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Chapter I: Algebraic Semantics
ROSTISLAV HORČÍK

1 Substructural logics

Fuzzy logics were originally motivated by semantical considerations as logics whose
intended set of truth values is the real unit interval [0, 1]. Later this was relaxed and [0, 1]
was replaced by an arbitrary linearly ordered set. Thus by a fuzzy logic we mean a logic
complete with respect to a class of linearly ordered algebras. Since the notion of a fuzzy
logic has not been precisely established, we will call such a logic semilinear. The term
semilinear comes from the fact that the algebraic semantics for such a logic contains also
algebras which are not linearly ordered but their building blocks (subdirectly irreducible
algebras) are linearly ordered.

In order to discuss an algebraic semantics for semilinear logics, we have to spec-
ify precisely which logics we are going to study. We will put semilinear logics into a
framework of substructural logics because most of the semilinear logics, studied so far,
belong to the hierarchy of substructural logics. Note that in Chapter II semilinear logics
are studied in a more general framework of weakly implicative logics. To keep the text
within a reasonable size, we have to make several design choices. First, we will restrict
ourselves only to logics in the full language of substructural logics. Thus we will not
mention results on various fragments. Second, as a base substructural logic we consider
the full Lambek calculus FL. This logic was defined already in the previous chapter as
a weakly implicative logic and its Hilbert style calculus was given. Here we present FL
by means of a Gentzen sequent system (see also Chapter IV). Then semilinear logics
appear as axiomatic extensions of FL.

Given a set Q, we denote its powerset by P(Q). Recall that a consequence relation
on a set Q is a binary relation ` ⊆ P(Q)×Q such that for every X ∪ Y ∪ {x, z} ⊆ Q
we have

• X ` x for all x ∈ X ,

• if X ` y for all y ∈ Y and Y ` z, then X ` z.

Given a set of formulas Fm in a language L, a logic L for us is a consequence relation
`L ⊆ P(Fm)× Fm on the set of formulas Fm which is substitution invariant, i.e.,

• if Φ `L ϕ, then σ[Φ] `L σ[ϕ] for all substitutions σ in the language L.

The language LFL of the logic FL consists of a countable set of propositional vari-
ables, binary connectives ∧,∨, ·, \, / and constants 0, 1. The binary connectives are
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respectively called lattice conjunction, lattice disjunction, fusion, left and right implica-
tion (or division). Thus from now on Fm denotes the set of formulas in the language
LFL.

In order to define `FL, we have to say what a sequent is and what it means that a
sequent is provable from a set of sequents. A sequent is an ordered pair Γ⇒ ϕ, where Γ
is a sequence of formulas (could be also empty) and ϕ a formula or the empty sequence.
A sequent is called initial if it has a form of one of the following sequents:

α⇒ α ⇒ 1 0⇒

where α ∈ Fm. Given a set of sequents S and a sequent s, we say that s is provable
from S in the sequent calculus for FL if one of the following conditions is satisfied:

• s ∈ S,

• s is initial,

• s can be obtained from S and the initial sequents by application of finitely many
rules from Figure 1, where symbols Γ,Σ,Π denote sequences of formulas and
α, β, ϕ formulas.

Now we are ready to define `FL. Let Φ ∪ {ψ} ⊆ Fm. Then Φ `FL ψ holds iff
the sequent ⇒ ψ is provable from the set of sequents { ⇒ ϕ | ϕ ∈ Φ}. Analogously
we say that ψ is provable from Φ (also Φ proves ψ) in the logic FL if Φ `FL ψ. We
will illustrate the above notions on an example. Let χ and α be formulas. Then Figure 2
shows that {χ} `FL (α\(χ · α)) ∧ 1.

Let Φ be a set of formulas understood as axiom schemata. An axiomatic extension
FL + Φ of FL by the set of axiom schemata Φ is the logic defined by the same sequent
calculus as FL enriched by new initial sequents

{ ⇒ σ(ϕ) | ϕ ∈ Φ and σ is a substitution in the language LFL} .

The consequence relation `FL+Φ is defined analogously as `FL using this sequent calcu-
lus. Many of the substructural logics (among them also semilinear logics) can be viewed
as axiomatic extensions of FL. Thus in this text we will call a logic L substructural if L
is an axiomatic extension of FL.

Table 1 shows a few basic axiom schemata together with their names. Let S ⊆
{e, c, i, o}. We denote by FLS the axiomatic extension of FL by axiom schemata from
S, e.g. FLci denotes axiomatic extension of FL by (c) and (i). Note that (w) is an
abbreviation for (i) together with (o). Thus we write for instance FLew instead of FLeio.
The logics FLS are called basic substructural logics.

REMARK 1.0.1. We have introduced the basic substructural logics FLS as axiomatic
extensions of FL. In proof theory they are usually equivalently presented as extensions
of FL by combinations of corresponding structural rules of exchange (e), contraction
(c), left weakening (i) and right weakening (o), see Figure 3. Thus FLecw is nothing else
but intuitionistic logic.
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Γ⇒ α Σ, α,Π⇒ ϕ
(cut)

Σ,Γ,Π⇒ ϕ

Γ,Σ⇒ ϕ
(1⇒)

Γ, 1,Σ⇒ ϕ
Γ⇒ (⇒0)
Γ⇒ 0

Γ, α,Σ⇒ ϕ
(∧⇒)

Γ, α ∧ β,Σ⇒ ϕ

Γ, β,Σ⇒ ϕ
(∧⇒)

Γ, α ∧ β,Σ⇒ ϕ

Γ⇒ α Γ⇒ β
(⇒∧)

Γ⇒ α ∧ β

Γ⇒ α (⇒∨)
Γ⇒ α ∨ β

Γ⇒ β
(⇒∨)

Γ⇒ α ∨ β

Γ, α,Σ⇒ ϕ Γ, β,Σ⇒ ϕ
(∨⇒)

Γ, α ∨ β,Σ⇒ ϕ

Γ, α, β,Σ⇒ ϕ
(·⇒)

Γ, α · β,Σ⇒ ϕ

Γ⇒ α Σ⇒ β
(⇒·)

Γ,Σ⇒ α · β

Γ⇒ α Π, β,Σ⇒ ϕ
(\⇒)

Π,Γ, α\β,Σ⇒ ϕ

α,Γ⇒ β
(⇒\)

Γ⇒ α\β

Γ⇒ α Π, β,Σ⇒ ϕ
(/⇒)

Π, β/α,Γ,Σ⇒ ϕ

Γ, α⇒ β
(⇒/)

Γ⇒ β/α

Figure 1. The rules of the sequent calculus for the logic FL.

⇒ χ α⇒ α
(⇒·)α⇒ χ · α

(⇒\)
⇒ α\(χ · α) ⇒ 1

(⇒∧)
⇒ α\(χ · α) ∧ 1

Figure 2. The proof of (α\(χ · α)) ∧ 1 from {χ}.
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Name Axiom schema(ta)
(e) (α · β)\(β · α)
(c) α\(α · α)
(i) α\1
(o) 0\α
(w) α\1, 0\α

Table 1. Axioms schemata of basic substructural logics.

Γ, α, β,Σ⇒ ϕ
(e)

Γ, β, α,Σ⇒ ϕ

Γ, α, α,Σ⇒ ϕ
(c)

Γ, α,Σ⇒ ϕ

Γ,Σ⇒ ϕ
(i)

Γ, α,Σ⇒ ϕ
Γ⇒ (o)

Γ⇒ ϕ

Figure 3. The structural rules of exchange (e), contraction (c), left weakening (i) and
right weakening (o).

Substructural logics can be partially ordered by their strength. More precisely, this
partial order is just the inclusion ordering, i.e., a logic L2 is stronger than a logic L1

if `L1 ⊆ `L2 . In fact, this order is a complete lattice order, i.e., the substructural
logics form a complete lattice Λ(FL). The join

∨
i∈I Li of a collection of substructural

logics {Li | i ∈ I}, where Li = FL + Φi for some Φi ⊆ Fm, is the substructural
logic axiomatized by the union of Φi’s, i.e.,

∨
i∈I Li = FL +

⋃
i∈I Φi. A description

of meets is not so easy but it can be done as shown in Chapter II. Further, note that
FL is the bottom element of Λ(FL). The top element is the inconsistent logic which
proves everything. Close to the top element is located classical logic which is one of the
maximally consistent substructural logics. Figure 4 depicts the ordering from Λ(FL)
for basic substructural logics. Note that FLci = FLeci and FLcw = FLecw since (e) can
be proved in the presence of (c) and (i).

As we mentioned at the beginning we are interested in substructural logics which
are complete with respect to a class of linearly ordered algebras, so-called semilinear
logics. Since this is mainly a semantical notion, we postpone a formal definition of
semilinear logics until we define algebraic semantics for substructural logics.

2 Algebraic preliminaries

We have to recall several definitions and results. First, we recall basic facts from
universal algebra. Second, we recall the notion of a residuated map which is an essential
ingredient of our algebraic semantics for substructural logics. Finally, a closely related
notion of a Galois connection is discussed. The sets of natural numbers, integers, rational
and real numbers are denoted N,Z,Q,R respectively.
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FL

FLew

FLi

FLei FLec

FLe FLc

FLeo

FLeco

FLco

FLo

FLw

FLci = FLeci

FLcw = FLecw

Figure 4. Basic substructural logics.

2.1 Universal algebra

We assume the reader is familiar with the basics of universal algebra, most of which
can be found in [6]. Thus we will recall only a necessary minimum to present the
results in subsequent sections. Let A be an algebra for an algebraic language L, i.e.,
A = 〈A, 〈fA | f ∈ L〉〉 is a set A endowed with a set of operations indexed by the
connectives from L such that corresponding to each n-ary connective f there is an n-ary
operation fA : An → A. Given a term t in the language L, the corresponding term
function on A is denoted tA or shortly t if A is clear from the context. We will be
interested mainly in the case when L = LFL. Thus the set of terms will be typically just
the set of formulas Fm in the language LFL.

Let us fix an algebraic language L. In the rest of this section all algebras will
be algebras for the language L. Having an algebra A, we can define the equational
consequence relation |=A. Recall that an evaluation into A is a homomorphism from
the term algebra (i.e., the absolutely free algebra) into A determined uniquely by the
images of variables. Let E = {ti = si | i ∈ I} be a set of identities and t = s an
identity. Then

E |=A t = s iff for all evaluations e we have e(t) = e(s)
whenever e(ti) = e(si) for all i ∈ I .

If E = ∅ then we write only |=A t = s instead of ∅ |=A t = s. The definition of |=A

can be extended to an arbitrary class of algebras K, by E |=K t = s iff E |=A t = s
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holds for every A ∈ K.
Having defined the consequence relation in an algebra, we may define an equational

class of algebras. Given a set of identities E = {ti = si | i ∈ I}, the equational class
defined by E is the class of all algebras A such that |=A ti = si holds for all i ∈ I .
Similarly, one can define a quasi-equational class of algebras. Given a set of quasi-
identities Q, the quasi-equational class defined by Q is the class of all algebras A such
that for every quasi-identity

t1 = s1 and · · · and tn = sn implies t = s

from Q we have {ti = si | i = 1, . . . , n} |=A t = s.
Equational and quasi-equational classes can be characterized by means of class op-

erators. Let K be a class of algebras. Then we define I(K), H(K), S(K), P(K) and
PU(K) to be, respectively, the class of all algebras isomorphic to some member of K,
the class of all homomorphic images of members from K, the class of all subalgebras of
members from K, the class of all direct products of members from K and the class of all
ultraproducts of members from K. The class K is called a variety if it is closed under H,
S and P. If K is closed under I, S, P, PU and contains a trivial algebra, then K is said
to be a quasivariety. It is known that the smallest variety (resp. quasivariety) containing
a class K is the class HSP(K) (resp. ISPPU(K)). That is why we shortly denote the
compositions of operators HSP and ISPPU respectively V and Q.

It is very well known due to Birkhoff that varieties are precisely equational classes.
An analogous result for quasivarieties was proved by Mal’cev.

THEOREM 2.1.1. Let K be a class of algebras. Then the following hold:

1. K is a variety (i.e., K = V(K)) iff it is an equational class.

2. K is a quasivariety (i.e., K = Q(K)) iff it is a quasi-equational class.

Another important concept from universal algebra is that of a subdirect product and
a subdirectly irreducible algebra.

DEFINITION 2.1.2. An algebra A is a subdirect product of a family 〈Ai | i ∈ I〉 of
algebras if the following hold:

1. A is a subalgebra of
∏
i∈I Ai,

2. πi(A) = Ai for all i ∈ I , where πi denotes the projection to the i-th component.

Given an algebra A, a family 〈Ai | i ∈ I〉 of algebras and an embedding f : A →∏
i∈I Ai, we say the f is subdirect if f [A] is a subdirect product of 〈Ai | i ∈ I〉.

DEFINITION 2.1.3. An algebra A is said to be subdirectly irreducible if it is nontrivial
and for every subdirect embedding f : A→

∏
i∈I Ai there is i ∈ I such that πi◦f : A→

Ai is an isomorphism.

Subdirectly irreducible algebras can be characterized by means of their congruence
lattices. Let A be a nontrivial algebra and Con(A) its congruence lattice. Then A
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is subdirectly irreducible iff the bottom element ∆ of Con(A) is completely meet-
irreducible. Recall that an element a in a lattice is called completely meet-irreducible if
a =

∧
i∈I ai implies a = ai for some i ∈ I .

THEOREM 2.1.4. A nontrivial algebra A is subdirectly irreducible iff ∆ is completely
meet irreducible, i.e., Con(A)\{∆} has a minimum.

The minimum of Con(A)\{∆} from the previous theorem is called the monolith
of A. Subdirectly irreducible algebras are important because they are building blocks of
any algebra. Precisely, we have the following theorem.

THEOREM 2.1.5. Every nontrivial algebra A is isomorphic to a subdirect product of
subdirectly irreducible algebras (which are homomorphic images of A).

An important consequence of the previous theorem is that the class of subdirectly
irreducible algebras inside a variety defines the same consequence relation as the whole
variety. Let K be a variety. The class of its subdirectly irreducible members is denoted
KSI. We start with a lemma which is easy to prove.

LEMMA 2.1.6. Let K be a class of algebras. Then |=O(K) = |=K for any operator
O ∈ {I,S,P}.

PROPOSITION 2.1.7. Let K be a variety. Then |=K = |=KSI
.

Proof. Clearly |=K ⊆ |=KSI
since K ⊇ KSI. Conversely, assume E |=KSI

t = s.
We have to show that E |=K t = s. Let A ∈ K. By Theorem 2.1.5 the algebra A
is isomorphic to a subalgebra of

∏
i∈I Ai where Ai’s are subdirectly irreducible and

homomorphic images of A. Since varieties are closed under homomorphic images, we
must have Ai ∈ KSI for all i ∈ I . The rest follows by Lemma 2.1.6.

The next theorem is known as Jónsson’s lemma. Recall that a variety L is called
congruence distributive if for all A ∈ L the congruence lattice Con(A) is distributive.

THEOREM 2.1.8. Let V(K) be a congruence distributive variety generated by a class
K and A ∈ V(K). If A is subdirectly irreducible, then A ∈ HSPU(K).

It is well known that varieties whose members have a lattice reduct are congruence
distributive. This is important for us since most of our algebras will have a lattice reduct
so that the above theorem applies to them.

Finally, we need to recall several definitions on partial subalgebras and partial em-
beddings.

DEFINITION 2.1.9. Let A = 〈A, 〈fAi | i ∈ I〉〉 be an algebra and ∅ 6= G ⊆ A. The
partial subalgebra G of A is the partial algebra G = 〈G, 〈fGi | i ∈ I〉〉, where for every
n-ary operation fi and a1, . . . , an ∈ G we have

fGi (a1, . . . , an) =

{
fAi (a1, . . . , an) if fAi (a1, . . . , an) ∈ G,
undefined if fAi (a1, . . . , an) 6∈ G.
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Clearly, every usual subalgebra is also a partial subalgebra whose operations are
defined everywhere.

DEFINITION 2.1.10. Let A = 〈A, 〈fAi | i ∈ I〉〉, B = 〈B, 〈fBi | i ∈ I〉〉 be algebras
of the same type and G a partial subalgebra of A. A one-to-one map h : G → B is
called a partial embedding if it preserves all existing operations on G, i.e., for every
n-ary operation fi and a1, . . . , an ∈ G if fGi (a1, . . . , am) is defined then

h(fGi (a1, . . . , am)) = fBi (h(a1), . . . , h(am)) .

Let G be a partial subalgebra of an algebra A and f : G → B a partial embedding
from G to an algebra B. Observe that the restriction of f to a nonempty subset G′ ⊆ G
gives a partial embedding from the partial subalgebra G′ to B. In particular, if G = A
(i.e., f is the usual embedding) then the restriction of f to G′ gives a partial embedding.

DEFINITION 2.1.11. Let K∪ {A} be a class of algebras of the same type. We say that
A is partially embeddable into K if for every finite partial subalgebra G of A there is a
partial embedding f : G→ B for some B ∈ K.

2.2 Residuated maps and Galois connections

For details on the notions and results from this section see [11, 5, 14]. Before we
introduce the notion of a residuated map, we recall several common notions from order
theory. Let P = 〈P,≤〉 be a partially ordered set (shortly poset). A subset X ⊆ P is
called a downset if X is closed downwards, i.e., for all x, y ∈ P we have x ∈ X and
y ≤ x implies y ∈ X . Analogously, Y ⊆ P is an upset if Y is closed upwards. The
sets of all downsets and upsets of P form posets ordered by inclusion. The poset of all
downsets (resp. upsets) of P is denoted D(P ) (resp. U(P )).

Given a subset S ⊆ P we can find the smallest downset ↓S containing S as the
intersection of all downsets containing S, i.e.,

↓S =
⋂
{X ∈ D(P ) | S ⊆ X} .

We can also describe ↓S by means of principal downsets. By a principal downset we
mean a downset of the form ↓{x} = {y ∈ P | y ≤ x} for some x ∈ P . We shortly
write ↓x instead of ↓{x}. Then ↓S =

⋃
x∈S ↓x. Dually we can define the smallest upset

↑S containing a subset S and a principal upset ↑x.
Other well-known useful notions are those of a closure and an interior operator. A

map γ : P → P is called a closure operator on P if it satisfies the following conditions:

• γ is order-preserving, i.e., x ≤ y implies γ(x) ≤ γ(y),

• γ is expanding, i.e., x ≤ γ(x), and

• idempotent, i.e., γ(γ(x)) = γ(x).

Dually, an interior operator on P is a map σ : P → P which is

• order-preserving,
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• contracting, i.e., σ(x) ≤ x, and

• idempotent.

Elements in γ[P ] are called γ-closed or just closed if the closure operator is clear from
the context. Similarly, elements from σ[P ] are called σ-open or shortly open. A subset
of closed elements B ⊆ γ[P ] (resp. open elements B ⊆ σ[P ]) is called a basis if every
element in γ[P ] (resp. σ[P ]) can be expressed as a meet (resp. join) of elements from B.

Let δ be a closure or interior operator on P . Its image δ[P ] forms a subposet δ[P ] of
the poset P . Let γ be a closure operator and σ an interior operator on P . The closure and
interior operators are completely determined by their images γ[P ] and σ[P ]. Namely,
for x ∈ P ,

γ(x) = min{a ∈ γ[P ] | x ≤ a} , σ(x) = max{a ∈ σ[P ] | a ≤ x} . (1)

Conversely any subsets C,O ⊆ P induce respectively a closure operator γ and an inte-
rior operator σ if the following minima and maxima exist for every x ∈ P :

γ(x) = min{a ∈ C | x ≤ a} , σ(x) = max{a ∈ O | a ≤ x} . (2)

The posets γ[P ] and σ[P ] are called respectively closure and interior systems of P .
The following definition of a residuated map will be crucial when we define the

algebraic semantics for substructural logics since the operation interpreting the fusion ·
is in some sense residuated as we will see later.

DEFINITION 2.2.1. Let P and Q be posets. A map f : P → Q is called residuated if
there exists a map f† : Q→ P such that for all p ∈ P and q ∈ Q we have

f(p) ≤ q iff p ≤ f†(q).

In the above case, we say that f and f† form a residuated pair. The map f† is called a
residual of f .

Note that f and f† form an adjunction between posets P and Q when we view them
as categories, i.e., objects are the elements of the poset and morphisms are given by the
order relation.

The next proposition lists well-known properties of residuated maps.

PROPOSITION 2.2.2. Let P and Q be posets and f : P → Q a residuated map with
its residual f†. Then the following hold.

1. f, f† are monotone,

2. f†(q) = max{p ∈ P | f(p) ≤ q},

3. f(p) = min{q ∈ Q | p ≤ f†(q)},

4. f preserves arbitrary existing joins and f† arbitrary existing meets, i.e., for any
X ⊆ P and Y ⊆ Qwe have f(

∨
X) =

∨
x∈X f(x) and f†(

∧
Y ) =

∧
y∈Y f

†(y)
if
∨
X and

∧
Y exist.
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The above proposition shows that residuated maps preserve arbitrary existing joins
and their residuals arbitrary existing meets. This can be further strengthened if P and
Q are complete lattices as is shown in the next proposition.

PROPOSITION 2.2.3. Let P and Q be complete lattices. Then a map f : P → Q is
residuated iff f preserves arbitrary joins. Dually, a map f† : Q → P is a residual of a
map f : P → Q iff f† preserves arbitrary meets.

A notion closely related to residuated maps is that of a Galois connection.

DEFINITION 2.2.4. Let P and Q be posets. We say that maps B : P → Q and C : Q→
P form a Galois connection if for all p ∈ P and q ∈ Q we have

q ≤ pB iff p ≤ qC.

The maps B and C are called polarities of the Galois connection.

Observe that polarities of a Galois connection between posets P and Q form also a
residuated pair between P and Q∂ where Q∂ denotes the dual poset of Q. Namely, B

is a residuated map and C is its residual.
The following are well-known properties of Galois connections. Note that we com-

pose the polarities from left to right since they are written as superscripts of arguments.

PROPOSITION 2.2.5. Let B, C be a Galois connection between posets P and Q. Then
the following hold:

1. The maps B and C are both order-reversing.

2. The compositions BC : P → P and CB : Q→ Q are both closure operators.

3. We have BCB = B and CBC = C.

Let A,B be sets. We denote their powersets respectively P(A) and P(B). Typi-
cal examples of Galois connections from the literature are Galois connections between
P(A) and P(B) induced by a binary relation R ⊆ A × B. The polarities in this case
are given by “upper bounds” and “lower bounds” with respect to the relation R. We are
going to discuss these examples in more details because we will need them later. How-
ever, we present them in a more general setting. Namely, we will replace the sets A,B
by posets. Clearly, this is more general since each set can be viewed as a discrete poset
(i.e., a set ordered by the identity relation). Further, note that P(A) = D(A) = U(A)
for a discrete poset A.

Let A,B be two posets and R ⊆ A × B a relation satisfying for all a, x ∈ A and
b, y ∈ B the following implication:

x ≤ a and a R b and b ≤ y implies x R y . (3)

We call a binary relation R satisfying (3) a poset relation. The name comes from cate-
gory theory since poset relations are just the usual relations in the category of posets.
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One can use R in order to define a Galois connection between D(A) and U(A)
given by maps B : D(A) → U(B) and C : U(B) → D(A). The maps B and C are
defined as follows:

XB = {y ∈ B | (∀x ∈ X)(x R y)} ,
Y C = {x ∈ A | (∀y ∈ Y )(x R y)} .

Observe that by (3) the image XB is an upset in B and Y C is a downset in A. To
see that B,C define a Galois connection, consider X ∈ D(A) and Y ∈ U(B). Then
Y ⊆ XB in fact means that every element y ∈ Y satisfies the defining condition (∀x ∈
X)(x R y). Thus validity of Y ⊆ XB is equivalent to the validity of the following
first-order formula:

(∀y ∈ Y )(∀x ∈ X)(x R y) .

Since the validity of the above formula does not depend on the order of quantifiers, it
is immediate that the validity of this formula is also equivalent to validity of X ⊆ Y C.
Consequently, we obtain the following lemma.

LEMMA 2.2.6. The pair of maps B : D(A) → U(B) and C : U(B) → D(A) defines
a Galois connection, i.e.,

Y ⊆ XB iff X ⊆ Y C .

It follows from Proposition 2.2.5 that the composition BC : D(A) → D(A) is a
closure operator. We denote this closure operator γR where the subscript R refers to
the relation R defining B and C. One can easily find a basis for γR as is shown in the
following lemma.

LEMMA 2.2.7. The collection {(↑y)C | y ∈ B}, where ↑y is a principal upset from
U(B), forms a basis for γR.

Proof. Note that for each upset Y ∈ U(B) the downset Y C is γR-closed since Y CBC =
Y C by Proposition 2.2.5. In particular, for each y ∈ B the downset (↑y)C is γR-closed.
Moreover, we have

Y C = {x ∈ A | (∀y ∈ Y )(x R y)} =
⋂
y∈Y
{x ∈ A | x R y} =

⋂
y∈Y

(↑y)C .

The last equality follows from (3).

3 FL-algebras

This chapter introduces an algebraic semantics for the logic FL, namely the class
of so-called FL-algebras. We will work only with algebras for the language LFL (and
its fragments) consisting of binary connectives ·, \, /,∧,∨ and constants 0, 1. We call
·, \, / respectively multiplication, left and right division. The absolutely free algebra for
this language is the term algebra Fm = 〈Fm, ·, \, /,∧,∨, 0, 1〉. When writing terms
in this language we will assume in the absence of parentheses that · is performed first
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followed by \, / and finally ∧,∨. We write an as a shortcut for a · a · · · a (n times),
where a0 = 1. We often write ab instead of a · b.

We start with definitions of simple structures adding more and more conditions so
that we finally obtain the definition of an FL-algebra. An algebra A = 〈A, ·〉 with a
binary operation is called a groupoid. If the multiplication · is associative then A is
said to be a semigroup. If there is a partial order ≤ on A and the multiplication · is
order-preserving in both arguments (i.e., x ≤ y implies zx ≤ zy and xz ≤ yz for
all x, y, z ∈ A), then A = 〈A, ·,≤〉 is called a partially ordered groupoid if 〈A, ·〉 is
a groupoid and a partially ordered semigroup if 〈A, ·〉 is a semigroup. Further, if this
partial order is in fact a lattice order and the multiplication distributes over finite joins
(i.e., x · (y∨ z) = x · y∨x · z and (y∨ z) ·x = y ·x∨ z ·x hold for all x, y, z ∈ A), then
A = 〈A, ·,≤〉 is called a lattice ordered groupoid (resp. lattice ordered semigroup).

Let A = 〈A, ·,≤〉 be a partially ordered semigroup. If there is a neutral element
1 for the multiplication (i.e., 1 · x = x = x · 1 holds for all x ∈ A), then A =
〈A, ·, 1,≤〉 is said to be a partially ordered monoid (shortly pomonoid). Analogously
as for semigroups we define a lattice ordered monoid (shortly `-monoid) as a pomonoid
whose partial order is a lattice order and x·(y∨z) = x·y∨x·z and (y∨z)·x = y·x∨z ·x.

Next we will illustrate the impact the theory of residuated maps has on the properties
of A. Let A = 〈A, ·,≤〉 be a partially ordered groupoid whose operation · is residuated
component-wise, i.e., for every a ∈ A the unary maps la(x) = a · x and ra(x) = x · a
are residuated. Using the residuals l†a and r†a of la and ra, we can define new binary
operations \, / on A as follows:

x\z = l†x(z) , z/y = r†y(z) .

Then the operations ·, \ and / are connected by the following property which we call
the residuation property:

x · y ≤ z iff y ≤ x\z iff x ≤ z/y .

The above condition is in fact often used as the defining condition for residuated binary
maps. Precisely, a binary map · : A×A→ A is said to be residuated if there exist binary
operations \ : A×A→ A, / : A×A→ A satisfying the residuation property. Thus we
have the following definition.

DEFINITION 3.0.8. A residuated partially ordered groupoid is an algebraic structure
A = 〈A, ·, \, /,≤〉 such that 〈A,≤〉 is a poset and the residuation property

x · y ≤ z iff y ≤ x\z iff x ≤ z/y .

is satisfied for all x, y, z ∈ A.

Note that in the previous definition we do not claim that 〈A, ·,≤〉 is a partially
ordered groupoid because it is not necessary. It follows immediately from the residuation
property. Indeed, let x, y, z ∈ A and assume that x ≤ y. Then yz ≤ yz implies
y ≤ yz/z by the residuation property. Thus we have x ≤ yz/z. Using the residuation
property again, we obtain xz ≤ yz. Similarly one can prove zx ≤ zy. It is also easy
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to prove that both divisions are order-preserving in the numerator and order-reversing in
the denominator.

Properties of unary residuated maps can be easily transferred also to the binary case.
We can apply Proposition 2.2.2 to get the following proposition.

PROPOSITION 3.0.9. Let A be a residuated groupoid and a, b, c ∈ A. Then the fol-
lowing hold:

1. a\c = max{b ∈ A | ab ≤ c} and c/b = max{a ∈ A | ab ≤ c}.

2. a · b = min{c ∈ A | b ≤ a\c} = min{c ∈ A | a ≤ c/b}.

3. Multiplication distributes over any existing join, i.e., if
∨
X and

∨
Y exist for

X,Y ⊆ A, then so does
∨
x∈X,y∈Y xy, and

(
∨
X) · (

∨
Y ) =

∨
x∈X,y∈Y

xy .

4. Divisions preserve all existing meets in the numerator and convert all existing
joins in the denominator to meets, i.e., if

∨
X and

∨
Y exist for X,Y ⊆ A, then

for any z ∈ A the following equalities hold (in particular the right-hand sides
exist):

z\(
∧
Y ) =

∧
y∈Y

z\y , (
∧
Y )/z =

∧
y∈Y

y/z ,

(
∨
X)\z =

∧
x∈X

x\z , z/(
∨
X) =

∧
x∈X

z/x .

Residuated lattice ordered semigroups, residuated pomonoids and residuated `-
monoids are defined analogously as residuated partially ordered groupoids. Observe
that the residuation property implies that the multiplication distributes over any existing
join. Thus having a residuated pomonoid A whose partial order is a lattice order, it
follows immediately that A is a residuated `-monoid.

Now we are ready to define FL-algebras which form a complete algebraic semantics
for the logic FL as we will see later.

DEFINITION 3.0.10. An algebra A = 〈A, ·, \, /,∧,∨, 0, 1〉 is an FL-algebra if

• 〈A, ·, 1〉 is a monoid,

• 〈A,∧,∨〉 is a lattice,

• a · b ≤ c iff b ≤ a\c iff a ≤ c/b, for all a, b, c ∈ A,

• 0 is an arbitrary element of A.

In other words, an FL-algebra A is a residuated `-monoid endowed with a constant 0.
If the lattice order is linear then we call A an FL-chain. The class of all FL-algebras
is denoted FL.
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Although the class of FL-algebras is not defined only by identities, it can be done as
is shown in the following theorem. This theorem uses, instead of identities, inequalities.
However, since every FL-algebra has a lattice reduct, we can formally consider each
inequality x ≤ y as an identity x = x ∧ y or y = x ∨ y.

THEOREM 3.0.11 ([4]). An algebra A = 〈A, ·, \, /,∧,∨, 0, 1〉 is an FL-algebra iff it
satisfies the equations defining monoids, the equations defining lattices and the following
identities:

1. x · (x\z ∧ y) ≤ z,

2. (y ∧ z/x) · x ≤ z,

3. y ≤ x\(x · y ∨ z),

4. y ≤ (z ∨ y · x)/x.

Therefore, FL is a variety.

Moreover, FL is a congruence distributive variety. This follows from the fact that
each FL-algebra has a lattice reduct. Thus we can show the congruence distributivity
for FL by the same majority term as for lattices (see [6]).

For the reader’s convenience the following lemma provides a list of basic properties
of FL-algebras which follow easily from Definition 3.0.10.

LEMMA 3.0.12. The following identities hold in any FL-algebra.

1. (x/y)y ≤ x and y(y\x) ≤ x,

2. (x/y)/z = x/zy and z\(y\x) = yz\x,

3. x\(y/z) = (x\y)/z,

4. x/1 = x = 1\x,

5. 1 ≤ x\x and 1 ≤ x/x,

6. (z/y)(y/x) ≤ z/x and (x\y)(y\z) ≤ x\z.

An FL-algebra A is commutative if the multiplication is commutative, i.e., xy = yx
holds in A. We refer to commutative FL-algebras as FLe-algebras. Observe that in
FLe-algebras the third condition in Definition 3.0.10 forces the equality of a\b and b/a.
In this case we denote them as a→ b.

We call an FL-algebra A integral if 1 is a top element, i.e., A satisfies the identity
x ≤ 1. Integral FL-algebras are called shortly FLi-algebras. Similarly, FLo-algebras
are FL-algebras where 0 is the bottom element, i.e., they satisfy 0 ≤ x. FL-algebras
where the identity x ≤ x2 holds are called contractive or sometimes square-increasing.
We refer to them as FLc-algebras. The contractivity of an FL-algebra A implies that
the multiplication on its negative elements coincides with the meet. An element a ∈ A
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is called negative (resp. positive) if a ≤ 1 (resp. a ≥ 1). Let x, y ∈ A be negative
elements. Then xy ≤ x1 = x and similarly xy ≤ y. Thus xy ≤ x ∧ y. Consequently,

x ∧ y ≤ (x ∧ y)2 ≤ xy ≤ x ∧ y .

This implies that all contractive integral FL-algebras are commutative.
Observe that the notation FLe-algebras, FLi-algebras, FLo-algebras and FLc-al-

gebras resembles the notation for basic substructural logics. This is not a coincidence
because these algebras will serve as equivalent algebraic semantics for the corresponding
substructural logics. Hence we use an analogous notation for names of FL-algebras as
for the basic substructural logics. More precisely, let S ⊆ {e, c, i, o}. Then FLS-algebras
are FL-algebras satisfying the extra properties listed in S (see Table 2).

In FL-algebras the constant 0 allows us to define the following two unary operations
∼a = a\0 and −a = 0/a which are called respectively left and right negation. When
writing terms containing the negations, we assume that the negations are performed first
in the absence of parentheses. Note that the following equivalence holds in any FL-
algebra A:

x ≤ ∼y iff y ≤ −x .

The equivalence above follows immediately from the fact that the multiplication in FL-
algebras is residuated. It says that ∼,− form a Galois connection. Thus ∼,− are both
order-reversing mappings. The next lemma lists basic properties of the negations.

LEMMA 3.0.13. Let A be an FL-algebra and x ∈ A. Then the following hold:

1. ∼1 = 0 = −1,

2. x(∼x) ≤ 0 and (−x)x ≤ 0,

3. x ≤ −∼x and x ≤ ∼−x,

4. ∼−∼x = ∼x and −∼−x = −x,

5. x\∼y = ∼(yx) and −y/x = −(xy).

An FL-algebra A is said to be involutive if the identities −∼x = x and ∼−x = x
hold in A. Consequently, ∼0 = ∼−1 = 1 = −∼1 = −0. Moreover, ∼,− become
order-reversing bijections. Indeed,∼x = ∼y implies x = −∼x = −∼y = y. Similarly,
−x = −y implies x = y. Observe also that the identity x ≤ 1 is equivalent to 0 ≤ x in
involutive FL-algebras. Indeed, let A be an involutive FL-algebra and a ∈ A. Assume
that the identity x ≤ 1 holds in A. Then −a ≤ 1. Thus 0 = ∼1 ≤ ∼−a = a.
Conversely, suppose that 0 ≤ x holds. Then 0 ≤ −x. Thus x = ∼−x ≤ ∼0 =
1. Consequently, the classes of involutive FLi-algebras, involutive FLo-algebras and
involutive FLw-algebras are the same.

An FL-algebra A is called cyclic if ∼x = −x. This happens in particular when A
is commutative because \ = / holds in FLe-algebras. Thus, every FLe-algebra is cyclic
but the converse need not be true.

Another important class of FL-algebras is the class of residuated lattices. An FL-
algebra is called a residuated lattice (or shortly RL-algebra) if it satisfies the identity
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Adjective Defining equations Subvariety of FL Subvariety of RL

Commutative (e) x · y = y · x FLe RLe

Integral (i) x ≤ 1 FLi RLi

Contractive (c) x ≤ x2 FLc RLc

Bounded (o) 0 ≤ x FLo trivial variety
Integral bounded (w) 0 ≤ x ≤ 1 FLw trivial variety

Involutive −∼x = x = ∼−x InFL InRL
Cyclic −x = ∼x CyFL CyRL

Table 2. Subvarieties of FL-algebras and residuated lattices.

1 = 0. Residuated lattices are usually defined as the 0-free reducts of FL-algebras.
However, we choose the above definition in order to capture FL-algebras and residuated
lattices within one variety of algebras of the same type.

Since RL-algebras form a subvariety of FL-algebras, any definition for FL-algebras
applies also to RL-algebras. Thus we can define RLS-algebras for S ⊆ {e, c, i, o} in the
same way as FLS-algebras. However, note that the only RLo-algebra is the trivial one.
Indeed, 1 has to be a bottom element in any RLo-algebra A. Then it follows that A is
trivial by the following lemma.

LEMMA 3.0.14. Let A be a nontrivial FL-algebra. Then there is a strictly negative
element a ∈ A, i.e., a < 1.

Proof. Since A is nontrivial, there is an element b ∈ A such that b 6= 1. If 1 6≤ b then
a = b∧1 < 1. If 1 < b then we take a = b\1. Clearly we have a ≤ 1\1 = 1. Moreover,
a < 1; otherwise b = b · a = b · (b\1) ≤ 1.

All the properties of FL-algebras and RL-algebras we mentioned so far are sum-
marized in Table 2. Note that classes of FL-algebras and RL-algebras are denoted
by the blackboard bold letters, e.g., FLew denotes the variety of FLew-algebras or
InFLw stands for the variety of involutive FLw-algebras. Having an FL-algebra A =
〈A, ·, \, /,∧,∨, 0, 1〉, one can change the interpretation of 0 to 1 in order to define a
corresponding RL-algebra Ar = 〈A, ·, \, /,∧,∨, 1, 1〉. We will omit the double 1 in the
signature above, i.e., we write just Ar = 〈A, ·, \, /,∧,∨, 1〉.

3.1 Examples of FL-algebras

The variety of FL-algebras encompasses a lot of well-known classes of algebras
which were defined and also studied independently. Among these classes are for in-
stance Heyting algebras which can be viewed as FLcw-algebras. Moreover, involutive
Heyting algebras are just Boolean algebras so that InFLcw is nothing but the variety of
Boolean algebras.

Another well-known class of algebras which can be viewed as FL-algebras are lat-
tice ordered groups (shortly `-groups). The signature of an `-group G is usually written
as 〈G,∧,∨, ·,−1, 1〉. However, `-groups are term equivalent to RL-algebras satisfying
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an extra identity x(x\1) = 1. The term equivalence translates x−1 to x\1 and con-
versely x\y to x−1y and x/y to xy−1. Let G be an `-group viewed as an RL-algebra.
Since RL-algebras are FL-algebras satisfying 1 = 0, we have ∼x = x\1 = x−1 in G.
Analogously −x = 1/x = x−1. Consequently, ∼x = −x. Moreover, −∼x = ∼−x =
(x−1)−1 = x. Thus `-groups in fact form a subvariety of cyclic involutive RL-algebras.

There are also examples of FL-algebras coming from fuzzy logic. Recall that a
t-norm is a binary operation ∗ on the real unit interval [0, 1] which is associative, com-
mutative, monotone and 1 is its neutral element. Moreover, if a ∗ (

∨
Y ) =

∨
y∈Y a ∗ y

for any {a} ∪ Y ⊆ [0, 1], ∗ is said to be left-continuous. In such a case we also have
(
∨
Y ) ∗ a =

∨
y∈Y y ∗ a by commutativity. Assume that ∗ is left-continuous. Then

∗ is residuated component-wise (see Proposition 2.2.3 and the discussion above Defini-
tion 3.0.8). Consequently, there is a binary operation→∗ on [0, 1] such that

x ∗ y ≤ z iff y ≤ x→∗ z .

Summing up, we have a residuated commutative pomonoid 〈[0, 1], ∗, 1,≤〉 which is lin-
early ordered with a top element 1 and a bottom element 0. Thus the algebra [0, 1]∗ =
〈[0, 1], ∗,→∗,∧,∨, 0, 1〉 is just an FLew-chain. These algebras are also known as stan-
dard MTL-algebras. The word ‘standard’ refers to the fact that the universe of these
algebras is the intended set of truth-degrees [0, 1]. Later we will see that the semilinear
extension of FLew is complete with respect to FLew-chains on [0, 1].

The above definitions works also for the case when ∗ is in addition continuous (in
the usual way). Then the corresponding FLew-chain [0, 1]∗ is in fact a standard BL-
algebra (for more details on BL-algebras see Chapter VII).

3.2 Involutive FL-algebras

We need to recall several properties of involutive FL-algebras which will be use-
ful in the sequel. The most important property is that in involutive FL-algebras the
divisions are definable by means of multiplication and negations. Also conversely, the
multiplication is definable by divisions and negations.

LEMMA 3.2.1. Let A be an involutive FL-algebra. Then we have

1. x · y = −(y\∼x) = ∼(−y/x),

2. x\y = ∼[(−y)x] and y/x = −[x(∼y)].

Proof. Let x, y, z ∈ A. For the first part we have the following chain of equivalences:

xy ≤ z = −∼z iff xy(∼z) ≤ 0 iff y(∼z) ≤ ∼x iff ∼z ≤ y\∼x iff −(y\∼x) ≤ z.

Then we can prove xy ≤ −(y\∼x) by substituting −(y\∼x) for z and −(y\∼x) ≤ xy
by substituting xy for z. The proof of xy = ∼(−y/x) is analogous.

To prove the second part we can employ the following chain of equivalences:

z ≤ x\y iff xz ≤ ∼−y iff (−y)xz ≤ 0 iff (−y)x ≤ −z iff z ≤ ∼[(−y)x].

Again by substituting respectively x\y and∼[(−y)x] for z, we obtain x\y = ∼[(−y)x].
The proof of the other equality is analogous.
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Considering the previous lemma, it is natural to ask whether we can define invo-
lutive FL-algebras in a restricted language replacing either the division operations or
the multiplication by negations ∼,−. Both possibilities can be done. However, we will
focus only on the second possibility because we will need it later.

A division lattice P = 〈P,∧,∨, \, /〉 is a lattice endowed with two division opera-
tions, which satisfy the following condition:

y ≤ x\z iff x ≤ z/y . (4)

A division lattice P is said to be associative if the identity x\(y/z) = (x\y)/z holds
in P . Further, we say that P admits a unit if there is an element 1 ∈ P such that
1\x = x = x/1.

An involutive pair on a lattice P is a pair of order-reversing operations 〈∼,−〉
satisfying the double negation law, i.e., ∼−x = x = −∼x. We call a division lattice
involutive if it is equipped with an involutive pair 〈∼,−〉 and the operations ∼,− are
compatible with the divisions, i.e., the following version of contraposition holds:

y\−x = ∼y/x . (5)

THEOREM 3.2.2 ([18]). Involutive FL-algebras are term equivalent to associative in-
volutive division lattices that admit a unit.

The term equivalence in the above theorem is proved via the following translations.
Having an involutive FL-algebra, one can define

∼x = x\0 , and −x = 0/x .

Conversely, having an associative involutive division lattice that admits a unit 1, one can
define

x · y = −(y\∼x) = ∼(−y/x) , and 0 = ∼1 = −1 .

3.3 A bottom and a top element

An FL-algebra A need not possess a bottom element, e.g. `-groups are typical ex-
amples of FL-algebras without a bottom element. Nevertheless, if A has a bottom
element ⊥ then it has to have also a top element > since ⊥\⊥ = > is a top element
of A. It is a natural question whether every FL-algebra A can be extended to a lower
bounded one. The answer to this question is affirmative.

Let A = 〈A, ·, \, /,∧,∨, 0, 1〉 be an FL-algebra. We describe how to extend A to an
FL-algebra A⊥ having a bottom element⊥. Let A⊥ = A∪{⊥,>} with A∩{⊥,>} =
∅. The order on A⊥ extends the order on A by setting ⊥ ≤ a ≤ > for every a ∈ A. The
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multiplication and divisions are extended as follows:

⊥ · x = x · ⊥ = ⊥ ,

> · x = x · > =

{
> if x ∈ A ∪ {>},
⊥ if x = ⊥,

x\> = >/x = > ,
⊥\x = x/⊥ = > ,

>\x = x/> =

{
⊥ if x ∈ A ∪ {⊥},
> if x = >,

x\⊥ = ⊥/x =

{
⊥ if x ∈ A ∪ {>},
> if x = ⊥.

Then it can be shown that A⊥ = 〈A⊥, ·, \, /,∧,∨, 0, 1〉 is an FL-algebra such that A is
a subalgebra of A⊥. Thus we have the following proposition.

PROPOSITION 3.3.1 ([21]). Every FL-algebra A can be embedded in a lower bounded
FL-algebra A⊥, i.e., A⊥ has a bottom and top element. Moreover, the construction
of A⊥ preserves the following properties of A: commutativity, contraction and linear
order.

3.4 Algebraizability

In this section we are going to present the most important consequences of the fact
that the logic FL is algebraizable. Nevertheless, we will not define the notion of alge-
braizability precisely (for details see [1] and Chapter II). Roughly speaking, a logic L is
algebraizable if there is a class of algebras L (so-called equivalent algebraic semantics)
satisfying the following conditions:

1. There is a translation τ from formulas in the language of L to identities in the lan-
guage of members from L. Conversely, there is also a translation ρ from identities
to formulas.

2. Let Φ ∪ {ϕ} be a set of formulas in the language of L. Then

Φ `L ϕ iff τ [Φ] |=L τ(ϕ) . (6)

3. Let s = t be an identity in the language of L. Then

s = t |=L τ(ρ(s = t)) and τ(ρ(s = t)) |=L s = t . (7)

In order to show that the logic FL is algebraizable, one has to first define the transla-
tions τ and ρ. Let ϕ ∈ Fm and s = t an identity in the language LFL. Then τ(ϕ) is the
identity 1 = 1∧ϕ (or shortly 1 ≤ ϕ) and ρ(s = t) is the formula (s\t)∧ (t\s). Observe
that the formulas Fm are just terms in the language LFL so the above definition makes
sense. Then one has to prove that τ and ρ satisfy the conditions from the definition of
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an algebraizable logic. This was done in [19]. Further details can be found in Chapter II
where it is proved that FL is an algebraizable weakly implicative logic. Such logics are
called algebraically implicative in Chapter II.

THEOREM 3.4.1. The translations τ and ρ satisfy (6) and (7) for L = FL and L = FL.
So the logic FL is algebraizable and its equivalent algebraic semantics is the variety FL.

The fact that FL is algebraizable has several important consequences which follow
from general results on algebraizable logics. First, there is a dual lattice isomorphism V
between the lattice of substructural logics Λ(FL) and the subvariety lattice Λ(FL) of
FL-algebras. Given a substructural logic L = FL+Φ, we define V(L) as the subvariety
of FL-algebras satisfying identities from τ [Φ]. Conversely, given a subvariety L of FL-
algebras axiomatized relatively to FL by a set of identities E, the inverse V−1(L) is the
axiomatic extension L = FL + ρ[E]. Second, we have the strong completeness theorem
not only for FL but for any axiomatic extension of FL (i.e., any substructural logic).

THEOREM 3.4.2. Let Φ ∪ {ψ} ⊆ Fm and E ∪ {s = t} a set of identities in the
language LFL. Then the following hold:

1. For a substructural logic L we have

Φ `L ψ iff {1 ≤ ϕ | ϕ ∈ Φ} |=V(L) 1 ≤ ψ .

2. For a subvariety L of FL-algebras we have

E |=L s = t iff {(u\v) ∧ (v\u) | u = v ∈ E} `V−1(L) (s\t) ∧ (t\s) .

3.5 Congruences and filters

In this section we are going to show that congruences in an FL-algebra A can be
characterized by certain subsets of A which are called filters. More precisely, we are
going to show that filters form a lattice which is isomorphic to Con(A).

Before we define the notion of a filter, we have to introduce conjugates. Let A be
an algebra for the language LFL. Given a, x ∈ A, we define the left conjugate and
the right conjugate of x with respect to a respectively as λa(x) = (a\xa) ∧ 1 and
ρa(x) = (ax/a) ∧ 1. An iterated conjugate of x with respect to a1, . . . , an ∈ A is a
composition of the form γa1(γa2(· · · γan(x) · · · )), where γai ∈ {λai , ρai} for every i.
LetX ⊆ A. Then the set of all iterated conjugates of elements fromX is denoted Γ(X).
If X = {x} then Γ({x}) is abbreviated as Γ(x). A subset X ⊆ A is called normal if it
is closed under all iterated conjugates, i.e., Γ(X) ⊆ X . Given a subset X ⊆ A we also
define its closure under multiplication

Π(X) = {x1 · · ·xn ∈ A | xi ∈ X, n ≥ 1} ∪ {1} .

The left and right conjugates were defined for any algebra A for the language LFL.
If, in addition, A is an FL-algebra, then λ1(x) = ρ1(x) = x ∧ 1 since 1\(x1) =
(1x)/1 = x hold in any FL-algebra. Furthermore, λa(1) = ρa(1) = 1 because 1 ≤ a\a
and 1 ≤ a/a (see Lemma 3.0.12).
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DEFINITION 3.5.1. Let A be an FL-algebra and F ⊆ A. Then F is a filter of A if the
following hold:

(u) 1 ∈ F
(up) F is an upset, i.e., F = ↑F ,
(p) F is closed under multiplication, i.e., Π(F ) ⊆ F ,
(n) F is normal, i.e., Γ(F ) ⊆ F .

It is easy to see that (n) can be simplified when A is commutative. Namely, the
condition Γ(F ) ⊆ F can be replaced by F ∧ 1 ⊆ F , where F ∧ 1 = {x ∧ 1 | x ∈ F}.
Indeed, in the commutative case we have

(a\xa) ∧ 1 = (a\ax) ∧ 1 ≥ x ∧ 1 .

If A is in addition integral (i.e., an FLei-algebra), then (n) is redundant.
The notion of a filter was not discovered only by investigating congruences of FL-

algebras but it comes from the logic itself. Namely filters of an FL-algebra A are just
subsets closed under all deductions; a subset F ⊆ A is closed under all deductions if for
all Φ ∪ {ϕ} ⊆ Fm and all evaluations e : Fm→ A we have the following implication:

Φ `FL ϕ and e[Φ] ⊆ F implies e(ϕ) ∈ F.

For further details on this see the notion of a logical filter in Chapter II.
Let A be an FL-algebra. Observe that the collection Fi(A) of all filters of A form a

poset Fi(A) = 〈Fi(A),⊆〉 ordered by inclusion. It is in fact a complete lattice because
it is easy to see that filters are closed under arbitrary intersections. Since Fi(A) is a
complete lattice, it makes sense to define a least filter F (X) containing a subset X ⊆ A
as the intersection of all filters F such that X ⊆ F . We also say that F (X) is the filter
generated by X . It is a natural question whether we can describe elements of F (X) by
means of elements from X . The answer is the content of the following theorem.

THEOREM 3.5.2. Let A be an FL-algebra and X ⊆ A. Then F (X) = ↑ΠΓ(X). In
other words, y ∈ F (X) iff there are elements x1, . . . , xn ∈ X and iterated conjugates
γ1, . . . , γn such that γ1(x1) · · · γn(xn) ≤ y. If A is commutative then F (X) = ↑Π(X∧
1).

Now we are about to define the isomorphism between Fi(A) and Con(A) for an
FL-algebra A. Let θ ∈ Con(A) and F ∈ Fi(A). We define two maps Fc : Con(A)→
Fi(A) and Θf : Fi(A)→ Con(A) as follows:

Fc(θ) = ↑(1/θ) ,
Θf (F ) = {〈a, b〉 | a\b, b\a ∈ F} .

Note that Θf (F ) is the Leibniz congruence of the matrix 〈A, F 〉 (see Chapter II). Now
we are ready for the promised theorem on filters and congruences.

THEOREM 3.5.3. Let A be an FL-algebra. Then the lattice Fi(A) is isomorphic to
the congruence lattice Con(A) via the mutually inverse maps Θf and Fc.

Let A be an FL-algebra and F ∈ Fi(A). The above theorem justifies the conven-
tion of writing A/F instead of A/Θf (F ). Analogously, a congruence class of a ∈ A
with respect to Θf (F ) is denoted a/F .
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3.6 Semilinear varieties of FL-algebras

Now we have all the necessary background to introduce semilinear substructural
logics. The notion of a semilinear logic is semantical since it is defined by a property
of the corresponding algebraic semantics. Roughly, a semilinear logic should be a logic
which is sound and complete with respect to a class of linearly ordered algebras. We
will make this definition precise for substructural logics. By algebraization we know
that every substructural logic L has an equivalent algebraic semantics V(L). Moreover,
the consequence relation `L can be equivalently translated to the consequence relation
|=V(L), see Theorem 3.4.2. In particular, L is sound and complete with respect to the
class of algebras V(L). Inside the variety V(L) we can identify linearly ordered algebras
and use them in the definition of a semilinear substructural logic. More precisely, for a
variety of FL-algebras L, let us denote the class of all FL-chains from L by LC.

DEFINITION 3.6.1. Let L be a substructural logic and L its equivalent algebraic se-
mantics. Then L is semilinear if |=L = |=LC

. In that case, L is called a semilinear
variety.

Concerning the above definition, we also refer to Chapter II where semilinear logics
are defined as weakly implicative logics complete with respect to the class of its linear
models. Thus semilinear logics in Chapter II are understood in a broader context than
here because every substructural logic is weakly implicative but not vice versa.

It follows immediately from the definition that semilinear varieties are generated
by their chains since we have |=L s = t iff |=LC

s = t for any identity s = t. One
can prove also the converse implication saying that varieties generated by chains are
semilinear. To see this, let C be a class of FL-chains and K = V(C). By Theorem 2.1.8
KSI ⊆ HSPU(C). Furthermore, ultraproducts, subalgebras and homomorphic images
of chains are again chains. Thus we have

KSI ⊆ HSPU(C) ⊆ KC ,

showing that subdirectly irreducible members of K have to be chains. Then using Propo-
sition 2.1.7, we obtain

|=K ⊆ |=KC
⊆ |=KSI

= |=K .

Hence |=K = |=KC
, i.e., K is semilinear. Summing up the above ideas, we obtain the

following proposition.

PROPOSITION 3.6.2. Let L be a variety of FL-algebras. Then the following are equiv-
alent:

• L is semilinear,

• L = V(LC),

• LSI ⊆ LC.

Given a variety L of FL-algebras, we can find the least variety containing LC. We
denote this variety L`. The class L` is clearly the variety generated by LC, i.e., L` =
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V(LC). Thus L` is a semilinear variety by Proposition 3.6.2. Moreover, L` is the
greatest semilinear variety below L. Indeed, assume that L` ⊆ K ⊆ L for a semilinear
variety K. Since K is generated by chains which belong to L, we must have KC ⊆ LC.
Hence K ⊆ L`. Let L and L` be the substructural logics corresponding respectively
to the varieties L and L` via the dual lattice isomorphism between substructural logics
and subvarieties of FL-algebras. Then it follows from the discussion above that L` is the
weakest semilinear substructural logic above L. A reader may want to consult Chapter II
where the logic L` is also discussed. Note that LC is denoted MOD`(L) in Chapter II.

It is a natural question how to axiomatize the variety L` (resp. logic L`). In fact, it is
sufficient to axiomatize FL` because L` = FL` ∩ L. In order to axiomatize FL`, it suf-
fices by Propositions 2.1.7 and 3.6.2 to find identities expressing the fact that subdirectly
irreducible members in the variety given by these identities are linearly ordered.

We start with a useful lemma characterizing intersections of principal filters (i.e.,
filters generated by singletons). Let A be any algebra for the language LFL and X,Y ⊆
A. Then we define X ∨ Y = {x ∨ y | x ∈ X, y ∈ Y }. If A = Fm then 1 = X
denotes the set of identities {1 = τ | τ ∈ X}. Recall also that Γ(X) denotes the set of
all iterated conjugates of elements from X .

LEMMA 3.6.3. Let A be an FL-algebra and x, y ∈ A. Then

F (x) ∩ F (y) = F (Γ(x) ∨ Γ(y)) .

Proof. (⊇): SinceF (Γ(x)∨Γ(y)) is the least filter containing Γ(x)∨Γ(y), it is sufficient
to prove that a ∨ b ∈ F (x) ∩ F (y) for all a ∈ Γ(x) and b ∈ Γ(y). Clearly, a ∈ F (x)
since filters are closed under conjugations. Thus a ≤ a ∨ b ∈ F (x) because F (x) is an
upset. Similarly, a ∨ b ∈ F (y).

(⊆): Let z ∈ F (x) ∩ F (y). By Theorem 3.5.2 there are k, l ∈ N, a ∈ Γ(x) and
b ∈ Γ(y) such that ak ≤ z and bl ≤ z. Consequently, ak ∨ bl ≤ z. Since multiplication
distributes over joins, we get

(a ∨ b)k+l =
∨

f : {1,...,k+l}→{a,b}

f(1) · · · f(k + l) .

As every f(1) · · · f(k + l) contains either at least k-times a or at least l-times b, it
follows that (a ∨ b)k+l ≤ ak ∨ bl (note that a, b ≤ 1 because any conjugate is less than
or equal to 1). Thus (a∨ b)k+l ≤ z. This means that z belongs to the filter generated by
a ∨ b ∈ Γ(x) ∨ Γ(y).

REMARK 3.6.4. Let p, q ∈ Fm be propositional variables. It is shown in Chapter II
that the set of formulas Γ(p)∨Γ(q) forms a p-disjunction. The above lemma shows that
this p-disjunction satisfies a weak form of the Proof by Cases Property.

Using Lemma 3.6.3, we can prove that a subdirectly irreducible FL-algebra A is
linearly ordered iff it satisfies the following set of identities:

1 = Γ((x ∨ y)\y) ∨ Γ((x ∨ y)\x) , (8)
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where x, y ∈ Fm are variables and Γ((x ∨ y)\y),Γ((x ∨ y)\x) are sets of iterated
conjugates in the term algebra Fm.

To see that the identities (8) gives an axiomatization for FL`, observe first that in
any FL-algebra A we have x ≤ y iff x ∨ y ≤ y iff 1 ≤ (x ∨ y)\y. Thus an FL-algebra
A is linearly ordered iff it satisfies the following universal sentence:

(∀x)(∀y)(1 ≤ (x ∨ y)\y or 1 ≤ (x ∨ y)\x) .

Further, observe that in any FL-algebra A we have 1 ≤ x implies γ(x) = 1 for any
iterated conjugate γ. Indeed, let a ∈ A. Then 1 ≤ x implies a ≤ xa. Thus 1 =
a\xa∧1 = λa(x). Similarly, 1 = ρa(x). Thus also 1 = γ(x) for any iterated conjugate
γ. Consequently, every FL-chain A satisfies the universal sentence

(∀x)(∀y)(1 = γ1((x ∨ y)\y) or 1 = γ2((x ∨ y)\x)) ,

for arbitrary iterated conjugates γ1, γ2. Then it is easy to see that every FL-chain A has
to satisfy all the identities (8), i.e., the identities:

{1 = γ1((x ∨ y)\y) ∨ γ2((x ∨ y)\x) | γ1, γ2 iterated conjugates} .

Conversely, assume that A is a subdirectly irreducible FL-algebra satisfying (8).
We want to show that for any x, y ∈ A either 1 ≤ (x ∨ y)\y or 1 ≤ (x ∨ y)\x. By
Lemma 3.6.3 we have

F ((x ∨ y)\y) ∩ F ((x ∨ y)\x) = F (Γ((x ∨ y)\y) ∨ Γ((x ∨ y)\x)) = ↑1 .

Since A is subdirectly irreducible, the least filter ↑1 has to be a completely meet-
irreducible element of Fi(A) (see Theorems 2.1.4 and 3.5.3). Thus one of the filters
F ((x ∨ y)\y), F ((x ∨ y)\x) has to be ↑1. Consequently, either 1 ≤ (x ∨ y)\y or
1 ≤ (x ∨ y)\x.

The axiomatization of FL` given by identities (8) is not finite. Nevertheless, the
following theorem shows that we can improve it so that the resulting axiomatization is
finite. Note also that Chapter II provides another infinite axiomatization of FL` using
the prelinearity axioms similar to (8).

THEOREM 3.6.5. The class FL` of semilinear FL-algebras is axiomatized by the fol-
lowing 4-variable identity:

1 = λa((x ∨ y)\y) ∨ ρb((x ∨ y)\x) . (9)

Proof. It is clear that an FL-algebra satisfying 1 = γ1((x ∨ y)\y) ∨ γ2((x ∨ y)\x) for
all iterated conjugates γ1, γ2 satisfies in particular 1 = λa((x ∨ y)\y) ∨ ρb((x ∨ y)\x).

Conversely, let A be an FL-algebra satisfying 1 = λa((x∨ y)\y)∨ ρb((x∨ y)\x).
Observe that the following quasi-identities hold in A:

c ∨ d = 1 ⇒ λa(c) ∨ d = 1 , c ∨ d = 1 ⇒ c ∨ ρb(d) = 1 .



Algebraic Semantics 25

Indeed, assume that c ∨ d = 1. Then c, d ≤ 1. If we substitute d for x, c for y and 1 for
b in (9), we get

1 = λa((d ∨ c)\c) ∨ ρ1((d ∨ c)\d) = λa(c) ∨ (d ∧ 1) = λa(c) ∨ d .

Analogously we can derive the second quasi-identity. Finally, applying these quasi-
identities on the identity 1 = λa((x ∨ y)\y) ∨ ρb((x ∨ y)\x), we can derive 1 =
γ1((x ∨ y)\y) ∨ γ2((x ∨ y)\x) for any iterated conjugates γ1, γ2.

The above theorem suggests the following definition.

DEFINITION 3.6.6. An FL-algebra is called semilinear if it satisfies the identity

1 = λa((x ∨ y)\y) ∨ ρb((x ∨ y)\x) .

The axiomatization of FL` given in Theorem 3.6.5 can be further simplified if we
replace the variety FL by the variety FLe of commutative FL-algebras. Then we can
get rid of the conjugates in (9). Indeed, let A be a semilinear FLe-algebra. Then A
satisfies (9), in particular for a = b = 1 we have

1 = ((x ∨ y)\y ∧ 1) ∨ ((x ∨ y)\x ∧ 1) . (10)

Conversely, assume that A is an FLe-algebra satisfying the identity (10). For all a, x ∈
A we have λa(x) = a\xa ∧ 1 = a\ax ∧ 1 ≥ x ∧ 1. Similarly, we have ρb(y) ≥ y ∧ 1
for b, y ∈ A. Using this observation we can obtain the following chain of inequalities:

1 = ((x ∨ y)\y ∧ 1) ∨ ((x ∨ y)\x ∧ 1) ≤ λa((x ∨ y)\y) ∨ ρb((x ∨ y)\x) ≤ 1 .

Thus the identity (9) holds in A, i.e., A is semilinear.
The identity (10) can be simplified a little bit more if one observes that (x∨ y)\y =

x\y ∧ y\y and (x ∨ y)\x = x\x ∧ y\x. Since 1 ≤ x\x and 1 ≤ y\y, we obtain
(x ∨ y)\y ∧ 1 = x\y ∧ 1 and (x ∨ y)\x = y\x ∧ 1. Thus the next theorem follows.

THEOREM 3.6.7. The variety FL`e is axiomatized relatively to FLe by the identity

1 = (y\x ∧ 1) ∨ (x\y ∧ 1) . (11)

If we want to axiomatize semilinear FLei-algebras relatively to FLei we can even
drop the meets with 1 in (11) because 1 is the top element in FLei-algebras.

THEOREM 3.6.8. The variety FL`ei is axiomatized relatively to FLei by the identity

1 = y\x ∨ x\y . (12)

As we already mentioned, most fuzzy logics are in fact semilinear substructural
logics. However, many of them were introduced independently. Thus they appear in
the literature under different names than used here. The same is true also for corre-
sponding algebras of truth values. Table 3 provides a translation table between names of
semilinear FL-algebras used here and their original names.
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Our name Original name

FL`ew-algebras MTL-algebras
FL`cw-algebras Gödel algebras
FL`w-algebras psMTLr-algebras

Involutive FL`ew-algebras IMTL-algebras
Involutive FL`cw-algebras Boolean algebras
FL`e-algebras (with >,⊥) UL-algebras

Involutive FL`e-algebras (with >,⊥) IUL-algebras
RL`ei-algebras prelinear semihoops

Table 3. Our names versus original names of semilinear FL-algebras.

3.7 Nuclei and conuclei

Nuclei and conuclei belong to the most useful constructions on FL-algebras (as we
will see also in this chapter). They are in fact closure and interior operators on FL-
algebras which preserve their semigroup structure in a lax way. A closure operator γ on
an FL-algebra A = 〈A, ·, \, /,∧,∨, 0, 1〉 is called a nucleus if for all x, y ∈ A we have

γ(x) · γ(y) ≤ γ(x · y) .

On the other hand, an interior operator σ on A is said to be a conucleus1 if for all
x, y ∈ A we have

σ(x) · σ(y) ≤ σ(x · y) and σ(1) = 1 .

Recall that closure and interior operators are fully determined by their images. The same
is true also for nuclei and conuclei.

LEMMA 3.7.1. Let A, B be FL-algebras, γ a closure operator on A and σ an interior
operator on B. Then we have the following:

1. γ is a nucleus on A iff x/y, y\x ∈ γ[A] for all x ∈ γ[A], y ∈ A.

2. σ is a conucleus on B iff σ[B] forms a submonoid of B.

Proof. Suppose that γ is a nucleus. Let x ∈ γ[A] and y ∈ A. We have to show that x/y
is γ-closed, i.e., γ(x/y) = x/y. Clearly x/y ≤ γ(x/y) because γ is a closure operator.
To see the other inequality γ(x/y) ≤ x/y, note that

γ(x/y)y ≤ γ(x/y)γ(y) ≤ γ((x/y)y) ≤ γ(x) = x .

Thus γ(x/y) ≤ x/y by the residuation property. Similarly one can prove that y\x is
γ-closed. Conversely, suppose that x/y, y\x ∈ γ[A] for all x ∈ γ[A], y ∈ A. We

1In the literature there is also a slightly more general definition of a conucleus where the condition σ(1) =
1 is replaced by a weaker condition σ(1)σ(x) = σ(x) = σ(x)σ(1).
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have to show that γ(x)γ(y) ≤ γ(xy). We have xy ≤ γ(xy) since γ is a closure
operator. Thus x ≤ γ(xy)/y. Using the assumption on γ(xy)/y, we get γ(x) ≤
γ(xy)/y. Consequently, y ≤ γ(x)\γ(xy). Again using the assumption, we obtain
γ(y) ≤ γ(x)\γ(xy). Thus γ(x)γ(y) ≤ γ(xy).

To see the second part of the lemma, note that the inequality σ(x)σ(y) ≤ σ(xy)
is equivalent to the equation σ(σ(x)σ(y)) = σ(x)σ(y), which says that σ[B] is closed
under multiplication. Indeed, suppose that σ(x)σ(y) ≤ σ(xy) holds. Since σ is idem-
potent and contracting, we have

σ(x)σ(y) = σ(σ(x))σ(σ(y)) ≤ σ(σ(x)σ(y)) ≤ σ(x)σ(y) .

Conversely, assume that σ(σ(x)σ(y)) = σ(x)σ(y) holds. Then σ(x) ≤ x and σ(y) ≤ y
implies σ(x)σ(y) ≤ xy. Thus we have

σ(x)σ(y) = σ(σ(x)σ(y)) ≤ σ(xy) .

Consequently, σ satisfies σ(x)σ(y) ≤ σ(xy) iff σ[B] is a subsemigroup. Thus the claim
follows because 1 ∈ σ[B].

The characterization of nuclei by means of their images given in Lemma 3.7.1(1)
can be further improved in the sense that it is sufficient to check the condition only for
some elements. Recall that a subsetD of a lattice A is called join-dense if every element
a ∈ A is equal to a (possibly infinite) join of elements from D.

LEMMA 3.7.2. Let A be an FL-algebra and γ a closure operator on A with a basis
B. Further assume that D ⊆ A is a join-dense set in A. Then γ is a nucleus iff the
following condition holds:

b/d and d\b are γ-closed for all d ∈ D and b ∈ B. (13)

Proof. By Lemma 3.7.1 the closure operator γ is a nucleus iff x/y, y\x are γ-closed for
all x ∈ γ[A], y ∈ A. Clearly, this condition implies (13) since D ⊆ A and B ⊆ γ[A].
Conversely, assume that (13) holds and consider x ∈ γ[A] and y ∈ A. Since B is a
basis of γ we have x =

∧
X for some X ⊆ B. Similarly, y =

∨
Y for some Y ⊆ D

because D is join-dense. Consequently, we have y\x =
∨
Y \

∧
X =

∧
d∈Y

∧
b∈X d\b

by Proposition 3.0.9. By our assumption d\b’s are γ-closed, hence y\x is γ-closed
as well because an arbitrary meet of γ-closed elements is again a γ-closed element.
Analogously one can show that x/y is γ-closed.

Let A = 〈A, ·, \, /,∧,∨, 0, 1〉 be an FL-algebra and γ a nucleus on A. Then the
algebra

γ[A] = 〈γ[A], ◦γ , \, /,∧,∨γ , γ(0), γ(1)〉 ,

where the operations ◦γ and ∨γ are defined by

x ◦γ y = γ(x · y) ,

x ∨γ y = γ(x ∨ y) ,
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is called the γ-retraction (or a nuclear retraction) of A.
Dually, if σ is a conucleus on A then the algebra

σ[A] = 〈σ[A], ·, \σ, /σ,∧σ,∨, σ(0), 1〉 ,

where the operations \σ , /σ and ∧σ are defined by

x\σy = σ(x\y) ,

x/σy = σ(x/y) ,

x ∧σ y = σ(x ∧ y) ,

is called the σ-contraction (or a conuclear contraction) of A.

THEOREM 3.7.3 ([18]). Let A,B be FL-algebras, γ a nucleus on A, and σ a conu-
cleus on B. Then the γ-retraction γ[A] and the σ-contraction σ[B] are FL-algebras.

The notions of γ-retraction and σ-contraction for FL-chains can be simplified be-
cause any subset of a chain is closed under finite meets and joins. Namely, we have
∨γ = ∨ and ∧σ = ∧. Indeed, let A be an FL-chain, γ a nucleus on A and x, y ∈ γ[A].
Then either x ≤ y or y ≤ x. Without any loss of generality assume x ≤ y. Then
γ(x ∨ y) = γ(y) = y = x ∨ y. The equality ∧σ = ∧ can be proved analogously.

To see how the above notions works, we will present examples of a conucleus and a
nucleus. Let A be an FL-algebra and σ : A → A a map defined by σ(x) = x ∧ 1. It is
easy to see that σ is an interior operator. Moreover, σ is a conucleus since σ[A] forms a
submonoid of A. Indeed, if x, y ∈ σ[A] then x, y ≤ 1. Thus xy ≤ 1, i.e., σ(xy) = xy.
Consequently, σ[A] is an FL-algebra. It is even an FLi-algebra as 1 is clearly a top
element of σ[A]. The algebra σ[A] is often called the negative cone of A and denoted
A−.

Now, let B be an FLi-algebra and b ∈ B. Then the map γ : B → B defined by
γ(x) = x ∨ b is clearly a closure operator. Moreover, γ is a nucleus since

γ(x)γ(y) = (x ∨ b)(y ∨ b) = xy ∨ xb ∨ by ∨ b2 ≤ xy ∨ b = γ(xy) .

The last inequality holds since B is integral thus xb, by, b2 are all less than or equal to
b. Consequently, γ[B] is an FL-algebra which clearly remains integral.

One can also combine the above mentioned conucleus σ with the nucleus γ. Assume
that B = σ[A]. Then the combination gives an FLi-algebra γ[σ[A]] whose universe is
just the interval [b, 1] in the lattice reduct of A.

We have seen that nuclei and conuclei can be used in order to construct new FL-
algebras. It is also important to know which properties are preserved by these construc-
tions. Let A be an FL-algebra. We present two ways how to show that some property
is preserved by nuclei (resp. conuclei).

LEMMA 3.7.4. Nuclei are homomorphisms with respect to the language {·,∨, 0, 1}
and images of nuclei are subalgebras with respect to the language {\, /,∧}. On the
other hand, conuclei are homomorphisms with respect to the language {∧, 0, 1} and
subalgebras with respect to the language {·,∨, 1}.
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Proof. The claims on subalgebras follow immediately from the definition of a nuclear
retraction and a conuclear contraction.

Let A be an FL-algebra and γ a nucleus on A. We claim that γ : A → γ[A] is a
{·,∨, 0, 1}-homomorphism. The map γ preserves 0 and 1 because γ(0) and γ(1) are the
corresponding constants in γ[A]. Let x, y ∈ A. We will show that γ(xy) = γ(x) ◦γ
γ(y) = γ(γ(x)γ(y)). Obviously γ(xy) ≤ γ(γ(x)γ(y)) because γ is expanding and
monotone. Conversely, we have γ(x)γ(y) ≤ γ(xy). Thus γ(γ(x)γ(y)) ≤ γ(γ(xy)) =
γ(xy). Further, we will show that γ(x ∨ y) = γ(x) ∨γ γ(y) = γ(γ(x) ∨ γ(y)). Again
the inequality γ(x∨y) ≤ γ(γ(x)∨γ(y)) is obvious since γ is expanding and monotone.
Conversely, we have γ(x), γ(y) ≤ γ(x∨y). Thus γ(x)∨γ(y) ≤ γ(x∨y). Consequently,
γ(γ(x) ∨ γ(y)) ≤ γ(γ(x ∨ y)) = γ(x ∨ y).

Finally, let A be an FL-algebra and σ a conucleus on A. We will show that σ is a
{∧, 0, 1}-homomorphism. The preservation of 0, 1 is obvious. Let x, y ∈ A. It remains
to check that σ(x ∧ y) = σ(x) ∧σ σ(y) = σ(σ(x) ∧ σ(y)). Since σ is contracting and
monotone, we have σ(σ(x) ∧ σ(y)) ≤ σ(x ∧ y). Conversely, σ(x ∧ y) ≤ σ(x), σ(y).
Thus σ(x ∧ y) ≤ σ(x) ∧ σ(y). Consequently, σ(x ∧ y) = σ(σ(x ∧ y)) ≤ σ(σ(x) ∧
σ(y)).

Since homomorphic images preserve identities and substructures preserve universal
sentences, it follows from the previous lemma that nuclei preserve all identities in the
language {·,∨, 0, 1} and all universal sentences in the language {\, /,∧}. On the other
hand, conuclei preserve all identities in the language {∧, 0, 1} and universal sentences
in the language {·,∨, 1}.

Although nuclei and conuclei are not homomorphisms of FL-algebras, they can be
at least partial homomorphisms in some cases. The following two lemmas present such
cases which we will need in the sequel. Let A be an FL-algebra. The first lemma
shows that a conucleus σ on A is always a partial embedding of the partial subalgebra
of σ-open elements into the σ-contraction σ[A].

LEMMA 3.7.5. Let A be an FL-algebra and σ a conucleus on A. Further, let G be
a partial subalgebra of A defined on a set of σ-open elements, i.e., G ⊆ σ[A]. Then σ
restricted to G is a partial embedding from G to the σ-contraction σ[A].

Proof. First note that the restriction of σ to G is just the identity map. Thus it is one-
to-one. Second, σ preserves ∧, 0, and 1 by Lemma 3.7.4. We show that σ preserves ·
and ∨. Recall that · and ∨ are computed in σ[A] as in A because σ[A] is a subalgebra
of A with respect to the language {·,∨, 1}. Let ? ∈ {·,∨} and a, b, a ? b ∈ G. Then
σ(a) = a, σ(b) = b and σ(a ? b) = a ? b. Thus we have

σ(a ? b) = a ? b = σ(a) ? σ(b) .

Finally, we show that σ preserves the divisions. Let a, b ∈ G. Since σ(a) = a and
σ(b) = b, we have

σ(a\b) = σ(σ(a)\σ(b)) = σ(a)\σσ(b) .

Similarly, σ(a/b) = σ(a)/σσ(b) for all a, b ∈ G.
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Let A, B be FL-algebras and γ a nucleus on B. The second lemma shows that if
we are able to embed A into B via f : A→ B in such a way that f [A] ⊆ γ[B], then f
becomes an embedding of A into the γ-retraction γ[B]. Nevertheless, the next lemma is
a bit more general than this. It is sufficient to assume that f is only a partial embedding
of a partial subalgebra of A into B. Moreover, we will formulate the lemma in such a
way that it works also for restricted languages. This will be helpful later. For instance,
we will use the following lemma in order to show that f is an embedding with respect to
all operations but ∨. Then we can concentrate only on the preservation of ∨ which does
not follow from this general lemma.

LEMMA 3.7.6. Let A, B be FL-algebras and γ a nucleus on B. Further, let A′ be a
reduct of A, G a partial subalgebra of A′ and f : G → B a partial embedding such
that f [G] ⊆ γ[B]. Then f is a partial embedding from G to the corresponding reduct
of γ[B].

Proof. Since γ behaves like the identity map on γ[B], the composition γ ◦ f equals
f . Thus we have to show that γ ◦ f : G → γ[B] preserves all the operations from
G. If the operation is one of ·,∨, 0, 1, then γ ◦ f preserves it because γ is a {·,∨, 0, 1}-
homomorphism by Lemma 3.7.4. Let ? ∈ {\, /,∧} be an operation from G and a, b ∈ G
such that a ? b ∈ G. Recall that ? is computed in γ[B] in the same way as in B. Thus
we have to show that γ(f(a ? b)) = γ(f(a)) ? γ(f(b)). Since f [G] ⊆ γ[B], this
equality transforms to f(a ? b) = f(a) ? f(b) which holds because f preserves ? by our
assumption.

3.8 Dedekind-MacNeille completion

Completions play an important role in substructural logics. Given an FL-algebra
A, by a completion of A we mean a pair 〈B, f〉 where B is an FL-algebra whose
lattice reduct is complete and f : A → B is an embedding. We will be mainly inter-
ested in completions of FL-chains since it will be a crucial ingredient when proving the
completeness of semilinear logics with respect to the [0, 1]-valued semantics. There are
many completions of a given FL-algebra A. Among them the most important is the so-
called Dedekind-MacNeille completion because it preserves all existing meets and joins,
i.e., f [

∧
S] =

∧
f [S] and f [

∨
S] =

∨
f [S] for any S ⊆ A. The completions having

the latter property are said to be regular.
In what follows we will show how to construct the Dedekind-MacNeille completion

of an FL-algebra A into which A is embeddable and whose lattice reduct is the well-
known Dedekind-MacNeille completion of the lattice reduct of A. We will proceed
in two steps. First, we will consider the poset D(A) of all downsets of A ordered
by inclusion. In fact, D(A) forms a complete lattice. One can even extend the other
operations of the FL-algebra A to D(A) so that D(A) becomes an FL-algebra. Then
one could expect that the mapping x 7→ ↓x is an embedding but this is not the case
because this map need not preserve finite joins. Thus we have to continue with a second
step which selects from D(A) only some of the downsets by means of a nucleus.

Let A = 〈A, ·, 0, 1,≤〉 be a pointed pomonoid, i.e., 〈A, ·, 1,≤〉 is a pomonoid and
0 ∈ A. One can define an FL-algebra on the set D(A) of all downsets of A. The set
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D(A) itself forms a complete lattice since downsets are closed under arbitrary intersec-
tions and unions. We can extend the monoid operation from A to D(A) as follows:

X ◦ Y = {u ∈ A | (∃x ∈ X)(∃y ∈ Y )(u ≤ xy)} .

Note that X ◦ Y is in fact the downset generated by the complex product

X · Y = {x · y | x ∈ X, y ∈ Y } .

To simplify the notation we write X · y instead of X · {y} and similarly x · Y instead of
{x} · Y .

We will see that ◦ is residuated with the divisions defined for X,Y, Z ∈ D(A) as
follows:

X\Z = {y ∈ A | (∀x ∈ X)(∃z ∈ Z)(xy ≤ z)} = {y ∈ A | X · y ⊆ Z} ,

Z/Y = {x ∈ A | (∀y ∈ Y )(∃z ∈ Z)(xy ≤ z)} = {x ∈ A | x · Y ⊆ Z} .
It is easy to see from the definition that both X\Z and Z/Y are downsets. The algebra
D(A) = 〈D(A), ◦, \, /,∩,∪, ↓0, ↓1〉 is called the downset monoid of A. The next
lemma shows that the downset monoid forms an FL-algebra.

LEMMA 3.8.1. The algebra D(A) = 〈D(A), ◦, \, /,∩,∪, ↓0, ↓1〉 is an FL-algebra.

Proof. The multiplication ◦ is clearly associative since · is. Namely, for U, V,W ∈
D(A) we have

(U ◦V )◦W = U ◦ (V ◦W ) = {z ∈ A | (∃u ∈ U)(∃v ∈ V )(∃w ∈W )(z ≤ u ·v ·w)} .

To see that ↓1 is a neutral element for ◦, note the following:

U ◦ ↓1 = {z ∈ A | (∃u ∈ U)(z ≤ u)} = U .

The last equality holds because U is a downset. Similarly we have ↓1 ◦ U = U .
Finally, we have to check that ◦ is residuated, i.e.,

X ◦ Y ⊆ Z iff Y ⊆ X\Z iff X ⊆ Z/Y

for all X,Y, Z ∈ D(A). Since X ◦ Y = ↓(X · Y ) and Z is a downset, it follows that
X ◦ Y ⊆ Z holds iff X · Y ⊆ Z, i.e., the first-order sentence (∀x ∈ X)(∀y ∈ Y )(∃z ∈
Z)(xy ≤ z) is valid. Taking into account that the validity of this sentence does not
depend on the order of universal quantifiers, this sentence is equivalent to Y ⊆ X\Z
and also to X ⊆ Z/Y .

Note that the construction of the downset monoidD(A) preserves some basic prop-
erties of A. Namely, it is easy to see that D(A) remains commutative if A is. Also, if
A is integral (i.e., it satisfies x ≤ 1), then D(A) is an FLi-algebra since ↓1 = A. If 0
is a bottom element of A then ↓0 = {0} is a bottom element of D(A), i.e., D(A) is an
FLo-algebra. The FL-algebra D(A) is contractive if x ≤ x2 holds in A. Indeed, given
any x ∈ X ⊆ A, we have x ≤ x2. Thus x ∈ ↓(X · X), i.e., X ⊆ X ◦ X . Further,
D(A) is clearly a chain if A is linearly ordered. Finally, it is obvious that D(A) is an
RL-algebra if 1 = 0 holds in A. Summing up, we have the following lemma.
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LEMMA 3.8.2. Let A be a pointed pomonoid. The following properties of A are shared
by D(A):

1. commutativity xy = yx,

2. integrality x ≤ 1,

3. contractivity x ≤ x2,

4. 0 ≤ x,

5. linear order,

6. 1 = 0.

Let A be an FL-algebra. It has a reduct which forms a pointed partially ordered
monoid. Hence Lemma 3.8.1 applies to A. Since the lattice reduct ofD(A) is complete,
it is natural ask whether D(A) could be the first component of a completion 〈D(A), f〉
of A. A natural choice for the embedding f would be f(x) = ↓x. However, this f
need not preserve finite joins. Thus we have to modify D(A) so that f becomes also
a join-preserving map. Nevertheless, if A is an FL-chain, then f is an embedding and
〈D(A), f〉 is a completion of A. However, this completion need not be regular because
D(A) could contain a downset of A which has a supremum in A. Summing up, we
have at least the following proposition.

PROPOSITION 3.8.3. Let A be an FL-algebra. Then the map f : A → D(A) defined
by f(x) = ↓x is an embedding of the ∨-free reduct of A into the ∨-free reduct ofD(A).
If, in addition, A is linearly ordered then f is a homomorphism of FL-algebras.

Proof. Since ↓x = ↓y implies x = y, f has to be one-to-one. The map f clearly
preserves the constants 0 and 1. Further, f preserves multiplication because ↓x ◦ ↓y =
↓(↓x · ↓y) = ↓(xy). Indeed, it suffices to note that ↓x · ↓y has a maximum xy. It is
straightforward to check that ↓(x∧y) = ↓x∩↓y. Finally, we will show that f preserves
the divisions. We have

↓x\↓y = {z ∈ A | ↓x · z ⊆ ↓y} = {z ∈ A | xz ≤ y} = ↓(x\y) .

Similarly one can show ↓x/↓y = ↓(x/y).
To prove the additional part, let x, y ∈ A. Then x ≤ y or y ≤ x. Without any loss

of generality suppose that x ≤ y. Then ↓(x ∨ y) = ↓y = ↓x ∪ ↓y.

The next step in the Dedekind-MacNeille completion of an FL-algebra A is to
choose only some of the downsets from D(A) so that the map f(x) = ↓x becomes
join-preserving. This can be done by a suitable nucleus. Let A = 〈A, ·, 0, 1,≤〉 be a
pointed pomonoid and B = 〈B,≤〉 a poset. Recall that every poset relationR ⊆ A×B
defines a closure operator γR = BC on D(A) (see Lemma 2.2.6 and the discussion
below it). We will characterize which of the poset relations R define a nucleus, i.e., a
closure operator satisfying γR(X) ◦ γR(Y ) ⊆ γR(X ◦ Y ) for all X,Y ∈ D(A).

First, note that {↓x | x ∈ A} is a join-dense set in D(A). Indeed, we have X =⋃
x∈X ↓x for any downset X ∈ D(A). Thus Lemma 3.7.2 can be reformulated as

follows.
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LEMMA 3.8.4. Let A = 〈A, ·, 0, 1,≤〉 be a pointed pomonoid and γ a closure operator
on D(A) with a basis B. Then the following are equivalent:

1. γ is a nucleus on D(A).

2. C/↓x and ↓x\C are γ-closed for all x ∈ A and C ∈ B.

Let A = 〈A, ·, 0, 1,≤〉 be a pointed pomonoid and B = 〈B,≤〉 a poset. A poset
relation R ⊆ A × B is said to be nuclear if for all x, y ∈ A and z ∈ B, there exist
subsets x
z, z�y ⊆ B such that

x · y R z iff y R x
z iff x R z�y ,

where y R x
z means that y is in the relation with all the elements from x
z. The
meaning of x R z�y is defined analogously.

The poset relations which define a nucleus on D(A) are exactly those which are
nuclear. Before we prove it, observe that the following hold for a poset relation R ⊆
A×B, Z ∈ D(A), x ∈ A and z ∈ B:

↓x\Z = {y ∈ A | (∃z ∈ Z)(xy ≤ z)} = {y ∈ A | xy ∈ Z} .

(↑z)C = {a ∈ A | (∀u ∈ ↑z)(a R u)} = {a ∈ A | a R z} .

↓x\(↑z)C = {y ∈ A | xy R z} .

LEMMA 3.8.5. Let A = 〈A, ·, 0, 1,≤〉 be a pointed pomonoid, B = 〈B,≤〉 a poset
and R ⊆ A × B a poset relation. The closure operator γR on D(A) is a nucleus iff R
is nuclear.

Proof. By Lemma 2.2.7, the collection B = {(↑z)C | z ∈ B} forms a basis of γR.
So by Lemma 3.8.4 γR is a nucleus iff ↓x\(↑z)C and (↑z)C/↓x are γR-closed for all
x ∈ A and z ∈ B. A downset ↓x\(↑z)C is γR-closed iff there is a subset X ⊆ B such
that ↓x\(↑z)C =

⋂
X where X = {(↑c)C | c ∈ x
z} for some subset x
z ⊆ B. Thus

↓x\(↑z)C is γR-closed iff the following equivalence holds:

y ∈ ↓x\(↑z)C iff y ∈ (↑c)C for all c ∈ x
z.

This can be equivalently transformed to

xy R z iff y R c for all c ∈ x
z.

The last equivalence is nothing but the part of the definition of a nuclear poset relation.
One can prove analogously that (↑z)C/↓x is γR-closed iff R satisfies

xy R z iff x R z�y.
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Let A be an FL-algebra. Now we can employ Lemma 3.8.5 in order to define a
suitable nucleus on D(A) for the construction of the Dedekind-MacNeille completion
of A. Consider the lattice order≤ ⊆ A×A on A. This is clearly a poset relation which
is nuclear since there are singletons x
z = {x\z} and z�y = {z/y} for all x, y, z ∈ A
such that

xy ≤ z iff y ≤ x\z iff x ≤ z/y .

Thus γ≤ is a nucleus on D(A). The resulting FL-algebra γ≤[D(A)] is called the
Dedekind-MacNeille completion of A. It is clear that the lattice reduct of γ≤[D(A)]
is complete because the lattice reduct of D(A) is complete and the image of any clo-
sure operator on a complete lattice is complete as well. Note also that the lattice
reduct of γ≤[D(A)] is the well-known Dedekind-MacNeille completion of the lattice
reduct of A because it consists of all downsets which are stable under taking all upper
bounds and then all lower bounds. It only remains to show that there is an embedding
f : A→ γ≤[D(A)].

THEOREM 3.8.6. Every FL-algebra A can be embedded into its Dedekind-MacNeille
completion γ≤[D(A)].

Proof. Consider the map f : A → D(A) defined by f(x) = ↓x. By Lemma 3.8.3 f is
an embedding of the ∨-free reduct of A into D(A). In order to invoke Lemma 3.7.6 we
have to show that every ↓x is γ≤-closed, i.e., (↓x)BC = ↓x. Since the relation giving
the Galois connection B,C is the order ≤ on A, we have

(↓x)B = {a ∈ A | a ≥ x} = ↑x ,
(↑x)C = {a ∈ A | a ≤ x} = ↓x .

Thus f : A → γ≤[D(A)] is an embedding of the ∨-free reduct of A into the ∨-free
reduct of γ≤[D(A)] by Lemma 3.7.6. It remains to check that f preserves also ∨. We
have to show that

↓(x ∨ y) = f(x ∨ y) = f(x) ∨γ≤ f(y) = γ≤(↓x ∪ ↓y) = (↓x ∪ ↓y)BC .

Note that
(↓x ∪ ↓y)B = {u ∈ A | u ≥ x, u ≥ y} = ↑(x ∨ y) .

Thus (↓x ∪ ↓y)BC = ↓(x ∨ y).

We have seen that every FL-algebra A can be embedded into its Dedekind-MacNeille
completion, namely the FL-algebra γ≤[D(A)]. However, the applicability of this state-
ment depends also on whether the algebra γ≤[D(A)] remains in the same variety from
which A was taken. The next theorem shows that some properties are preserved by the
construction of γ≤[D(A)].

THEOREM 3.8.7. Let S ⊆ {e, c, i, o}. Then the varieties FLS and RLS are both closed
under the Dedekind-MacNeille completion. The same is true also for the classes of all
FLS-chains and RLS-chains.
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Proof. The FL-algebra γ≤[D(A)] is an FLS-algebra (resp. RLS-algebra), if A is. In-
deed, using Lemma 3.8.2, D(A) is an FLS-algebra (resp. RLS-algebra), if A is. Since
any nucleus preserves properties from S and also the identity 1 = 0 (see Lemma 3.7.4),
γ≤[D(A)] is an FLS-algebra (resp. RLS-algebra) as well. The rest of the theorem fol-
lows from the fact that a nuclear retraction of a chain is again a chain.

Although the above theorem holds also for RLS-algebras, note that if {o} ⊆ S then
RLS is the trivial variety containing only the trivial algebra. Thus the above theorem
is trivially valid in this case. Similar observations can be made also in the following
theorems within this section.

Unfortunately, the Dedekind-MacNeille completion does not preserve the identity
axiomatizing the semilinear FL-algebras. Thus γ≤[D(A)] need not be an FL`-algebra
if A is. However, we can use the subdirect representation theorem in order to obtain at
least some completion, although this need not be regular.

THEOREM 3.8.8. Let S ⊆ {e, c, i, o}. Then every FL`S-algebra (resp. RL`S-algebra)
can be embedded into a complete FL`S-algebra (resp. RL`S-algebra).

Proof. Let A be an FL`S-algebra (resp. RL`S-algebra). By Theorem 2.1.5 A can be em-
bedded into

∏
i∈I Ai where Ai’s are subdirectly irreducible and homomorphic images

of A. Thus all Ai’s belong to the semilinear variety generated by A. Moreover, all Ai’s
have to be FLS-chains (resp. RLS-chains) by Proposition 3.6.2. Using Theorem 3.8.6,
each Ai can be embedded into its Dedekind-MacNeille completion Ai. Thus A is em-
beddable into

∏
i∈I Ai which clearly has a complete lattice reduct.

Another question is whether the Dedekind-MacNeille completion of an involutive
FL-algebra remains involutive. We have seen that properties like commutativity, inte-
grality etc. were preserved stepwise in the construction of γ≤[D(A)], i.e., if A is an
FLS-algebra for S ⊆ {e, c, i, o} then also D(A) and γ≤[D(A)] are FLS-algebras. On
the other hand, if A is an involutive FL-algebra, D(A) need not be involutive. Never-
theless, after applying γ≤, the resulting completion becomes involutive. LetX ∈ D(A).
We define two sets X∼ = {∼x | x ∈ X} and X− = {−x | x ∈ X}. The following
lemma shows how the negations ∼X and −X in D(A) (thus also in γ≤[D(A)]) are
related to the sets X∼ and X−.

LEMMA 3.8.9. Let A be an involutive FL-algebra. Then we have for all X ∈ D(A):

∼X = X∼C = XB∼ and −X = X−C = XB− .

Proof. We have

∼X = X\↓0
= {y ∈ A | (∀x ∈ X)(xy ≤ 0)}
= {y ∈ A | (∀x ∈ X)(y ≤ ∼x)}
= X∼C .
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Also

∼X = {y ∈ A | (∀x ∈ X)(xy ≤ 0)}
= {y ∈ A | (∀x ∈ X)(x ≤ −y)}
= {y ∈ A | −y ∈ XB}
= {y ∈ A | ∼−y ∈ XB∼} = XB∼ .

The second part of the lemma is proved analogously.

Then it is easy to see that γ≤[D(A)] is involutive if we start with an involutive FL-
algebra A because for any γ≤-closed downset X we have−∼X = XB∼−C = XBC =
X . Similarly, ∼−X = X .

THEOREM 3.8.10. Let S ⊆ {e, c,w} and A an involutive FLS-algebra (resp. RLS-
algebra). Then its Dedekind-MacNeille completion γ≤[D(A)] is an involutive FLS-
algebra (resp. RLS-algebra) as well.

Again note that for RLw-algebras the above theorem holds trivially because there is
only one RLw-algebra, namely the trivial one.

Theorem 3.8.6 can be also used in order to derive a structural characterization for
FL-algebras. Namely, each FL-algebra A is embeddable into a nuclear retraction
of a downset monoid D(M) for a pointed pomonoid M (namely M is the pointed-
pomonoid reduct of A). Thus if A is an FLS-algebra, then M satisfies the properties
from S (i.e., commutativity, contractivity, integrality and zero-boundedness). Moreover,
1 = 0 holds in M if A is an RLS-algebra. Thus we obtain the following theorem.

THEOREM 3.8.11. Let S ⊆ {e, c, i, o}. Then the variety FLS (resp. RLS) equals the
class of subalgebras of nuclear retractions of downset monoids D(M), where M is a
pointed pomonoid (resp. pomonoid) satisfying the properties from S.

In addition, the class of FLS-chains (resp. RLS-chains) equals the class of subalge-
bras of nuclear retractions of downset monoids D(M), where M is a linearly ordered
pointed pomonoid (resp. linearly ordered pomonoid) satisfying the properties from S.

4 Completeness with respect to distinguished semantics

Each semilinear variety L of FL-algebras defines its corresponding consequence
relation |=L. In this section we are going to discuss whether it is possible in some cases
to replace the class of algebras L by a smaller class K ⊆ L in such a way that |=K = |=L.
It may happen that it is not possible to have this equality for a given K. In that case we
can consider whether this equality holds when the relations |=K, |=L are restricted to
certain subsets.

Now we define more precisely what we have meant above by the restriction of |=K
and |=L. We distinguish the following kinds of completeness properties of L with respect
to K:

1. Strong completeness (SKC): |=L = |=K.
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2. Finite strong completeness (FSKC): for every finite set of identities E ∪ {s = t}
we have E |=L s = t iff E |=K s = t. In other words, L is generated as a
quasivariety by K.

3. Completeness (KC): for every identity s = t we have |=L s = t iff |=K s = t. In
other words, L is generated as a variety by K.

Clearly SKC implies FSKC which implies KC. However, none of the reverse implica-
tions holds generally.

We will be interested mainly in the first two completeness properties. Let us recall
how to prove these properties from Chapter II. We always have |=L ⊆ |=K because
K ⊆ L. Moreover, |=L = |=LC

since L is semilinear, where LC denotes the class of
all chains from L. Thus in order to prove SKC for L, it suffices to show |=K ⊆ |=LC

.
Assume that E 6|=LC s = t. Then there is a nontrivial FL-chain A from LC and an
evaluation e : Fm → A satisfying all identities from E but not s = t. We may assume
that A is countable since our language is countable. More precisely, we can take just the
countable subalgebra of A generated by the countable set

G = {e(τ) ∈ A | τ is a subterm occurring in E ∪ {s = t}} .

Consequently, if we prove that each countable nontrivial member of LC is embeddable
into a member B of K via an embedding f : A→ B, we are done since the composition
f ◦ e gives an evaluation into B which satisfies all the premises from E but not the
conclusion s = t. Thus E 6|=K s = t.

THEOREM 4.0.12. Let L be a semilinear variety of FL-algebras and K a subclass of
L. If every countable nontrivial chain from L is embeddable into a member of K then L
has the strong completeness property with respect to K.

In order to prove that L has FSKC, we have to modify the above method a little bit.
Again, we assume that E 6|=LC s = t but now for a finite set of identities E ∪ {s = t}.
Thus there is a nontrivial FL-chain A from LC and an evaluation e : Fm→ A satisfying
all identities from E but not s = t. Again we suppose that A is generated by the set
G which is now finite. In order to obtain a counterexample in K, it suffices to find a
partial embedding f : G → B from the partial subalgebra G of A into a member B of
K. Then one can define an evaluation e′ : Fm→ B by setting e′(p) = f(e(p)), if p is a
variable occurring in E ∪ {s = t}, and e′(p) is arbitrary, if p is a variable not occurring
in E ∪ {s = t}. It is easy to see that the resulting evaluation e′ satisfies all the identities
from E but not s = t. Thus E 6|=K s = t. Summing up, if we want to prove that L has
FSKC, it is sufficient to show that every countable nontrivial chain A ∈ LC is partially
embeddable into K (see Definition 2.1.11).

THEOREM 4.0.13. Let L be a semilinear variety of FL-algebras and K a subclass of
L. If every nontrivial chain from L is partially embeddable into K then L has the finite
strong completeness property with respect to K.

When proving completeness properties for a semilinear variety L, we will focus on
the following subclasses of L:
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1. Q consists of all countably infinite dense chains from L,

2. R is the class of all complete chains C from L containing a countably infinite
subset S dense in C (i.e., if x, y ∈ C such that x < y then there is s ∈ S such
that x < s < y),

3. F is the class of all finite chains from L.

The reason why we are interested in the above-mentioned types of classes comes from
the following considerations. The motivation for the second type comes from fuzzy logic
since fuzzy logics are usually understood as logics whose intended set of truth values
is the real unit interval [0, 1]. This corresponds exactly to the second type because each
complete chain, containing a countably infinite subset dense in it, is order-isomorphic
to [0, 1]. Thus each algebra from R is isomorphic to an algebra whose universe is [0, 1].
Note however that [0, 1] plays here only the role of an order type. Thus its bounds 0, 1
need not correspond with the interpretations of constants 0, 1 from LFL, i.e., there are
FL-chains A = 〈[0, 1], ·, \, /,∧,∨, 0A, 1A〉 such that 0 < 0A and 1A < 1. Neverthe-
less, if A is an FLi-chain, then 1A = 1. Analogously, 0A = 0 if A is an FLo-chain.
Moreover, we have both if A is an FLw-chain.

On the other hand, the first type corresponds to the semantics whose set of truth
values forms an interval in the set of rational numbers. The first type will serve as an
intermediate step when proving a completeness property with respect to the second type.
Finally, the last type is motivated mainly by an application point of view, namely if L
has FSFC then the set of quasi-identities valid in L is decidable. Similarly, SFC implies
decidability of the equational theory of L. Note that FSFC is usually called the finite
embeddability property (FEP) in the literature.

Concerning the structure of the following text on the completeness properties, we
will split it into two parts. The first part contains positive results on completeness proper-
ties for integral semilinear varieties (i.e., semilinear varieties containing FLi-algebras).
The second part deals with non-integral varieties where we have mainly negative results.

4.1 Integral semilinear varieties

4.1.1 Completeness w.r.t. countably infinite dense chains and [0, 1]-valued
semantics

Let 〈A,≤〉 be a chain and a, b ∈ A. We denote the fact that a is a subcover of b as
a ≺ b, i.e., a ≺ b holds iff a < b and there is no c ∈ A such that a < c < b. A chain
〈A,≤〉 is said to be dense if a ≺ b does not hold for any a, b ∈ A. Note that the trivial
one element chain is dense by this definition.

Let {i} ⊆ S ⊆ {e, c, i, o} and FL`S the corresponding variety of semilinear FLS-
algebras. First, we will focus on SQC for FL`S. It is obvious that each chain from Q is
isomorphic to an algebra whose universe is either the set Q∩[0, 1] or Q∩(0, 1] depending
on the existence of a bottom element.

By Theorem 4.0.12 in order to show SQC for FL`S, it is sufficient to prove that each
countable nontrivial FLS-chain A can be embedded into a countably infinite dense FLS-
chain D. Suppose that we have an FLS-chain A = 〈A, ·, \, /,∧,∨, 0A, 1A〉 which is
countable and nontrivial. If A is dense then A has to be infinite because A is nontrivial.
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Figure 5. Filling gaps.

Thus we can set D = A. If A is not dense then there is at least one element a which
has a subcover a′. As we want to extend A so that it becomes dense, we have to fill for
each such element a the gap between a and a′ by a countable dense chain. This can be
done by pasting a copy of rational numbers (namely Q ∩ (0, 1)) into the gap between
a and a′ (see Figure 5). Formally we can define the set D as the following subset of
A× (Q ∩ (0, 1]):

D = {〈a, 1〉 | a ∈ A}∪{〈a, q〉 | q ∈ Q∩(0, 1) and (∃a′ ∈ A) such that a′ ≺ a} . (14)

Then the lexicographic order ≤lex on D is a dense linear order and 〈1A, 1〉 is a top
element. If 0A is a bottom element of A then 〈0A, 1〉 is a bottom element of D because
0A has no subcover in this case. Moreover, the subsetA×{1} ⊆ D is order-isomorphic
to A.

Observe that we can define two operators on the chain D = 〈D,≤lex〉 whose image
is A× {1}, namely a closure operator γ and an interior operator σ defined as follows:

γ(a, q) = 〈a, 1〉 , (15)

σ(a, q) =

{
〈a, 1〉 if q = 1,
〈a′, 1〉 if q < 1 and a′ ≺ a.

(16)

Note that both operators behave like the identity map on A×{1}. Their behavior on the
remaining elements is depicted in Figure 5.

It is easy to see that γ is a closure operator on D = 〈D,≤lex〉. To see that σ is
an interior operator on D, note that σ is idempotent and contracting. Thus it suffices to
show that σ is monotone. Assume that 〈a, q〉 ≤lex 〈b, p〉. If p = 1 then σ(a, q) ≤lex

〈a, q〉 ≤lex 〈b, 1〉 = σ(b, 1). If p < 1 then there is b′ ∈ A such that b′ ≺ b. Now
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there are two cases. First, if a < b then a ≤ b′. Consequently, σ(a, q) ≤lex 〈a, q〉 ≤lex

〈b′, 1〉 = σ(b, p). Second, if a = b then q ≤ p and so σ(a, q) = 〈b′, 1〉 = σ(b, p). Thus
σ is really an interior operator. Summing up, if we identify A with A× {1}, we obtain
following general lemma.

LEMMA 4.1.1. Let A = 〈A,∧,∨, 0, 1〉 be a countable nontrivial chain with a top ele-
ment 1. Then A can be extended to a countably infinite dense chain D = 〈D,∧,∨, 0, 1〉
with a top element 1. Moreover, 0 is a bottom element of D if 0 is a bottom element
of A. There are also a closure operator γ and an interior operator σ on D such that
A = γ[A] = σ[A].

We have the dense chain D. The next step is to extend the multiplication on the
FLS-chain A to D. In the light of Lemma 4.1.1 we will do this more generally, namely
we do not restrict ourselves to the particular setD defined by (14) but we will consider a
more abstract setting where we have a chain D = 〈D,∧,∨, 0, 1〉 together with constants
0, 1 endowed with a closure operator γ and an interior operator σ such that γ[D] = σ[D]
and γ[D] forms an FLS-chain A = 〈A, ·, \, /,∧,∨, 0, 1〉, i.e., A = γ[D]. Note that in
this setting 1 has to be a top element in D. Indeed, if there would be x ∈ D such that
1 < x then 1 < γ(x) ∈ A which would mean that A is not integral. Also, if 0 is a
bottom element of A then 0 has to be a bottom element in D because x < 0 implies
0 > σ(x) ∈ A.

The first natural idea to extend the multiplication from A to the whole of D, is to
define the multiplication on D as x ◦ y = γ(x) · γ(y), i.e., an element x which does not
belong to A behaves like γ(x). This works only partially since 1 ◦ x = γ(1) · γ(x) =
1 ·γ(x) = γ(x), i.e., 1 is not a neutral element of ◦. However, we still have the following
result.

LEMMA 4.1.2. Let C = 〈C,∧,∨〉 be a chain, γ a closure operator on C and σ an
interior operator on C such that γ[C] = σ[C]. Further assume that the image γ[C]
forms a residuated lattice-ordered semigroup γ[C] = 〈γ[C], ·, \, /,∧,∨〉. Then the
algebra C = 〈C, ◦, \C , /C ,∧,∨〉 is a residuated lattice-ordered semigroup, where

x ◦ y = γ(x) · γ(y) , x/Cy = σ(x)/γ(y) , x\Cy = γ(x)\σ(y) .

Moreover, C is commutative if γ[C] is.

Proof. The operation ◦ is clearly associative since · has this property. Thus C is a
semigroup. Moreover, C is clearly commutative if γ[C] is. Thus it suffices to prove that
C is residuated. Suppose that x ◦ y = γ(x) · γ(y) ≤ z. Since γ(x) · γ(y) is σ-open, we
have γ(x) · γ(y) = σ(γ(x) · γ(y)) ≤ σ(z). Consequently, x ≤ γ(x) ≤ σ(z)/γ(y) =
z/Cy. Conversely, suppose that x ≤ z/Cy = σ(z)/γ(y). Since σ(z)/γ(y) is γ-closed,
we have γ(x) ≤ γ(σ(z)/γ(y)) = σ(z)/γ(y). Consequently, x ◦ y = γ(x) · γ(y) ≤
σ(z) ≤ z. Analogously for the left division. Thus /C and \C are the residuals of ◦.

Applying Lemma 4.1.2 to our dense chain D, we obtain a residuated lattice-ordered
semigroup D = 〈D, ◦, \D, /D,∧,∨〉. However, as we mentioned above, ◦ is not a
monoid operation because 1 is not a neutral element. In particular, 1 ◦ x = γ(x) ≥ x,
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i.e., the result of 1 ◦ x could be greater than we need. Thus we have to further modify ◦.
Note that the chain D also forms an FLci-chain D∧ = 〈D,∧,→,∧,∨, 0, 1〉, where

x→ y =

{
1 if x ≤ y,
y otherwise.

(17)

In fact, the minimum operation ∧ on D is the greatest among all integral `-monoid
operations on D. Thus it seems to be natural to lessen the values of ◦ by a combination
with ∧. Precisely, we define a new operation on D, which will have all the necessary
properties, as follows:

x ∗ y = (x ◦ y) ∧ x ∧ y .

The next two lemmas show that ∗ has the desired properties. In the following lemma
when we have a groupoid operation on a semilattice we adopt a convention that the
groupoid operation binds stronger than the semilattice operation.

LEMMA 4.1.3. Let 〈M,∧, ◦, 1〉 be an algebra such that 〈M,∧, 1〉 is a meet-semilattice
with a top element 1 and 〈M, ◦〉 a semigroup satisfying:

1. the operation ◦ distributes over ∧, i.e., x ◦ (y ∧ z) = x ◦ y ∧ x ◦ z, (y ∧ z) ◦ x =
y ◦ x ∧ z ◦ x,

2. 1 ◦ x ∧ x = x ◦ 1 ∧ x = x.

Then 〈M, ∗, 1〉 is a monoid, where x ∗ y = x ◦ y ∧ x ∧ y. Moreover, ∗ is commutative if
◦ is.

Proof. First, we check that 1 is a neutral element. We have 1 ∗ x = (1 ◦ x)∧ 1∧ x = x.
Analogously x ∗ 1 = x. Second we prove that ∗ is associative. We have

(x ∗ y) ∗ z = (x ◦ y ∧ x ∧ y) ∗ z
= (x ◦ y ∧ x ∧ y) ◦ z ∧ x ◦ y ∧ x ∧ y ∧ z
= x ◦ y ◦ z ∧ x ◦ z ∧ y ◦ z ∧ x ◦ y ∧ x ∧ y ∧ z .

Similarly,

x ∗ (y ∗ z) = x ∗ (y ◦ z ∧ y ∧ z)
= x ◦ (y ◦ z ∧ y ∧ z) ∧ x ∧ y ◦ z ∧ y ∧ z
= x ◦ y ◦ z ∧ x ◦ y ∧ x ◦ z ∧ x ∧ y ◦ z ∧ y ∧ z .

Since ∧ is commutative, we get (x ∗ y) ∗ z = x ∗ (y ∗ z). Consequently ∗ is a monoid
operation on M . The last claim about commutativity follows immediately from the
definition of ∗.

LEMMA 4.1.4. Let {i} ⊆ S ⊆ {e, c, i, o}, D∧ = 〈D,∧,→,∧,∨, 0, 1〉 an FLci-chain
and γ a closure operator on D∧ such that γ[D] = 〈γ[D], ·, \, /,∧,∨, 0, 1〉 is an FLS-
chain. Further, assume that σ is an interior operator on D∧ such that σ[D] = γ[D].
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Then the algebra D = 〈D, ∗, \D, /D,∧,∨, 0, 1〉 is an FLS-chain where

x ∗ y = γ(x) · γ(y) ∧ x ∧ y ,
x\Dy = γ(x)\σ(y) ∨ x→ y ,

x/Dy = σ(x)/γ(y) ∨ y → x .

Moreover, the operations ∗, \D, /D, when restricted to γ[D], coincide respectively with
·, \, /, i.e., γ[D] is a subalgebra of D.

Proof. Let ◦ denote the operation onD defined by x◦y = γ(x) ·γ(y). By Lemma 4.1.2
this operation is associative and monotone because it is residuated. Since D is a chain,
the monotonicity of ◦ is equivalent to its distributivity over∧. Moreover, since 1 ∈ γ[D],
we have γ(1) = 1. Thus 1◦x = γ(1)·γ(x) = 1·γ(x) = γ(x) ≥ x. Similarly, x◦1 ≥ x.
Consequently, Lemma 4.1.3 applies to ∗ since x ∗ y = x ◦ y ∧x∧ y. Thus ∗ is a monoid
operation on D.

Further, it follows from Lemma 4.1.2 that ◦ is residuated with the divisions given by
γ(x)\σ(y) and σ(x)/γ(y). We have to show that the join combination of these divisions
with→ gives the divisions for ∗. We have the following chain of equivalences:

x ∗ y = x ◦ y ∧ x ∧ y ≤ z iff x ◦ y ≤ z or x ∧ y ≤ z
iff x ≤ σ(z)/γ(y) or x ≤ y → z

iff x ≤ σ(z)/γ(y) ∨ y → z = z/Dy .

Analogously we obtain x ∗ y ≤ z iff y ≤ x\Dz. Thus D forms an FL-chain. It is even
an FLS-chain because 1 is the top element and 0 is the bottom element of D if it is a
bottom element of γ[D] (see the discussion after Lemma 4.1.1). Further, D is clearly
commutative if γ[D] is. Finally, if γ[D] is contractive (i.e., x ◦ y = γ(x) ∧ γ(y)) then

x ∗ y = γ(x) ∧ γ(y) ∧ x ∧ y = x ∧ y .

Thus D is contractive as well.
Finally, we have to show that the restrictions of operations ∗, \D, /D on γ[D] be-

have like ·, \, /. Since γ[D] forms an FLi-chain, we have γ(x) · γ(y) ≤ γ(x) ∧ γ(y).
Thus

γ(x) ∗ γ(y) = γ(x) · γ(y) ∧ γ(x) ∧ γ(y) = γ(x) · γ(y) .

For the right division we have

γ(x)/Dγ(y) = σ(γ(x))/γ(γ(y)) ∨ γ(y)→ γ(x) = γ(x)/γ(y) ∨ γ(y)→ γ(x) .

Using again that γ[D] forms an FLi-chain, we obtain

(γ(y)→ γ(x)) · γ(y) ≤ (γ(y)→ γ(x)) ∧ γ(y) = γ(y) ∧ (γ(y)→ γ(x)) ≤ γ(x) .

Thus by residuation γ(y)→ γ(x) ≤ γ(x)/γ(y). Consequently, we have γ(x)/Dγ(y) =
γ(x)/γ(y). Similarly, we can prove γ(x)\Dγ(y) = γ(x)\γ(y).
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Now using Lemma 4.1.1 together with Lemma 4.1.4 we can prove that every count-
able nontrivial FLS-chain A (where {i} ⊆ S ⊆ {e, c, i, o}) is embeddable into a count-
ably infinite dense FLS-chain D. Moreover, it is clear that the construction of D pre-
serves the identity 1 = 0. Thus the next theorem follows by Theorem 4.0.12.

THEOREM 4.1.5. Let {i} ⊆ S ⊆ {e, c, i, o}. Then the variety FL`S has the strong
completeness property with respect to the class of all countably infinite dense FLS-
chains. The same is true also for the variety RL`S if {i} ⊆ S ⊆ {e, c, i}.

Thus we have proved SQC for FL`S. Now it is easy to extend this result to SRC us-
ing the Dedekind-MacNeille completion. Let A be a countably infinite dense FLS-chain
for S ⊆ {e, c, i, o}. Then A embeds into its Dedekind-MacNeille completion A′ which
is an FLS-chain as well (see Theorems 3.8.6 and 3.8.7). Then A′ is order-isomorphic
to [0, 1] because A′ is a complete chain containing a countably infinite subset A dense
in A′ (the density follows from the well-known properties of the Dedekind-MacNeille
completion). The same procedure can be done also with any countably infinite dense
RLS-chain for S ⊆ {e, c, i}. Thus we get the following theorem.

THEOREM 4.1.6. Let {i} ⊆ S ⊆ {e, c, i, o}. Then the variety FL`S has the strong
completeness property with respect to the class of all FLS-chains on [0, 1]. The same is
true also for the variety RL`S if {i} ⊆ S ⊆ {e, c, i}.

4.1.2 Involutive algebras
So far we have not discussed the completeness properties for involutive FL-algebras.

We still assume that our involutive FL-algebras are integral. Recall that involutive FLi-
algebras are in fact involutive FLw-algebras since integrality in this case implies that 0
is a bottom element. Hence, in the remaining part of this section we will work with in-
volutive FLS-algebras where {w} ⊆ S ⊆ {e,w}. The contractivity (c) is omitted since
the only involutive FLcw-chain is the two element Boolean algebra. Thus the class of
involutive FL`cw-algebras is the variety of Boolean algebras which has neither QC nor
RC. It also makes no sense to deal with involutive RLw-algebras because there is only
the trivial RLw-algebra.

Before we prove that the variety InFL`S enjoys SQC, we present a general lemma
showing how to modify an FLw-chain so that it becomes involutive.

LEMMA 4.1.7. Let A = 〈A, ·, \, /,∧,∨, 0, 1〉 be an FLw-chain and 〈∼,−〉 an involu-
tive pair on A satisfying y
−x = ∼y�x for all x, y ∈ A, where

x
y = x\y ∨ ∼x , x�y = x/y ∨ −y .

Then Ai = 〈A, ◦,
,�,∧,∨, 0, 1〉 is an involutive FLw-chain, where x◦y = −(y
∼x).
Moreover, if A is commutative and ∼ = − then Ai is commutative as well.

Proof. Note that ∼ and − in this lemma do not denote the negations in A. Further
observe that ∼1 = 0 = −1 because ∼ and − are order-reversing bijections, 1 is a top
element and 0 a bottom element. Using Theorem 3.2.2, it suffices to show that Ai is an
associative involutive division lattice whose unit is 1.
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First, we show that (4) holds for 
,�. Since A is a chain, we have

y ≤ x
z = x\z ∨ ∼x iff y ≤ x\z or y ≤ ∼x
iff x ≤ z/y or x ≤ −y
iff x ≤ z/y ∨ −y = z�y .

Second, using the assumption that 〈∼,−〉 satisfies the contraposition law y
−x =
∼y�x, we can prove the associativity for 
 and �. Observe that in any FL-chain the
following distributive laws holds:

a\(b ∨ c) = a\b ∨ a\c , (b ∨ c)/a = b/a ∨ c/a .

Thus we have the following chain of equations:

x
(z�y) = x\(z/y ∨ −y) ∨ ∼x = x\(z/y) ∨ x\−y ∨ ∼x = x\(z/y) ∨ x
−y
= (x\z)/y ∨∼x�y = (x\z)/y ∨∼x/y ∨−y = (x\z ∨∼x)/y ∨−y = (x
z)�y .

Finally, we check that 1 is the unit for 
 and �. We have

1
x = 1\x ∨ ∼1 = x ∨ 0 = x .

Similarly x�1 = x.
To see the moreover part, observe that if A is commutative then x\y = y/x for all

x, y ∈ A. Assuming ∼ = −, we obtain x
y = x\y ∨ ∼x = y/x ∨ −x = y�x. Thus
Ai is commutative because by the contraposition law y
−x = ∼y�x we have

x ◦ y = −(y
∼x) = −(y
−x) = −(∼y�x) = −(x
∼y) = y ◦ x .

Let A = 〈A, ·, \, /,∧,∨, 0, 1〉 be a nontrivial countable involutive FLS-chain where
{w} ⊆ S ⊆ {e,w} and 〈∼,−〉 the involutive pair given by the negations on A. To prove
SQC for InFL`S, we have to embed A into a countably infinite dense involutive FLS-
chain (see Theorem 4.0.12). We know from the previous section (see Lemmas 4.1.1
and 4.1.4) that A can be embedded into a countably infinite dense FLS-chain D =
〈D, ∗, \D, /D,∧,∨, 0, 1〉 endowed with a closure operator γ and an interior operator σ
such thatA = γ[D] = σ[D]. However, D need not be involutive. Namely, the negations
in D are computed as follows (note that γ(0) = 0 = σ(0) and x → 0 = 0 for x > 0
and 0→ 0 = 1):

∼Dx = x\D0 = γ(x)\σ(0) ∨ x→ 0 = ∼γ(x) ∨ x→ 0 = ∼γ(x) ,

−Dx = 0/Dx = σ(0)/γ(x) ∨ x→ 0 = −γ(x) ∨ x→ 0 = −γ(x) .

Consequently, the negations do not form an involutive pair because

−D∼Dx = −γ(∼γ(x)) = −∼γ(x) = γ(x) = ∼D−Dx .
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Figure 6. The involutive modification of ∼ in D. The bold line denotes ∼D and the
dashed line its involutive modification ∼Di .

The second equality follows from the fact that γ[D] is closed under all operations from
A, in particular under ∼. An example of this situation is depicted in Figure 6, where
{0, a, b, c, 1} is the set of γ-closed elements.

In what follows we will modify both divisions \D, /D so that the corresponding
negations become involutive and their restrictions on the γ-closed elements will behave
like the original negations from A (see Figure 6). Recall that the dense chain D was
defined in (14) as the set

D = {〈a, 1〉 | a ∈ A} ∪ {〈a, q〉 | q ∈ Q ∩ (0, 1) and (∃a′ ∈ A) such that a′ ≺ a} .

Inside D we identify A with A × {1} which is the image of the closure operator γ
and the interior operator σ on D (see (15) and (16)). First, we show that it is possible to
construct an involutive pair on D whose restrictions to the γ-closed and σ-open elements
behave like the original negations ∼,− from A.

LEMMA 4.1.8. Let ∼Di and −Di be unary operations on D defined as follows:

∼Di〈a, q〉 =

{
〈∼a, 1〉 if q = 1,

〈∼a′, 1− q〉 if q < 1,

−Di〈a, q〉 =

{
〈−a, 1〉 if q = 1,

〈−a′, 1− q〉 if q < 1,

where a′ is the unique subcover of a. Then the pair 〈∼Di ,−Di〉 is an involutive pair
such that ∼Di〈a, 1〉 = 〈∼a, 1〉 and −Di〈a, 1〉 = 〈−a, 1〉. Moreover, ∼Di = −Di if
∼ = −.
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Proof. Let 〈a, q〉 ≤ 〈b, r〉. We show that ∼Di is order-reversing, i.e., ∼Di〈b, r〉 ≤
∼Di〈a, q〉. If a = b then q ≤ r. Consequently, 1 − r ≤ 1 − q. Thus ∼Di〈b, r〉 ≤
∼Di〈a, q〉 holds in this case. Now suppose that a < b. Depending on the values of q, r
we have several cases. If q < 1 then a′ < b and a′ < b′ if the subcover b′ of b exists.
Thus∼a′ > ∼b and also∼a′ > ∼b′ if b′ exists. Consequently, ∼Di〈b, r〉 ≤ ∼Di〈a, q〉.
If q = r = 1 then ∼a > ∼b and the desired inequality again holds. The last possible
case is q = 1 and r < 1. If a < b′ then the desired inequality follows as before. If
a = b′ then ∼Di〈b, r〉 = 〈∼a, 1− r〉 < 〈∼a, 1〉 = ∼Di〈a, q〉. Similarly, one can prove
that −Di is order-reversing.

Finally, we check that −Di∼Di〈a, q〉 = 〈a, q〉. The proof of ∼Di−Di〈a, q〉 =
〈a, q〉 is analogous. If q = 1 then it clearly holds since −Di∼Di〈a, 1〉 = 〈−∼a, 1〉 =
〈a, q〉. Suppose that q < 1. Then a has a unique subcover a′, i.e., a′ ≺ a. Since ∼ is an
order-reversing bijection, we have x ≺ y iff ∼y ≺ ∼x. Thus ∼a ≺ ∼a′, i.e., ∼a is the
unique subcover of ∼a′. Consequently, we obtain

−Di∼Di〈a, q〉 = −〈∼a′, 1− q〉 = 〈−∼a, 1− (1− q)〉 = 〈a, q〉 .

The moreover part of the lemma is obvious.

Lemma 4.1.8 implies that there is an involutive pair 〈∼Di ,−Di〉 on the countably
infinite dense FLS-chain D such that on γ-closed and σ-open elements coincides with
the original negations from A; recall the definitions of γ and σ from (15) and (16). Thus
we have

∼Diγ(x) = ∼γ(x) , −Diγ(x) = −γ(x) , (18)

∼Diσ(x) = ∼σ(x) , −Diσ(x) = −σ(x) . (19)

Now we want to use the involutive pair 〈∼Di ,−Di〉 from the previous lemma in
order to make D an involutive FLS-chain. In the light of Lemma 4.1.7 it is sufficient
to show that the involutive pair 〈∼Di ,−Di〉 satisfies the contraposition law y
−Dix =
∼Diy�x, where

x
y = x\Dy ∨ ∼Dix , x�y = x/Dy ∨ −Diy .

LEMMA 4.1.9. We have ∼Diγ(x) = σ(∼Dix) and −Diγ(x) = σ(−Dix).

Proof. Since x ≤ γ(x), we have ∼Diγ(x) ≤ ∼Dix. Thus ∼Diγ(x) ≤ σ(∼Dix)
because ∼Diγ(x) = ∼γ(x) is σ-open. On the other hand, we have σ(∼Dix) ≤ ∼Dix.
Hence x ≤ −Diσ(∼Dix). Since −Diσ(∼Dix) = −σ(∼Dix) is γ-closed, we obtain
γ(x) ≤ −Diσ(∼Dix). Consequently, σ(∼Dix) ≤ ∼Diγ(x). The other equality is
proved analogously.

LEMMA 4.1.10. The involutive pair 〈∼Di ,−Di〉 satisfies the contraposition law

y
−Dix = ∼Diy�x .
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Proof. Recall from Lemma 4.1.4 that

y\Dx = γ(y)\σ(x) ∨ y → x , y/Dx = σ(y)/γ(x) ∨ x→ y ,

where→ is the residual of ∧ from D∧. Thus we have

y
−Dix = γ(y)\σ(−Dix) ∨ (y → −Dix) ∨ ∼Diy ,

∼Diy�x = σ(∼Diy)/γ(x) ∨ (x→ ∼Diy) ∨ −Dix .

Since y ≤ −Dix iff x ≤ ∼Diy, we have 1 ≤ y → −Dix iff 1 ≤ x → ∼Diy.
Thus y
−Dix and ∼Diy�x both equal 1 if y ≤ −Dix holds. Assume that y > −Dix.
Then also x > ∼Diy. Consequently, y → −Dix = −Dix and x → ∼Diy = ∼Diy.
Thus it suffices to show that γ(y)\σ(−Dix) = σ(∼Diy)/γ(x). By Lemma 4.1.9 and
the equations (18), (19) we obtain

γ(y)\σ(−Dix) = γ(y)\−Diγ(x) = γ(y)\−γ(x) = ∼γ(y)/γ(x) = σ(∼Diy)/γ(x) .

The last but one equality follows from the fact that 〈∼,−〉 forms an involutive pair on
A = γ[D]. Thus 〈∼,−〉 has to satisfy the contraposition law y\−x = ∼y/x.

Now using Lemma 4.1.7 together with Lemma 4.1.10, we can modify the countably
infinite dense FLS-chain D so that Di = 〈D, ◦,
,�,∧,∨, 0, 1〉 becomes an involutive
FLS-chain where

x
y = x\Dy ∨ ∼Dix , x�y = x/Dy ∨ −Diy , x ◦ y = −Di(y
∼Dix) .

Now it remains to prove that A is a subalgebra of Di. Recall that A = γ[D]. We
will show that the restrictions of 
,�, ◦ to γ[D] coincide respectively with \, /, ·. Let
γ(x), γ(y) ∈ γ[D]. Since A is a subalgebra of D (see Lemma 4.1.4), we obtain using
also (18) the following:

γ(x)
γ(y) = γ(x)\Dγ(y) ∨ ∼Diγ(x) = γ(x)\γ(y) ∨ ∼γ(x) = γ(x)\γ(y) .

The last equality holds because in any FLw-algebra we have x\y ≥ x\0 = ∼x. Simi-
larly, we can prove γ(x)�γ(y) = γ(x)/γ(y). Finally, since A is involutive, the multi-
plication in A is definable by \, ∼ and − as u · v = −(v\∼u). Thus using the fact that
∼γ(x) and γ(y)\∼γ(x) are γ-closed, we get using Lemma 3.2.1 and (18) the following
chain of equations:

γ(x) ◦ γ(y) = −Di(γ(y)
∼Diγ(x)) = −(γ(y)\∼γ(x)) = γ(x) · γ(y) .

Consequently, A is a subalgebra of Di and the next theorem follows.

THEOREM 4.1.11. Let {w} ⊆ S ⊆ {e,w}. Then the variety InFL`S has the strong
completeness property with respect to the class of all countably infinite dense involutive
FLS-chains.

Using again the Dedekind-MacNeille completion (see Theorem 3.8.10), one can
easily derive the following theorem.

THEOREM 4.1.12. Let {w} ⊆ S ⊆ {e,w}. Then the variety InFL`S has the strong
completeness property with respect to the class of all FLS-chains on [0, 1].
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4.1.3 Completeness w.r.t. finite algebras
Now we will turn our attention to the completeness properties with respect to the

class of finite algebras. We will focus on the finite strong completeness property because
one usually cannot hope for the strong completeness property in this case.

Before we start, we have to recall several results on dual well partial orders. Let
P be a poset. We say that P is a dual well partial order (shortly dwpo) if P contains
no infinite ascending chain and no infinite anti-chain. Dual well partial orders can be
characterized by means of good sequences. A sequence ~p = 〈pi ∈ P | i ∈ N〉 is said to
be good if there are natural numbers n < m such that pn ≥ pm.

LEMMA 4.1.13 ([36]). A poset P is a dwpo iff every infinite sequence of elements from
P is good.

The next two lemmas show how to construct new dwpos from given dwpos.

LEMMA 4.1.14. The direct product of two dwpos is a dwpo.

Let P = 〈P,≤〉 be a poset. By P ∗ we denote the set of all finite sequences of
elements from P , i.e., P ∗ forms a free monoid generated by P . One can introduce a
partial order v on P ∗ as follows:

〈a0, . . . , am〉 v 〈b0, . . . , bn〉 iff there exist i0, . . . , in such that
0 ≤ i0 < i1 < · · · < in ≤ m and aik ≤ bk for k = 0, . . . , n.

The following lemma is just a reformulation of the well-known result by Higman [24].

LEMMA 4.1.15 (Higman’s lemma). Let P = 〈P,≤〉 be a dwpo. Then P ∗ = 〈P ∗,v〉
is a dwpo as well.

For us it will be important to know that images of dwpos, which are linearly ordered,
are dually well ordered as is proved in the following lemma.

LEMMA 4.1.16. Let P be a dwpo, Q a chain and f : P → Q an order-preserving
surjective map. Then Q is dually well ordered.

Proof. Assume not. Then there is an ascending sequence q0 < q1 < q2 < · · · of
elements from Q. Take any sequence ~p = 〈pi ∈ P | i ∈ N〉 such that f(pi) = qi. Since
f is order-preserving, we have pn 6≥ pm for any n < m. Thus ~p is not good which is
not possible by Lemma 4.1.13.

We have presented all the necessary results on dwpos. Let {i} ⊆ S ⊆ {e, c, i, o}.
We are going to show that FL`S enjoys FSFC. In order to invoke Theorem 4.0.13 we
have to show that every nontrivial FLS-chain A is partially embeddable into the class
of all finite FLS-chains, i.e., for every finite partial subalgebra G of A we have to find
a partial embedding from G into a finite FLS-chain B. We can assume without any
loss of generality that A has a bottom element ⊥. If not, then one can embed A into its
Dedekind-MacNeille completion which has a bottom element because its lattice reduct
is complete. We may also assume that G contains ⊥, 0, and 1 because the restriction of
a partial embedding f : G ∪ {⊥, 0, 1} → B to G is a partial embedding as well.
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Let M be the submonoid of A generated by G. Then M is clearly linearly ordered
and contains ⊥, 0, 1. Thus M = 〈M, ·, 0, 1,≤〉 is a pointed pomonoid with the bottom
element ⊥. Using Higman’s lemma, we can prove the following lemma.

LEMMA 4.1.17. The pointed pomonoid M is dually well ordered.

Proof. The set G is finite and linearly ordered by the order ≤ on A. Thus G forms
a dwpo. By Higman’s lemma 〈G∗,v〉 is a dwpo as well. Moreover, G∗ is a free
monoid. Thus there is a surjective monoid homomorphism h : G∗ → M such that
h(a0, . . . , am) = a0 · · · am. If we show that h is order-preserving, then the claim
follows by Lemma 4.1.16. Suppose that 〈a0, . . . , am〉 v 〈b0, . . . , bn〉, i.e., there are
i0, . . . , in such that 0 ≤ i0 < i1 < · · · < in ≤ m and aik ≤ bk. Since h is a monoid
homomorphism and A is integral, we have

h(a0, . . . , am) = a0 · · · am ≤ ai0 · · · ain ≤ b0 · · · bn = h(b0, . . . , bn) .

It follows from Lemma 4.1.17 that M is the image of a conucleus σ on A. Indeed,
M induces an interior operator σ(x) = max{a ∈ M | a ≤ x}. The maximum always
exists because M is dually well ordered and contains the bottom element⊥. Since M is
a submonoid of A, σ is a conucleus by Lemma 3.7.1. Consequently, M forms an FL-
algebra, namely the σ-contraction σ[A] = 〈σ[A], ·, \σ, /σ,∧,∨, 0, 1〉, where σ[A] =
M . Note that the constant 0 is not modified in σ[A] because 0 ∈ M . The meet ∧ need
not be modified as well because A is linearly ordered. Indeed, let x, y ∈ σ[A]. Without
any loss of generality we may assume that x ≤ y. Thus σ(x ∧ y) = σ(x) = x = x ∧ y.
Moreover, σ[A] is an FLS-chain by Lemma 3.7.4.

Now using Lemma 3.7.5, there is a partial embedding f : G → σ[A] from G into
σ[A] because G ⊆ M = σ[A]. The next step is to find a finite subset B ⊆ σ[A] which
forms an image of a nucleus γ on σ[A]. Let B be the subset of σ[A] defined as follows:

B = {a\σc/σb ∈ σ[A] | a, b ∈ σ[A], c ∈ G} =
⋃
c∈G
{a\σc/σb ∈ σ[A] | a, b ∈ σ[A]} .

In the above definition we are writing terms of the form a\σc/σb without parentheses
because (a\c)/b = a\(c/b) holds in any FL-algebra.

LEMMA 4.1.18. The subset B is finite.

Proof. Clearly, since G is finite, it is sufficient to prove that Bc = {a\σc/σb ∈ σ[A] |
a, b ∈ σ[A]} is finite for a fixed c ∈ G. Assume that Bc is not finite. Since σ[A] = M
is dually well ordered, Bc has to contain an infinite descending chain a0\σc/σb0 >
a1\σc/σb1 > · · · . This chain defines a sequence ~p = 〈〈ai, bi〉 ∈M2 | i ∈ N〉. By
Lemma 4.1.14 the direct product 〈M2,≤〉 forms a dwpo. Thus ~p has to be good, i.e.,
there are n < m such that 〈an, bn〉 ≥ 〈am, bm〉. Consequently, we have

am(an\σc/σbn)bm ≤ an(an\σc/σbn)bn ≤ c .

Hence by residuation we obtain an\σc/σbn ≤ am\σc/σbm; a contradiction with the
fact that a0\σc/σb0 > a1\σc/σb1 > · · · is a descending chain.
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Now we have to show that the set B is the image of a nucleus γ. First, note that
G ⊆ B because g = 1\σg/σ1 for every g ∈ G. In particular, 1 ∈ B. Thus B induces
a closure operator γ(x) = min{a ∈ B | x ≤ a}. The minimum always exists because
B is finite and 1 ∈ B is the top element. In order to invoke Lemma 3.7.1 we have to
show that x/σy, y\σx ∈ B for x ∈ B and y ∈ σ[A]. Let x ∈ B and y ∈ σ[A]. Then
x = a\σc/σb for c ∈ G and a, b ∈ σ[A]. Thus x/σy = ((a\σc)/σb)/σy = a\σc/σyb
by Lemma 3.0.12. Consequently, x/σy ∈ B. Analogously, y\σx ∈ B. ThusB forms an
FL-algebra, namely the γ-retraction γ[σ[A]]. Moreover, γ[σ[A]] remains an FLS-chain
by Lemma 3.7.4.

Since G ⊆ B, Lemma 3.7.6 implies that the partial embedding f : G → σ[A] is in
fact a partial embedding of G into γ[σ[A]]. Thus the next theorem follows. Note that
the identity 1 = 0 is preserved by σ and γ. Thus we get FSFC also for RL`S.

THEOREM 4.1.19. Let {i} ⊆ S ⊆ {e, c, i, o}. The variety FL`S (resp. RL`S) has the
finite strong completeness property with respect to the class of all finite FLS-chains
(resp. RLS-chains).

4.1.4 Cyclic involutive algebras
Now we are going to discuss whether the proof of Theorem 4.1.19 can be used

also for involutive FL`i -algebras. Recall that involutive FLi-chains are in fact involutive
FLw-chains and there is only one nontrivial involutive FLcw-chain, namely the two
element Boolean algebra 2. Since the variety of Boolean algebras (i.e., the semilinear
variety InFL`cw) obviously enjoys the strong completeness property with respect to finite
chains (SFC), we will focus only on involutive FLS-algebras for {w} ⊆ S ⊆ {e,w}.

Let A be a nontrivial involutive FLS-chain where {w} ⊆ S ⊆ {e,w}. The con-
struction of the finite FLS-chain γ[σ[A]] from the proof of Theorem 4.1.19 need not
preserve the double negation law −∼x = x = ∼−x. Thus the above method cannot
be used in order to prove that the variety of involutive FL`S-algebras has FSFC. Nev-
ertheless the method works at least for cyclic involutive FL`S-algebras. Thus assume
further that A is also cyclic, i.e., it satisfies x\0 = ∼x = −x = 0/x. Let G be a finite
partial subalgebra of A. Without any loss of generality we will assume that {0, 1} ⊆ G
(observe that 0 is a bottom element) and G is closed under the negations ∼,−. This
does not affect finiteness of G because A is cyclic (i.e., ∼x = −x) and involutive (i.e.,
−∼x = x = ∼−x).

We start with a general lemma on cyclic FL-algebras. Let A be an FL-algebra. We
call an element c ∈ A involutive if ∼−c = c = −∼c. The next lemma shows that
having an involutive element c in a cyclic FL-algebra A, one can find other involutive
elements in A.

LEMMA 4.1.20. Let A be a cyclic FL-algebra and c ∈ A an involutive element. Then
a\c/b is involutive as well for all a, b ∈ A.

Proof. Since A is cyclic (i.e., ∼ = −), it suffices to prove −∼(a\c/b) = a\c/b. We
first show that a\c/b = −(b(−c)a). Using Lemma 3.0.13, we obtain

−(b(−c)a) = −((−c)a)/b = ∼((−c)a)/b = a\(∼−c)/b = a\c/b .
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Consequently, again using Lemma 3.0.13 and the latter equation, we have

−∼(a\c/b) = −∼−(b(−c)a) = −(b(−c)a) = a\c/b .

In the same way as in the proof of Theorem 4.1.22 we construct the finite algebra
γ[σ[A]], where σ[A] is the submonoid of A generated by G and

γ[σ[A]] = {a\σc/σb ∈ σ[A] | a, b ∈ σ[A], c ∈ G}

Moreover, we know from the proof of Theorem 4.1.19 that there is a partial embedding
of G into γ[σ[A]]. Thus it suffices to prove that γ[σ[A]] is cyclic and involutive.

LEMMA 4.1.21. The finite FLS-chain γ[σ[A]] is cyclic and involutive.

Proof. First, observe that 0 ∈ G ⊆ γ[σ[A]]. Thus γ[σ[A]] is a subalgebra of σ[A]
not only with respect to the language {∧, \, /} (see Lemma 3.7.4) but also {∧, \, /, 0}.
Thus the negations in γ[σ[A]] are just the restrictions of the negations from σ[A]. Con-
sequently, in order to check that γ[σ[A]] is cyclic and involutive, it suffices to show
that σ[A] is cyclic and γ[σ[A]] contains only involutive elements from σ[A]. Let ∼σ ,
−σ denote the negations in σ[A] (the symbols ∼,− stand for the negations in A). The
cyclicity of σ[A] is easy because for x ∈ σ[A] we have

∼σx = x\σ0 = σ(x\0) = σ(∼x) = σ(−x) = σ(0/x) = 0/σx = −σx .

Thus σ[A] is cyclic. Consequently, γ[σ[A]] is cyclic.
To see that γ[σ[A]] is involutive, note that every c ∈ G satisfies −∼c = c because

A is involutive. Since G is closed under negations and all elements from G are σ-open,
we have ∼σc = σ(∼c) = ∼c. Consequently, we obtain

−σ∼σc = σ(−∼c) = σ(c) = c .

Thus every c ∈ G is involutive in σ[A]. Consequently, since every element from γ[σ[A]]
is of the form a\σc/σb for c ∈ G and a, b ∈ σ[A], all the elements from γ[σ[A]] are
involutive in σ[A] by Lemma 4.1.20. Thus γ[σ[A]] is involutive.

THEOREM 4.1.22. Let {w} ⊆ S ⊆ {e,w}. The variety CyInFL`S of semilinear cyclic
involutive FLS-algebras has the finite strong completeness property with respect to the
class of all finite cyclic involutive FLS-chains.

4.2 Non-integral semilinear varieties

Now we turn our attention to the semilinear varieties of FL-algebras which are not
integral (i.e., they contain also non-integral FL-algebras). Unlike the previous part on
integral varieties, we will present mainly negative results on completeness properties
showing that most of the non-integral varieties we are discussing here do not enjoy
the completeness properties with respect to the previously considered classes of alge-
bras. As before we start with the completeness properties with respect to the class of all
countably infinite dense chains and chains on [0, 1].
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4.2.1 Completeness w.r.t. countably infinite dense chains and [0, 1]-valued
semantics

It turns out that the density of an FL-chain A forces A to satisfy an extra identity
which is not generally valid in FL-algebras. In particular, there are non-integral FL-
chains where this identity does not hold.

LEMMA 4.2.1. Every dense FL-chain A satisfies the following identity

1 ≤ (z\y) ∨ ((x\y)\(1/(z\x))) . (20)

Proof. If z ≤ y then 1 ≤ z\y and the identity is clearly valid. Thus assume y < z which
is equivalent to z\y < 1. Then we have to show that 1 ≤ (x\y)\(1/(z\x)) which, by
the residuation property, is equivalent to (x\y) · (z\x) ≤ 1. We will prove the latter
inequality by reductio ad absurdum. Let a = x\y and b = z\x. To get a contradiction,
assume that a · b > 1. Observe that by Lemma 3.0.12 we have b · a = (z\x) · (x\y) ≤
z\y < 1. This means that one of a, b is strictly greater than 1 and the other one strictly
less. Without any loss of generality suppose that a > 1 and b < 1. Observe that b
cannot be a bottom element ⊥ because ⊥ · u = u · ⊥ = ⊥ for all u ∈ A. Thus the set
M = {u ∈ A | u < b} is not empty. Moreover, since A is dense, we get

∨
M = b.

Consequently, 1 < a · b = a ·
∨
M =

∨
u∈M (a · u). Thus there is u′ ∈ M such that

1 ≤ a · u′. Now we have the following chain of inequalities:

b · (a · b) = (b · a) · b ≤ b ≤ b · (a · u′) ≤ b · (a · b) .

Thus b · (a · u′) = b. On the other hand, (b · a) · u′ ≤ u′ < b which is a contradiction
since · is associative.

The above lemma shows that every dense chain has to satisfy the identity 1 ≤
(z\y) ∨ ((x\y)\(1/(z\x))). In particular, it holds in every FL-chain whose universe is
[0, 1]. However, there is a four element FL-chain where this identity is not valid as is
shown in the following lemma.

LEMMA 4.2.2. There is an RLc-chain A4 and an FLco-chain B4 where

1 ≤ (z\y) ∨ ((x\y)\(1/(z\x)))

does not hold.

Proof. Let A4 = {⊥, a, 1,>} ordered by ⊥ < a < 1 < > (see Figure 7). The
multiplication · is defined as follows:

· ⊥ a 1 >
⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a a >
1 ⊥ a 1 >
> ⊥ a > >
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Figure 7. The algebras A4, B4 and C8.

It is straightforward to check that · is associative. Moreover, it is clearly residuated
as A4 is finite. Thus A4 = 〈A4, ·, \, /,∧,∨, 1〉 is an RL-chain. Moreover, A4 is an
RLc-chain because A4 is idempotent, i.e., x = x2 holds. Let x = >, y = a and z = 1.
Then z\y = a, x\y = a and z\x = >. Consequently,

(z\y) ∨ ((x\y)\(1/(z\x))) = a ∨ (a\(1/>)) = a ∨ (a\⊥) = a ∨ ⊥ = a < 1 .

Thus 6|=A 1 ≤ (z\y) ∨ ((x\y)\(1/(z\x))). The FLco-chain B4 can be easily obtain
from A4 by interpreting the constant 0 as ⊥ (see Figure 7).

Let S ⊆ {c, o}. Using Lemmas 4.2.1 and 4.2.2, it is clear that the variety FL`S of
semilinear FLS-algebras enjoy neither QC nor RC. The same holds for RL` and RL`c.
Thus we obtain the following theorem.

THEOREM 4.2.3. Let S ⊆ {c, o}. Then the varieties FL`S, RL` and RL`c enjoy neither
QC nor RC.

The previous theorem states that some semilinear varieties do not have QC and RC.
Consequently, they do not enjoy also SQC, FSQC, SRC and FSRC.

The method by which Theorem 4.2.3 was proved, suggests that a similar approach
can be used also for other semilinear varieties. It is sufficient for a given variety to find
an algebra where (20) is not valid. One can even use a computer system for searching
such counterexamples. The next lemma presents a cyclic involutive FLc-chain which
was found using the computer program Mace4.

LEMMA 4.2.4. There is a cyclic involutive FLc-chain C8 where

1 ≤ (z\y) ∨ ((x\y)\(1/(z\x)))
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does not hold.

Proof. Let C8 = {⊥, a, 1, b, c, 0, d,>} ordered by ⊥ < a < 1 < b < c < 0 < d < >
(see Figure 7). The multiplication · is defined as follows:

· ⊥ a 1 b c 0 d >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a a a c 0 0 >
1 ⊥ a 1 b c 0 d >
b ⊥ b b b c d d >
c ⊥ c c c > > > >
0 ⊥ c 0 > > > > >
d ⊥ c d > > > > >
> ⊥ > > > > > > >

Then the divisions can be computed using Proposition 3.0.9.
We will check that (20) is not valid in C8. Let x = y = c and z = 0. Then

z\y = z\x = 0\c = a and x\y = c\c = b. Consequently,

(z\y) ∨ ((x\y)\(1/(z\x))) = a ∨ (b\(1/a)) = a ∨ (b\1) = a ∨ ⊥ = a < 1 .

Thus 6|=C8
1 ≤ (z\y) ∨ ((x\y)\(1/(z\x))).

It immediately follows from Lemma 4.2.4 that an analogue of Theorem 4.2.3 holds
also for cyclic involutive FL`c-algebras and also for semilinear varieties above it.

THEOREM 4.2.5. Let S = ∅ or S = {c}. Then the varieties InFL`S and CyInFL`S
enjoy neither QC nor RC.

Note that the counterexamples given in Lemmas 4.2.2 and 4.2.4 are not commuta-
tive. Thus it is natural to ask whether we can obtain some of the completeness prop-
erties at least in the commutative case. The answer to this question is affirmative. It
was proved in [32] that FL`e enjoys SQC and SRC. However, the result was proved
proof-theoretically using the hypersequent calculus for semilinear FLe. So far there is
no algebraic proof of this fact. Thus we present the next theorem without a proof.

THEOREM 4.2.6. The variety FL`e has the strong completeness property with respect
to the class of all countably infinite dense FLe-chains and also FLe-chains on [0, 1].

Let us remark that the above theorem was proved not precisely for semilinear FLe-
algebras but for semilinear FLe-algebras with an expanded language by constants⊥ and
>. These constants are interpreted by a bottom and a top element, thus all FLe-algebras
in this expanded language are bounded. The reason why we could claim Theorem 4.2.6
follows from Proposition 3.3.1 from which it follows that every FLe-chain can be ex-
tended to a bounded FLe-chain.

Concerning the completeness properties for non-integral semilinear varieties with
respect to the classes of countably infinite dense chains and chains on [0, 1], there remain
still unsolved cases. For instance, the situation is not known for the following semilinear
varieties: FL`ec, RL`ec, InFL`e and InFL`ec.
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4.2.2 Completeness w.r.t. finite algebras
Negative results can be obtained also for the completeness properties with respect to

the class of finite chains. Namely, we will show that a bunch of non-integral semilinear
varieties of FL-algebras do not enjoy FSFC.

Consider the following quasi-identity saying that every positive right-invertible ele-
ment x has to be equal to 1:

1 ≤ x and x · y = 1 implies x = 1 . (21)

This quasi-identity holds in any finite FL-algebra A. Indeed, let x, y ∈ A such that
1 ≤ x and xy = 1. We have x ≤ x2 ≤ x3 ≤ · · · because x is positive. Further,
since A is finite, there is n ∈ N such that xn+1 = xn. Multiplying this equation by
yn from the right-hand side, we obtain x = 1. Thus every variety L of FL-algebras
containing a member with a strictly positive invertible element cannot enjoy the finite
strong completeness property with respect to the class F of all finite members of L
because {1 ≤ x, x · y = 1} |=F x = 1 but {1 ≤ x, x · y = 1} 6|=L x = 1. Using this
observation, we can prove the following theorem.

THEOREM 4.2.7. Let S ⊆ {e, o}. Then the variety FL`S does not have the finite strong
completeness property with respect to the class of all finite FLS-chains. The same is true
also for InFL`S, CyInFL`S, RL`S, InRL`S and CyInRL`S if S ⊆ {e}.

Proof. Consider the additive `-group Z of integers. It forms a cyclic involutive RLe-
chain. The involutive RLe-chain Z does not satisfy (21) because every positive integer
is invertible. Thus the claim follows for FL`S, InFL`S, CyInFL`S, RL`S, InRL`S and
CyInRL`S if S ⊆ {e}.

If {o} ⊆ S then we can extend Z to a bounded FLeo-chain Z⊥ by Proposition 3.3.1
interpreting the constant 0 by the bottom element ⊥. Since Z⊥ possesses a strictly
positive invertible element, the claim follows for FL`S also for S ⊆ {e, o}.

Thus the above-mentioned varieties are not generated by finite members as quasi-
varieties. On the other hand, it is not known whether the above varieties are generated
by their finite members, i.e., if they enjoy at least FC. Also for {c} ⊆ S ⊆ {c, o} we do
not know whether FL`S satisfies some of the completeness properties with respect to the
class of all finite FLS-chains.

On the other hand, we have at least some positive results. It turns out that contraction
together with commutativity is sufficient to prove FSFC. It was proved in [40] that
the varieties FLec and FLeco enjoy FSFC. The same was proved also for InFLec and
InFLeco in [37]. Although it is not mentioned in the above-mentioned papers explicitly,
the results easily extend also to the semilinear case.

THEOREM 4.2.8. The varieties FL`ec, FL`eco, InFL`ec and InFL`eco enjoy the finite
strong completeness property with respect to the class of all finite chains.

5 Subvariety lattice

In this section we will study the structure of the subvariety lattice of FL`-algebras.
Its structure is very complex and it is not very well known. Even at the very bottom we
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have continuum many atoms. Thus we focus here only on the cardinalities of atoms in
the subvariety lattices of varieties FL`S for S ⊆ {e, c, i, o} and RL`S for S ⊆ {e, c, i}.
Note that due to algebraizability the cardinality of atoms in the subvariety lattice of FL`S
(resp. RL`S) corresponds to the cardinality of maximally consistent axiomatic extensions
of FL`S (resp. RL`S).

5.1 General facts

Given a variety V of FL-algebras, we denote its subvariety lattice Λ(V). Recall
Theorem 2.1.1 saying that varieties of algebras are exactly equational classes. Since
FL-algebras are defined over a finite language, there are countably many equations over
this language. Due to this fact, it follows that Λ(FL) can have cardinality at most 2ℵ0 .

There are in fact two types of results we are going to prove. The first one are re-
sults saying that a subvariety lattice contains continuum many atoms. Such results are
proved by constructing 2ℵ0 algebras generating pair-wise different atoms in the subva-
riety lattice. The second type of results shows that there are only finitely many atoms
in a subvariety lattice Λ(L). This can be proved by showing that each nontrivial vari-
ety V ∈ Λ(L) contains an algebra generating one of the finitely many atoms. In both
cases we need a criterion whether a given algebra A generates an atom in a subvariety
lattice. A summary of the results we are going to prove can be found in Figures 9, 10.
The cardinalities of atoms are written in the boxes next to the corresponding semilinear
varieties. It is clear that if a variety has a subvariety lattice with 2ℵ0 atoms then the same
is true also for all varieties above it.

A nontrivial algebra A is said to be strictly simple if it lacks nontrivial proper sub-
algebras and congruences. By proper subalgebra of A we mean here a subalgebra B
which is not isomorphic to A. Note that this notion differs from the usual one saying that
a subalgebra B of A is proper if B ( A. Strictly simple algebras are good candidates
for generators of an atom. Let A be a strictly simple FL-algebra. Since the variety of
FL-algebras is congruence distributive, we can use Jónsson’s Lemma to show that sub-
directly irreducible members in V(A) are contained in HSPU(A). We will mention
two special cases in which strictly simple algebras generate an atom.

First, if A is finite then PU(A) contains just A because any ultrapower of a finite
structure is isomorphic to the original structure. Thus each subdirectly irreducible mem-
ber has to belong to HS(A) in this case. Since A has no proper nontrivial subalgebras
and congruences, we get that A is the only subdirectly irreducible algebra in V(A)
which means that V(A) has to be an atom (recall that every variety is generated by its
subdirectly irreducible members). Thus we have the following lemma.

LEMMA 5.1.1. Let A be a finite nontrivial strictly simple FL-algebra. Then V(A) is
minimal, i.e., it forms an atom.

Second, we will discuss the case when A is infinite and lower-bounded. Moreover,
the lower-bound ⊥ has to be nearly term definable. An element b ∈ A is called nearly
term definable if there is an n-ary term t(x1, . . . , xn) such that t(a1, . . . , an) = b holds
unless a1 = · · · = an = 1.

LEMMA 5.1.2. Let A be a strictly simple FL-algebra with a bottom element ⊥ nearly
term definable by an n-ary term t. Then V(A) is a minimal variety. Moreover, if A′ is
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a strictly simple FL-algebra with a bottom element nearly term definable by the same
term t, then V(A) ⊆ V(A′) if and only if A and A′ are isomorphic.

Proof. Let D be a subdirectly irreducible member of V(A). By Jónsson’s Lemma there
is an ultrapower B = AI/U , a nontrivial subalgebra C of B and a homomorphism
f : C → D such that f(C) = D. In order to show that V(A) is minimal, we will show
that D contains A as a subalgebra. Clearly B contains an isomorphic copy of A (it is
a subalgebra of all congruence classes containing constant functions). We identify the
elements from this copy with the original elements from A. Thus ⊥ ∈ B. Observe that
A satisfies the following first-order sentence expressing the fact that t(x1, . . . , xn) = ⊥
if at least one of x1, . . . , xn is not 1:

(∀x1, . . . , xn)(∀y) ((x1 6= 1 or · · · or xn 6= 1) implies t(x1, . . . , xn) ≤ y) .
(22)

Since universal sentences are preserved under taking subalgebras and ultrapowers, C
has to satisfy (22) as well. Consequently, ⊥ ∈ C because ⊥ = t(a1, . . . , an) for any
a1, . . . , an ∈ C at least one of them different from 1 (we can choose such elements
because C is nontrivial). Moreover, A is a subalgebra of C because it is generated by
⊥ (recall that A is strictly simple, so it is generated by any element different from 1).
Finally, we claim that the restriction of f on A has to be an isomorphism. Indeed, if not
then f(⊥) = 1 because A is simple (it is a well-known fact from universal algebra that
each homomorphic image of a simple algebra is either isomorphic to this algebra or it is
trivial). Since ⊥ is the bottom element of B and C as well, we get f [C] = {1} which
contradicts D being subdirectly irreducible. Consequently, D contains an isomorphic
copy of A. Hence V(A) is an atom.

To see the second part of the lemma, assume that V(A) ⊆ V(A′). Since A is
subdirectly irreducible, A′ is embeddable into A by the previous argument. As both
algebras A, A′ are generated by ⊥, the embedding has to be onto.

Finally, in order to construct algebras generating an atom in a subvariety lattice, we
will need a method extending an RLei-chain by a new neutral element for the multiplica-
tion. Let A = 〈A, ·,→,∧,∨, 1A〉 be an RLei-chain with a coatom a = max(A\{1A}).
We will extend the 1-free reduct of A by adding a new neutral element 1A

>
in order to

obtain an RLe-chain A> = 〈A>, ·,→,∧,∨, 1A>〉, where A> = A ∪ {1A>}. The new
lattice order ∧,∨ is the extension of the original order letting a ≤ 1A

> ≤ 1A. Thus 1A

becomes a top element of A>. Let x ∈ A ∪ {1A>} and y ∈ A \ {1A}. The operations
are extended as follows:

1A
>
· x = x = x · 1A

>
, 1A

>
→ x = x , y → 1A

>
= 1A , 1A → 1A

>
= a .

LEMMA 5.1.3. Let A be an RLei-chain with a coatom a. Then A> is an RLe-chain.
Moreover, if A is contractive then A> is contractive as well.

Proof. It is easy to check that 〈A>, ·, 1A>〉 forms a commutative monoid. We will
check that A> satisfies the residuation property, i.e., xy ≤ z iff y ≤ x → z. Since
A is a subuniverse of the 1-free reduct of A>, we have x · y ≤ z iff y ≤ x → z for
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⊥ = 02

> = 12

2

⊥

> = 12r = 02r

2r

⊥ = 02
>

e = 12
>

>

2>

⊥

e = 12
>
r = 02

>
r

>

2>r

Figure 8. Some strictly simple FL-chains.

all x, y, z ∈ A. Let x, y, z ∈ A ∪ {1A>} and suppose that at least one of them equals
1A
>

. If x = 1A
>

then we have 1A
> · y ≤ z iff y ≤ z = 1A

> → z. Thus assume
x 6= 1A

>
. If z 6= 1A

>
(i.e., y = 1A

>
) then x ≤ z iff 1A ≤ x → z. Consequently,

x = x · 1A
> ≤ z iff 1A

> ≤ x → z. Now assume z = 1A
>

. If x = 1A then
1A · y ≤ 1A

>
iff y ≤ a = 1A → 1A

>
. If x ≤ a then x · y ≤ x ≤ 1A

>
. Thus

x · y ≤ 1A
>

iff y ≤ 1A = x→ 1A
>

. Summing up, A> is an RLe-chain. The moreover
part follows easily since we have x ≤ x2 for x ∈ A and 1A

>
= (1A

>
)2.

Figure 8 shows several examples of strictly simple FL-chains which we will need
later. The first one is the two element Boolean algebra which forms an FLcw-chain 2.
The second one is its corresponding RLci-chain 2r. The last algebra 2>r is obtained
from 2r by means of Lemma 5.1.3. Thus 2>r is an RLec-chain (recall that contractivity
together with integrality implies commutativity). Finally, the third algebra 2> is an
FLec-chain whose 0-free reduct is 2>r and 0 is interpreted as ⊥. All of them are clearly
simple because every nontrivial filter F (i.e., F 6= ↑1) has to contain ⊥. Thus all of
them have only two filters. It is also easy to check that they have no proper nontrivial
subalgebras. Consequently, each of these chains generates an atom in the subvariety
lattice Λ(FL`) by Lemma 5.1.1.

5.2 Finitely many atoms

We start with the easier part proving that some of the subvariety lattices contain only
finitely many atoms. Note that if an FL-algebra A is lower bounded (i.e., it has a bottom
element⊥), then it is bounded since⊥\⊥ is a top element usually denoted>. Moreover
the set {⊥,>} is closed under multiplication, left and right divisions, and lattice opera-
tions. Thus it forms a subalgebra of the {0, 1}-free reduct of A. Consequently, if A is
an FLw-algebra (i.e., 1 = > and 0 = ⊥), then {⊥,>} = {0, 1} forms a subalgebra of
A. Moreover, it is easy to check that this subalgebra is in fact the two element Boolean
algebra 2. Thus we have the following theorem (note that 2 is also commutative and
contractive).

THEOREM 5.2.1. Let {w} ⊆ S ⊆ {e, c,w}. Then Λ(FL`S) contains a single atom,
namely the variety V(2) generated by the two element Boolean algebra 2.
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FL`

FL`ew1

FL`i

FL`ei2ℵ0 FL`ec 2ℵ0

FL`e FL`c

FL`eo

2ℵ0

FL`eco 2

FL`co 2ℵ0

FL`o

FL`w1

FL`ci = FL`eci2

FL`cw = FL`ecw

1

Figure 9. The lattice of considered semilinear varieties of FLS-algebras and the numbers
of atoms in their corresponding subvariety lattices.
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RL`c 2ℵ0

RL`ec 2

RL`

RL`ci = RL`eci

1

RL`i? RL`e

2ℵ0

RL`ei2

Figure 10. The lattice of considered semilinear varieties of RLS-algebras and the num-
bers of atoms in their corresponding subvariety lattices.

The above theorem covers all cases where {w} ⊆ S. Thus in the following text we
have to omit either the condition that 1 is a top element or that 0 is a bottom element. If
we remove the second condition, we obtain the following theorem.

THEOREM 5.2.2. The subvariety lattice Λ(FL`ci) contains two atoms, namely the va-
rieties V(2) and V(2r).

Proof. Let A be a nontrivial algebra from FL`ci. Since every algebra in FL`ci is integral,
1 is the top element. Moreover, xy = x ∧ y because A is contractive. If 0 < 1 then
{0, 1} forms a subalgebra of A isomorphic to 2. Thus assume 1 = 0. Let a < 1 be a
strictly negative element from A (see Lemma 3.0.14). Then {a, 1} forms a subalgebra
of A isomorphic to 2r.

If we remove integrality from FL`cw, the number of atoms also increases as in the
previous theorem.

THEOREM 5.2.3. The subvariety lattice Λ(FL`eco) contains two atoms, namely vari-
eties V(2) and V(2>).

Proof. Let A be a subdirectly irreducible algebra from FL`eco (i.e., A is a nontrivial
chain). Then 0 is the bottom element. Consider the FLeco-chain B = A/F , where F
is the maximal filter not containing 0 (i.e., the union of all filters not containing 0; it is
a filter because A is a chain). The algebra B is clearly simple. Recall that xy = x ∧ y
for negative elements x, y ∈ B because B is contractive. We claim that 0 is a subcover
of 1. Indeed, if there would be an element b ∈ B such that 0 < b < 1 then the filter
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F (b) = ↑b generated by b is nontrivial and proper (see Theorem 3.5.2). Thus B would
not be simple. Further B has a top element > = 0 → 0. If > = 1 then {0, 1} forms a
subalgebra of B isomorphic to 2. If> > 1 then we claim that {0, 1,>} is a subuniverse
of B isomorphic to 2>. The set {0, 1,>} is clearly closed under multiplication. Recall
that {0,>} is closed under→. Furthermore we have 1→ x = x and 0→ 1 = >. Thus
the only remaining case is > → 1. The value > → 1 has to be strictly less than 1. Since
0 is the subcover of 1, we must have > → 1 = 0. It is straightforward to check that the
subuniverse {0, 1,>} forms an algebra isomorphic to 2>.

Now we turn our attention to RL`-algebras. The situation for RL`ci-algebras is again
easy. Let A be a nontrivial algebra from Λ(RL`ci) and a ∈ A a strictly negative element
(see Lemma 3.0.14). Since the multiplication coincides with ∧, the set {a, 1} forms a
subalgebra of A isomorphic to 2r. Thus we obtain the following theorem.

THEOREM 5.2.4. The subvariety lattice Λ(RL`ci) contains a single atom, namely the
variety V(2r).

We have seen that the subvariety lattice of contractive integral RL-chains contains
only a single atom. Even without integrality the situation is relatively easy if we have
commutativity.

THEOREM 5.2.5. The subvariety lattice Λ(RL`ec) contains two atoms, namely varieties
V(2r) and V(2>r ).

Proof. Let A be a subdirectly irreducible member of Λ(RL`ec). Recall that xy = x ∧ y
for x, y ≤ 1 because A is contractive. Thus every negative element a ∈ A generates
a filter F (a) = ↑a (see Theorem 3.5.2). Since A is subdirectly irreducible, there has
to be minimum nontrivial filter F (a) for a strictly negative a ∈ A (see Theorems 2.1.4
and 3.5.3). Then a is a subcover of 1. Set T = a → 1. We claim that {a, 1, T} is a
subalgebra of A. If T = 1 then {a, 1} is clearly closed under multiplication. It is also
closed under→ because 1→ x = x for every x ∈ A and

1 ≤ a→ a ≤ a→ 1 = T = 1 .

Thus {a, 1} forms a subalgebra isomorphic to 2r.
Thus assume that T > 1. We check that {a, 1, T} is closed under multiplication.

Clearly, 1x = x = x1 for x ∈ {a, 1, T}. Further, a2 = a. To see that aT = Ta ∈
{a, 1, T}, note that

a ≤ aT = a(a→ 1) ≤ 1 .

Since a is a subcover of 1, we get Ta = aT ∈ {a, 1}. Moreover, Ta 6= 1. Indeed,
if Ta = 1 then a = (Ta)a = Ta2 = Ta = 1. Thus Ta = aT = a. Consequently,
aT 2 = (aT )T = a ≤ 1. Thus T ≤ T 2 ≤ a → 1 = T . Hence {a, 1, T} is closed
under multiplication. Finally, we have to check that {a, 1, T} is closed under →. Let
x ∈ {a, 1, T}. Clearly, 1 → x = x. Next we show that a → x ∈ {a, 1, T}. We have
a→ 1 = T by the definition. Then a→ T = a→ (a→ 1) = a2 → 1 = a→ 1 = T .
Also aT = a, hence

T ≤ a→ a ≤ a→ 1 = T .
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Finally, we show that T → x ∈ {a, 1, T}. We have T → 1 = (a → 1) → 1 ≥ a. On
the other hand, T → 1 < 1 otherwise 1 ≥ T (T → 1) ≥ T . Thus T → 1 = a because
a is the subcover of 1. Moreover, a ≤ T → a because Ta = a. On the other hand,
T → a < 1 otherwise a ≥ T (T → a) ≥ T . Thus T → a = a. Finally, to see that
T → T ∈ {a, 1, T}, note that T 2 = T and aT = a. Consequently,

T ≤ T → T = T → (a→ 1) = aT → 1 = a→ 1 = T .

Thus {a, 1, T} forms a subalgebra of A. It is easy to see that it is isomorphic to 2>r .

If we replace contraction by integrality, the number of atoms still remains finite.
Recall that Z = 〈Z,+,→,∧,∨, 0〉 (where x→ y = y−x) denotes the additive `-group
of integers viewed as an RLe-chain. One can apply to Z the conucleus σ(x) = x ∧ 0
(see Section 3.7) in order to obtain an RLei-chain Z− = σ[Z] = 〈Z−,+,→σ,∧,∨, 0〉.
Note that x →σ y = (y − x) ∧ 0. Before we prove that the subvariety lattice Λ(RL`ei)
contains only two atoms, we will prove that Z− generates an atom.

LEMMA 5.2.6. The variety V(Z−) is an atom in Λ(RLei).

Proof. Assume that V(A) ⊆ V(Z−) is a nontrivial subvariety of V(Z−). Thus A is
a nontrivial RLei-algebra. First, observe that Z− satisfies the identity x → xy = y.
Indeed, we have x →σ (x + y) = (x + y − x) ∧ 0 = y. Thus V(A) has to satisfy
this identity as well. Let a be a strictly negative element in A (see Lemma 3.0.14).
Consider the submonoid B of A generated by a, i.e., B = {ak | k ∈ N}. We claim that
ak+1 < ak for all k ∈ N. Indeed, if ak+1 = ak for some k ∈ N, then

1 = ak → ak = ak → ak+1 = a .

Further, we claim thatB forms a subalgebra of A. It is clearly closed under ∧,∨ because
B is a chain. It remains to check that B is closed under→. Let k, n ∈ N. If k ≤ n then
an ≤ ak. Thus an → ak = 1 ∈ B. Suppose that k > n. Then an → ak = an →
anak−n = ak−n. Thus B forms a subalgebra which is obviously isomorphic to Z−.
Consequently, V(Z−) ⊆ V(A), i.e., V(Z−) is an atom.

THEOREM 5.2.7. The subvariety lattice Λ(RL`ei) contains two atoms, namely varieties
V(2) and V(Z−).

Proof. Let A be a subdirectly irreducible RL`ei-algebra, i.e., A is nontrivial and linearly
ordered. Thus A contains is a strictly negative element a < 1 as A is integral. We
will show that V(A) contains either 2 or Z−. Let N+ denote the set of strictly positive
natural numbers and consider the non-increasing sequence 〈ak〉k∈N+ . If ak+1 = ak for
some k ∈ N+, then ak is idempotent. Indeed, we have

a2k = ak+1ak−1 = akak−1 = · · · = ak .

Then it is easy to see that {ak, 1} forms a subalgebra of A isomorphic to 2r. Thus in
this case we have 2r ∈ V(A).
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Now assume that ak+1 < ak holds for all k ∈ N+, i.e., 〈ak〉k∈N+ is a strictly
decreasing sequence. We will show that Z− ∈ ISHPU(A) ⊆ V(A). Consider a
non-principal ultrafilter U on N and the corresponding ultrapower B = AN/U . Set
~1 = 〈1, 1 . . .〉/U , ~a = 〈a, a, . . .〉/U , and ~b = 〈ak〉k∈N+/U . Let θ be the congruence
on B corresponding to the filter F (~a) generated by ~a (cf. Theorem 3.5.3). In particular,
we have ~1/θ = ~a/θ because ~1 → ~a = ~a ∈ F (~a) and ~a → ~1 = ~1 ∈ F (~a). Further,
note that ~b 6∈ F (~a). Indeed, if ~b ∈ F (~a) = ↑{~an | n ∈ N}, then for a fixed n ∈ N
and a set J in the ultrafilter U we have ak ≥ an for all k ∈ J . However, 〈ak〉k∈N+

is strictly decreasing. Thus J has to be finite. Consequently, U has to be principal (a
contradiction).

We claim that the subalgebra of B/θ generated by~b/θ is isomorphic to Z−. First, it
is not trivial because~b 6∈ F (~a). Second, we have to check that~bm/θ → ~bn/θ = ~bn−m/θ
for n > m. Note that for all k ∈ N+ we have

a(n−m)k ≤ amk → ank < a(n−m)k−1 ≤ a→ a(n−m)k .

Thus~bn−m/θ ≤ ~bm/θ → ~bn/θ ≤ ~a/θ → ~bn−m/θ = ~1/θ → ~bn−m/θ = ~bn−m/θ.

Unfortunately, the proof of Theorem 5.2.7 does not work without commutativity
(i.e., for the variety RL`i ) because the filter F (~a) is closed also under conjugates. Then
it is not clear how to prove that~b 6∈ F (~a).

PROBLEM 5.2.8. What is the cardinality of atoms in Λ(RL`i )?

5.3 Continuum many atoms

Now we focus on varieties whose subvariety lattice has continuum many atoms.
We start with the variety of RL`e-algebras and construct 2ℵ0 algebras generating atoms
in Λ(RL`e). Easy modifications of these algebras give also 2ℵ0 atoms in Λ(FL`eo) and
Λ(FL`ei).

Let A = 〈A,+,→,∧,∨, 〈0, 0〉〉 be the totally ordered Abelian `-group (viewed
as an RLe-chain) given by the lexicographic product of two copies of Z, i.e., A =
Z2 ordered lexicographically, + is computed component-wise and 〈x, y〉 → 〈u, v〉 =
〈u− x, v − y〉. Recall that there are 2ℵ0 infinite subsets of −2 + Z− = {−2 + z | z ∈
Z−}, where Z− denotes the set of non-positive integers. We construct for each infinite
subset S ⊆ −2 + Z− an algebra AS from the algebra A by means of a conucleus σS
and a nucleus γ. We define the conucleus σS by its image as follows:

σS [A] = {〈0, 0〉, 〈−1, 0〉, 〈−1,−1〉}∪{〈−1, z〉 ∈ A | z ∈ S}∪{〈x, y〉 ∈ A | x ≤ −2} .

To show that σS [A] defines a conucleus σS , we have to prove that σS [A] is the image of
an interior operator which forms a submonoid (see Lemma 3.7.1). The set σS [A] clearly
forms a submonoid of A since 〈−1, x〉 + 〈−1, y〉 = 〈−2, x+ y〉 ∈ σS [A]. Further we
have to check that σS [A] is an interior system of A, i.e., if max{x ∈ σS [A] | x ≤ y}
exists for every y ∈ A. The existence is obvious for y ∈ σS [A]. Suppose that y 6∈ σS [A].
Then y has the first component greater than or equal to −1. If y = 〈u, v〉 for u > 0,
then the maximum is 〈0, 0〉. If u = 0 then the maximum is 〈−1, 0〉. If u = −1 then the
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〈0, 0〉 = 1B

〈−1, 0〉 = a

〈−1,−1〉

〈−1, S〉

〈−2, 1〉

〈−2, 0〉

〈−2,−1〉

〈−3, 1〉

〈−3, 0〉

〈−3,−1〉

Figure 11. The structure of the algebra B.

maximum exists since the set 〈−1, S〉 = {〈−1, z〉 ∈ A | z ∈ S} is dually well-ordered
and infinite (thus there is a lower bound of y in 〈−1, S〉). Hence σS [A] is the image
of a conucleus and σS [A] = 〈σS [A],+,→σS

,∧,∨, 〈0, 0〉〉 forms an RLei-chain, where
〈x, y〉 →σS

〈u, v〉 = σS(u− x, v − y).
Now consider the γ-retraction B = γ[σS [A]] where γ(x, y) = 〈x, y〉 ∨ 〈−3,−1〉.

The algebra B = 〈γ[σS [A]],+γ ,→σS
,∧,∨, 〈0, 0〉〉 is again an RLei-chain as follows

from Lemma 3.7.4, where 〈x, y〉 +γ 〈u, v〉 = γ(x + u, y + v). The structure of B is
depicted in Figure 11. We define the algebra AS as the subalgebra of B generated by
a = 〈−1, 0〉. The algebra AS is an RLei-chain. It is even a 4-potent RLei-chain (i.e., it
satisfies x5 = x4) because a4 = γ(−4, 0) = 〈−3, 1〉 is the bottom element.

We will prove that each AS contains some important elements from B. This will
help us to prove that AR and AS are not isomorphic for R 6= S. First, note that there is
a term r(x) = x2 → x4 such that its value in AS for x = a is

rAS (a) = 〈−2, 0〉 →σS
〈−3,−1〉 = σS(−1,−1) = 〈−1,−1〉 .

Thus the element 〈−1,−1〉 belongs to AS . Since the set S is dually well ordered, we
can index its elements by natural numbers, i.e., S = {c0 > c1 > c2 > · · · }.

LEMMA 5.3.1. For every AS and every n ∈ N there is a term sn(x) such that

sAS
n (a) = 〈−1, cn〉 .
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Thus 〈−1, cn〉 ∈ AS for all n ∈ N.

Proof. By induction on n. Let s0(x) be the term x→ r(x)2. Then

s0(a) = 〈−1, 0〉 →σS
〈−2,−2〉 = σS(−1,−2) = 〈−1, c0〉 ,

since 〈−1, c0〉 is the subcover of 〈−1,−1〉. Now assume that there is a term sn(x) such
that sAS

n (a) = 〈−1, cn〉. Let sn+1(x) = x→ r(x) · sn(x). Then

sAS
n+1(a) = 〈−1, 0〉 →σS

〈−2, cn − 1〉 = σS(−1, cn − 1) = 〈−1, cn+1〉 .

LEMMA 5.3.2. For every AS and every n ∈ N there is a term tn(x) such that

tAS
n (a) = 〈−2, n〉 .

Thus 〈−2, n〉 ∈ AS for all n ∈ N.

Proof. By induction on n. For n = 0 it is clear since 〈−2, 0〉 = a+γ a = a+a. Assume
that there is tn(x) such that tAS

n (a) = 〈−2, n〉. Consider the term tn+1(x) = r(x) →
x · tn(x). Then

tAS
n+1(a) = 〈−1,−1〉 →σS

〈−3, n〉 = σS(−2, n+ 1) = 〈−2, n+ 1〉 .

The algebra AS is a simple RL`ei-algebra because every nontrivial filter F contains
a and a4 is the bottom element, i.e., F = AS . However, AS is not strictly simple since
{〈−3,−1〉, 〈0, 0〉} forms a subalgebra isomorphic to 2r. In order to obtain a strictly
simple algebra, we will use the construction from Lemma 5.1.3 and extend AS by a
new neutral element.

LEMMA 5.3.3. The algebra A>S is a strictly simple RL`e-algebra with a nearly term
definable bottom element.

Proof. We will show that any element x 6= 1A
>
S generates A>S . First, we can make the

top element 〈0, 0〉 = x → x. Second, we can produce a = 〈−1, 0〉 = 〈0, 0〉 → 1A
>
S

since 〈−1, 0〉 is the coatom of AS . Since AS is generated by a, we are done. Moreover
the bottom element a4 is nearly term definable by the term x4 ∧ (x→ 1)4.

In order to invoke Lemma 5.1.2, we have to prove that AR and AS are not isomor-
phic for different sets R,S.

LEMMA 5.3.4. Let R,S ⊆ −2 + Z− such that R 6= S. Then AS is not isomorphic to
AR. The same is true also for A>S and A>R.
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Proof. Let us enumerate the elements of R,S as follows: R = {d0 > d1 > d2 > · · · }
and S = {c0 > c1 > c2 > · · · }. Suppose that f : AS → AR is an isomorphism. Since
f is order-preserving, f must be the identity when restricted to the set

{〈0, 0〉, 〈−1, 0〉, 〈−1,−1〉, 〈−3, 0〉, 〈−3,−1〉} .

By Lemma 5.3.1 we have 〈−1, cn〉 ∈ AS , 〈−1, dn〉 ∈ AR and f(−1, cn) = f(sAS
n (a)) =

sAR
n (f(a)) = sAR

n (a) = 〈−1, dn〉 for all n ∈ N. Assume that k is the least natu-
ral number such that ck 6= dk. Without any loss of generality suppose that ck > dk.
Lemma 5.3.2 has two consequences. First, 〈−2,−ck〉 ∈ AS , AR. Second, we have
f(−2, n) = f(tAS

n (a)) = tAR
n (f(a)) = tAR

n (a) = 〈−2, n〉 for all n ∈ N. Thus we get

a3 = f(a3) = f(−3, 0) = f(〈−1, ck〉+ 〈−2,−ck〉) = f(〈−1, ck〉+γ 〈−2,−ck〉) =

〈−1, dk〉+γ 〈−2,−ck〉 = 〈−3, dk − ck〉 ∨ 〈−3,−1〉 = 〈−3,−1〉 = a4 ,

which is a contradiction since a3 6= a4.
It is straightforward to check that the above argument works also for extended alge-

bras A>S and A>R.

Now using Lemma 5.1.2, we know that each A>S generates an atom in Λ(RL`e).
Moreover, distinct subsets R,S of −2 + Z− generate different atoms because A>R and
A>S are not isomorphic. Thus we obtain the following theorem.

THEOREM 5.3.5. There are 2ℵ0 atoms in Λ(RL`e).

The above-mentioned RLei-chains AS can be also used to construct atoms in the
subvariety lattices Λ(FL`eo) and Λ(FL`ei). First, A>S can be easily viewed as an FLeo-
chain if we interpret the constant 0 as a4. Then the premises of Lemma 5.1.2 remain
still satisfied. Thus FLeo-chains A>S generate 2ℵ0 atoms in Λ(FL`eo). Second, observe
that we can make AS into an FLei-chain by interpreting the constant 0 as a = 〈−1, 0〉.
Consequently, the FLei-chain AS becomes strictly simple because it is generated by a.
Moreover, the bottom element of AS is term-definable by the term 04. Consequently,
using Lemma 5.1.2 again, we obtain the next theorem.

THEOREM 5.3.6. There are 2ℵ0 atoms in Λ(FL`ei) and Λ(FL`eo).

We have seen that the subvariety lattices of FL`ei-algebras and FL`eo-algebras have
continuum many atoms. The same can be proved also for the subvariety lattice of FL`ec-
algebras. Let A = 〈Z2 ∪ {⊥,>}, ·,→,∧,∨, 〈0, 0〉〉 be the RLe-chain arising on the
lexicographic product of two copies of the additive `-group of integers Z extended by
bottom and top elements⊥,> (see Proposition 3.3.1). Thus we have⊥·x = ⊥,>·x =
> for x 6= ⊥, and 〈a1, b1〉 · 〈a2, b2〉 = 〈a1 + a2, b1 + b2〉. The division→ is computed
by formulas ⊥ → x = >, x → ⊥ = ⊥ for x 6= ⊥, x → > = >, > → x = ⊥ for
x 6= >, and 〈a1, b1〉 → 〈a2, b2〉 = 〈a2 − a1, b2 − b1〉. We define a conucleus σ on A
by its image as follows:

σ[A] = {⊥,>, 〈0, 0〉} ∪ {〈a, b〉 | a > 0, b < 0} .
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To prove that σ[A] is the image of a conucleus, we have to check that σ[A] is a sub-
monoid and the image of an interior operator (see Lemma 3.7.1). It is easy to see that
σ[A] is closed under multiplication, i.e., it forms a submonoid. Further, we have to check
that for every y ∈ Z2 ∪ {⊥,>} the maximum m = max{x ∈ σ[A] | x ≤ y} exists.
For y ∈ σ[A] it is obvious. Thus suppose that y 6∈ σ[A]. If y < 〈0, 0〉 then the max-
imum m = ⊥ because it is the only strictly negative element in σ[A]. If y > 〈0, 0〉
then y = 〈a, b〉 for a ≥ 0 and b ≥ 0. Consequently, m = 〈0, 0〉 if a = 0 and
m = 〈a,−1〉 if a > 0. Thus σ[A] is the image of a conucleus σ and the σ-contraction
σ[A] = 〈σ[A], ·,→σ,∧,∨, 〈0, 0〉〉 is an RLe-chain.

Let N+ denote the set of strictly positive natural numbers. Given a subset S ⊆ N+

such that 1 ∈ S, we define a nucleus γS as follows:

γS(x) = x for x ∈ {⊥,>, 〈0, 0〉},

γS(a, b) =

{
〈a,−1〉 if a 6∈ S or b = −1,
〈a,−2〉 otherwise.

Observe that the image of γS is the following set:

γS [σ[A]] = {⊥,>, 〈0, 0〉} ∪ {〈k,−1〉 | k ∈ N+} ∪ {〈k,−2〉 | k ∈ S} .

The image of γS is well-ordered and contains>. Thus γS is a closure operator. We have
to check that γS(x)γS(y) ≤ γS(xy). If x or y equals ⊥, > or 〈0, 0〉 then the inequality
obviously holds. Thus assume that x, y 6∈ {⊥,>, 〈0, 0〉}. Then x = 〈a1, b1〉 and y =
〈a2, b2〉 for some a1, a2 ≥ 1 and b1, b2 ≤ −1. We have γS(x)γS(y) ≤ 〈a1 + a2,−2〉
and γS(xy) ≥ 〈a1 + a2,−2〉. Thus γS(x)γS(y) ≤ γS(xy) holds.

Using the conucleus σ and nucleus γS , we define an FLe-chain

AS = γS [σ[A]] = 〈γS [σ[A]], ◦γS ,→σ,∧,∨, 〈1,−2〉, 〈0, 0〉〉 ,

where x ◦γS y = γs(x · y) and 0AS = 〈1,−2〉. The structure of AS is depicted in
Figure 12. Note that AS is in fact an FLec-algebra because x ≤ x2 holds for every x as
the only strictly negative element is ⊥.

In order to invoke Lemma 5.1.2, we have to show that AS is strictly simple with a
nearly term definable bottom element and AS is not isomorphic to AR for S 6= R. We
start with a lemma showing properties of 0AS .

LEMMA 5.3.7. Let S ⊆ N+ such that 1 ∈ S. Then AS satisfies for all k ∈ N+ the
following:

1. (0AS )k =

{
〈k,−2〉 if k ∈ S,
〈k,−1〉 otherwise.

2. 0AS →σ (0AS )k+1 = 〈k,−1〉.

Proof. We will prove the first claim by induction on k. For k = 1 the statement holds
since 1 ∈ S and 0AS = 〈1,−2〉. Assume the validity for k, i.e., (0AS )k = 〈k, b〉 for
some b ∈ {−1,−2}. We have

(0AS )k+1 = 0AS ◦γS (0AS )k = γS(〈1,−2〉 · 〈k, b〉) = γS(k+ 1,−2 + b) = 〈k + 1, b′〉
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⊥

〈0, 0〉 = 1AS

〈1,−2〉 = 0AS

〈1,−1〉

〈2,−1〉

〈3,−2〉

〈3,−1〉

〈4,−1〉

〈5,−2〉

〈5,−1〉

>

〈S,−2〉 ∪ 〈N+,−1〉

Figure 12. The structure of the algebra AS for S = {1, 3, 5, . . .}.

for some b′ < 0. Since −2 + b ≤ −2, we get b′ = −2 if k + 1 ∈ S and b′ = −1
otherwise.

Now we prove the second claim. By the first claim we have (0AS )k+1 = 〈k + 1, b〉
for some b ∈ {−1,−2}. Since b+ 2 ≥ 0, we obtain

0AS →σ (0AS )k+1 = σ(〈1,−2〉 → 〈k + 1, b〉) = σ〈k, b+ 2〉 = 〈k,−1〉 .

LEMMA 5.3.8. The algebra AS is strictly simple with a nearly term definable bottom
element.

Proof. The simplicity follows from the fact that each nontrivial filter F in AS contains
⊥, i.e., F = AS . Further we claim that AS is generated by 0AS = 〈1,−2〉. Let B be
the subalgebra of AS generated by 0AS . First,

0AS →σ 1AS = σ(〈1,−2〉 → 〈0, 0〉) = σ(−1, 2) = ⊥ .

Thus ⊥ ∈ B. Second, ⊥ → ⊥ = > ∈ B. Third, 〈k,−2〉 ∈ B for k ∈ S by
Lemma 5.3.7. Finally, 〈k,−1〉 ∈ B for any k ∈ N+ by the same lemma. Thus B =
AS , i.e., AS is generated by 0AS . Consequently, AS is strictly simple. The bottom
element ⊥ is nearly term definable by the term x∧ (x→ 1) because 〈a, b〉 →σ 〈0, 0〉 =
σ(−a,−b) = ⊥ for 〈a, b〉 > 〈0, 0〉.
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It follows from Lemma 5.1.2 that each AS generates an atom in Λ(FL`ec). Thus it
suffices to prove that AR and AS are not isomorphic for R 6= S.

LEMMA 5.3.9. Let R,S ⊆ N+ such that R 6= S and 1 ∈ R∩S. Then AR and AS are
not isomorphic.

Proof. Suppose that f : AR → AS is an isomorphism. Take the least element k where
R and S differ. Without any loss of generality assume k ∈ R and k 6∈ S. Then
(0AR)k = 〈k,−2〉, (0AS )k = 〈k,−1〉. Moreover, it follows from Lemma 5.3.7 that

0AR →σ (0AR)k+1 = 〈k,−1〉 ,
0AS →σ (0AS )k+1 = 〈k,−1〉 .

Consequently, we obtain

f(k,−1) = f(0AR →σ (0AR)k+1) =

0AS →σ (0AS )k+1 = (0AS )k = f((0AR)k) = f(k,−2) .

Thus f is not one-to-one, so cannot be an isomorphism.

THEOREM 5.3.10. There are 2ℵ0 atoms in Λ(FL`ec).

To complete Figures 9 and 10, we have to discuss the cardinality of atoms in the sub-
variety lattices for RL`c-algebras and FL`co-algebras. Continuum many atoms in Λ(RL`c)
were constructed in [16]. In fact, [16] constructs continuum many idempotent RLc-
chains (i.e., RLc-chains satisfying x = x2) generating atoms in Λ(RL`c). As shown
in [18] the construction can be further modified in order to prove that also Λ(FL`co)
contains continuum many atoms. The proofs of all these results are rather involved, so
we will state here the next theorem without a proof.

THEOREM 5.3.11. There are 2ℵ0 atoms in Λ(RL`c) and Λ(FL`co).

6 Historical remarks and further reading

Fuzzy logics as formal logical systems started to be investigated in 1990’s. The
main contribution in this direction is Hájek’s monograph [23]. This book introduces
syntactical calculi for fuzzy logics as well as their corresponding algebraic semantics.
Later it turned out that fuzzy logics can be viewed as a part of much broader class of so-
called substructural logics, i.e., logics lacking some of the structural rules of contraction,
exchange, left and right weakening. Hence we present fuzzy logics (i.e., in our sense
semilinear substructural logics) inside the hierarchy of substructural logics. For details
on substructural logics see the recent book [18] or [34, 35].

Our presentation of FL-algebras which form an equivalent algebraic semantics for
the base substructural logic FL, mainly follows [18]. It differs slightly in the section on
the Dedekind-MacNeille completion of an FL-algebra. Namely, in the construction of
the completion of an FL-algebra A we use a downset monoidD(A) (i.e., an FL-algebra
on the set of all downsets) whereas [18] replaces the downset monoid with a powerset
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monoid P(A) (i.e., an FL-algebra on the set of all subsets). We choose this approach
because P(A) is unnecessarily big in comparison with D(A). Consequently, the map
x 7→ ↓x is an embedding of the ∨-free reduct of A into D(A) (see Proposition 3.8.3)
which even preserves ∨ if A is linearly ordered. On the other hand, an analogous map
from A to P(A) given by x 7→ {x} preserves only the monoid structure of A. This
modification also allows us to obtain the structural characterization for FL-chains (see
Theorem 3.8.11). Concerning the construction of the downset monoid D(A), it is good
to mention that it can be further generalized as was known in category theory already
in 1970’s. Namely, the requirement that A has to be a (pointed) pomonoid can be
weakened in order to obtain an FL-algebra by the above construction. It suffices that
A is a poset endowed with a promonoidal structure (for details see [12]). Further, it is
interesting to note that the construction of the Dedekind MacNeille completion can be
put into a more general framework of residuated frames (see [17]). Using this framework
it was described which identities are preserved by the Dedekind-MacNeille completion
(see [7, 8, 39]).

The section on completeness properties with respect to distinguished semantics con-
tains results scattered in various papers. In the literature the completeness property with
respect to the class of respective chains on [0, 1] is often called standard completeness.
The proofs of standard completeness presented here are completely new providing hope-
fully a better insight into matters. The original proofs are usually based on a method
invented in [29] proving the strong completeness property of FL`ew with respect to the
class of respective chains on [0, 1]. This method was further modified by other authors.
In particular, [15] proves the standard completeness for InFL`ew and [30] for FL`w. An
analogous result for FL`cw goes back to 1950’s (see [13]). On the other hand, the fact
that FL` does not enjoy the standard completeness was proved in [41]. Here we provide
a shorter proof together with new results that the same holds also for FL`S if S ⊆ {c, o}
and for InFL`S, CyInFL`S if S ⊆ {c}. Finally, as we mentioned already inside this
chapter, the standard completeness for FL`e was proved in [32] but the used method is
proof-theoretical. As far as we know there is no algebraic proof of this fact. The finite
strong completeness property of a variety with respect to the class of all finite algebras is
known in the literature under the name finite embeddability property (FEP). Note that for
semilinear varieties the FEP is equivalent to the finite strong completeness property with
respect to the class of all finite chains, i.e., FSFC. The proofs of the FEP are usually
based on a method invented in [2], where it is proved that FLew has the FEP. A semilin-
ear modification for FL`ew and InFL`ew was given in [9]. Further modifications can be
found in [3, 40, 37, 38, 39, 18]. In this chapter we provide a different presentation based
on conuclei and nuclei which works for semilinear varieties. For other varieties a related
approach using residuated frames can be used (see [17, 20]). The quasi-identity (21)
used in the proof of Theorem 4.2.7, showing that several non-integral semilinear vari-
eties do not possess the FEP, was introduced in [2]. An overview of many known results
on completeness properties of fuzzy logics can be found in [10].

We should point out that there are other results in the literature on (semilinear) va-
rieties of FL-algebras not mentioned in this chapter. Let us recall a few of them. Likely
the most studied variety of (semilinear) FL-algebras not covered in this chapter is the
variety of n-potent FL-algebras, i.e., FL-algebras satisfying xn+1 = xn. In particular,



Algebraic Semantics 71

for n = 2 we obtain the class of idempotent FL-algebras. Note that idempotent FLi-
algebras coincide with FLci-algebras. The constructions for proving various complete-
ness properties usually preserve the n-potency identity. Thus one can obtain analogous
completeness properties we presented here also for n-potent FL-algebras. An overview
for integral semilinear varieties can be found in [10]. The standard completeness for
the variety of idempotent FL`e-algebras was proved in [32]. Other well-known identities
studied in the realm of FL-algebras are the identities x\xy = y = yx/x expressing the
fact the monoid reduct is cancellative. These identities are not as easily preserved as the
n-potency. Hence one has to use a different method to prove a completeness property.
The finite strong completeness property for the variety of cancellative RL`ei-algebras
with respect to the class of chains on (0, 1] was proved in [26]. In fact, [26] contains a
slightly different result from which the above-mentioned result easily follows. Namely,
[26] proves the finite strong completeness property with respect to the class of chains on
[0, 1] for a subvariety of FL`ew axiomatized by ¬x∨ ((x→ xy)→ y) = 1. This identity
expresses in an FLew-chain A thatA\{0} forms a cancellative monoid. Nontrivial can-
cellative FL-algebras are necessarily infinite so the varieties of cancellative FL-algebras
cannot posses the FEP. Hence it is not clear whether their (quasi)-equational theories are
decidable or not. In [27] it is proved that the variety of cancellative RL`ei-algebras enjoys
the finite strong completeness property with respect to a countable class of chains. Con-
sequently, it is shown that the quasi-equational theory of this variety is decidable. Last
but not least are the identities x[x\(x ∧ y)] = x ∧ y = [(x ∧ y)/x]x. They are known
under the name divisibility expressing that x ≤ y implies x = yz and x = z′y for some
z, z′. The divisible RL-algebras are known as GBL-algebras (see [22]). Moreover, the
divisible FL`ew-algebras are known as BL-algebras. The variety of BL-algebras enjoys
the finite strong completeness property with respect to the class of chains on [0, 1]. All
details on BL-algebras can be found in Chapter VII.

Finally, we will comment on the section about the subvariety lattice of semilinear
FL-algebras. A good overview on the structure of subvariety lattice of FL-algebras can
be found in [18]. The useful criterion presented in Lemma 5.1.2 comes from [16]. The
easy results on the subvariety lattices with finitely many atoms were known (see [16,
18]). The result showing that there are only two atoms in Λ(RL`ei) comes from [25].
This paper also shows how to construct continuum many atoms in Λ(RL`e), Λ(FL`ei)
and Λ(FL`eo). The algebras generating atoms in the subvariety lattice of FL`ec-algebras
were presented in [18]. Here we present how these atoms can be constructed from an
`-group by means of a conucleus and a nucleus. Continuum many atoms were also
constructed for the subvariety lattice of RL`c-algebras in [16]. A modification for FL`co-
algebras is presented in [18]. Concerning other results not mentioned in this chapter,
it is clear that more is known about subvariety lattices for smaller semilinear varieties
of FL-algebras. For instance it is known that the subvariety lattice of idempotent RL`e-
algebras is countable (see [33]). A lot is known about the subvariety lattice of BL-
algebras. These results are mentioned in Chapter V on MV-algebras and Chapter VII
on BL-algebras. There are also results on almost minimal (semilinear) varieties of FL-
algebras, i.e., varieties which cover atoms in the subvariety lattice. For details see [28,
31, 18].
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