4 and
P L′4 into the same logics. Thus in this section we will develop only RPP L∀ and
RPP L4∀ logics. Again we restrict ourselves to the standard algebras of the truth
values ([0,1]S and [0,1]S4).

DEFINITION 6.17. Let C be either P L or P L4.

• We extend the set of logical symbols by truth constant r for each r ∈ Q∩[0, 1]
(see Definition 6.1).
• We extend the definition of a formula by a clause that r is a formula (see

Definition 6.2).
• We extend the definition of truth value by a condition ||r||LM,v = r (see

Definition 6.5).
• The logic RPC∀ results from C∀ by adding the book-keeping axioms from

Definition 5.1 (see Definition 6.8).
• The deduction rules of RPP L∀ are modus ponens and generalization, the

deduction rules of RPP L4∀ are modus ponens, generalization, necessita-
tion, and (IR) (see Definitions 5.1, 6.8).

DEFINITION 6.18. Let C be either RPP L or RPP L4. Let T be a theory over C∀
and ϕ be a formula.

(1) The truth degree of ϕ over T is ||ϕ||T = inf{||ϕ||M |M is a model ofT}.
(2) The provability degree of ϕ over T is |ϕ|T = sup{r | T ` r → ϕ}.
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THEOREM 6.19 (Pavelka’s style completeness). Let C be either RPP L or RPP L4.
Let T be a theory over C∀ and ϕ be a formula. Then

||ϕ||T = |ϕ|T .
Proof. Inspect the corresponding proof of RPL∀ in [11, Section 5.4]. The crucial
point is [11, Lemma 5.4.7]. The necessary modification of the proof of this lemma
is done by means of Lemma 5.5. � �

LEMMA 6.20. Let T be a theory over either RPP L4∀ and ϕ be a formula. Then
|ϕ|T = 1 iff T ` ϕ.

Proof. An analogy of the proof of Lemma 5.4. � �

THEOREM 6.21 (strong standard completeness). Let T be a theory over RPP L4∀
and ϕ be a formula. Then T ` ϕ iff ||ϕ||M = 1 for all standard models M.

Proof. The proof can be done by a straightforward application of Theorem 6.19
and Lemma 6.20. � �

COROLLARY 6.22. R LΠ∀ is a conservative extension of RPP L4∀.2

Proof. It is the consequence of [3, Theorem 3.2.6] and the previous theorem. � �

At the end of this section we prove a consequence of the standard completeness
of RPP L4∀. We make a small modification of the language of RPP L4∀ and show
that the resulting logic TT coincides with the famous logic of Takeuti and Titani.

The logic TT results from RPP L4∀ by omitting truth constants r such that r

can not be expressed in the form k
2n . In other words, we may say that the logic

TT has only one additional truth constant, 1
2 , and the other truth constants are

defined by using the connectives of P L4∀.
Now we can easily prove the analogy of Theorem 6.21 for TT . Just go through

the proofs leading to this theorem and notice that the set of truth constants in TT
is dense (as in the case of RPP L4∀). Thus all the proofs will be sound for TT as
well. This gives us the following corollary:

COROLLARY 6.23. RPP L4∀ is a conservative extension of TT .

Takeuti and Titani’s logic was introduced by Takeuti and Titani in their work
[23]. It is a predicate fuzzy logic based on Gentzen’s system of intuitionistic predi-
cate logic. The connectives used by this logic are just the connectives of RPP L4∀
logic. This logic has two additional deduction rules (named R1, R2) and 46 axioms
(namely F1 – F46). We will not present the axiomatic system and we only recall
that this logic is sound and complete w.r.t. the standard PL4-algebra (cf. [23,
Theorem 1.4.3]). All this leads us to the following conclusion:

THEOREM 6.24. Takeuti and Titani logic coincides with the logic TT . Further-
more, RPP L4∀ logic is a conservative extension of Takeuti and Titani logic.

This theorem allows to translate the results from the Takeuti and Titani’s logic
into our much more simpler (in syntactical sense) logical system of the TT or
RPP L4∀ logic. An interesting corollary of this theorem and the previous corollary
is a very simple proof of one part of [4, Theorem 10]:

THEOREM 6.25. Takeuti and Titani’s logic is contained in R LΠ∀ logic.

�
Acknowledgement: The authors thank Libor Běhounek for helpful comments
and remarks.

2For the definition and details about R LΠ∀ see [3].
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