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Abstract

Among the class of finite integral commutative residuated chains (ICRCs), we identify
those algebras which can be obtained as a nuclear retraction of a conuclear contraction
of a totally ordered Abelian ℓ-group. We call the ICRCs satisfying this condition regular.
Then we discuss the structure of finite regular ICRCs. Finally, we prove that the class of
regular members generate a strictly smaller variety than the variety generated by ICRCs.

1 Introduction

The variety ICRLC of representable integral commutative residuated lattices forms an equiv-
alent algebraic semantics for the false-free fragment of the weakest t-norm based fuzzy logic
MTL (see [5]). Due to this connection, it would be very useful to understand the structure
of algebras from ICRLC if we want to study the logical properties of MTL, for instance its
computational complexity. The structural classification of general members of ICRLC seems
to be a complex task. Thus we focus in this paper mainly on the structure of totally ordered
finite algebras from ICRLC . These algebras are important since they generate the variety
ICRLC (see [3, 4]).

There are several structural results on particular subclasses of ICRLC in the literature.
Many of them are based on a connection with Abelian ℓ-groups. For instance, any cancellative
member A of ICRLC can be viewed as a σ-contraction of an Abelian ℓ-group G for a conucleus
σ (see [16]). Moreover, if A is totally ordered, then G can be chosen totally ordered. Another
well-known result says that each totally ordered algebra from ICRLC satisfying x∧y = x(x→
y) is an ordinal sum of totally ordered Wajsberg hoops (see [1]). Moreover, each Wajsberg
hoop is a nuclear retraction of the negative cone of an Abelian ℓ-group (see [10]). In other
words, for any Wajsberg hoop A there is an Abelian ℓ-group G and a nucleus γ such that
A is isomorphic to the γ-retraction of the σ-contraction of G for the conucleus σ(x) = x∧ 0.
Similarly as before, if A is totally ordered, G can be chosen totally ordered as well.

Considering the above-mentioned results, it is natural to ask how far we can go with
the connection to Abelian ℓ-groups. Can be each member of ICRLC described as a nuclear

1



retraction of a conuclear contraction of an Abelian ℓ-group? In this paper we will identify
within the class of finite totally ordered members of ICRLC those whose structure is related
to totally ordered Abelian ℓ-groups. More precisely, let A ∈ ICRLC be finite and totally
ordered. We will characterize when A is a nuclear retraction of a conuclear contraction of
a totally ordered Abelian ℓ-group G. In Section 3, we will see that A can be obtained as a
nuclear retraction of a conuclear contraction of G if, and only if, its ℓ-monoidal reduct is a
homomorphic image of a totally ordered ℓ-monoid whose monoidal reduct is free. We call an
ℓ-monoid satisfying this condition regular (see [6]1).

2 Preliminaries

In this section we set a general notation used in this paper and recall necessary definitions
of algebras used in the sequel. The set of natural numbers, integers, rational numbers, and
reals are denoted respectively by N,Z,Q,R. Let f : A → B be a mapping and y ∈ B.
The symbol f−1(y) denotes the set {x ∈ A | f(x) = y}. If A ∈ Rm×n is a matrix then
ANn = {Ax ∈ Rm | x ∈ Nn}.

The commutative free monoid over the set of generators I will be denoted by FN(I), i.e.,
FN(I) consists of all functions from I to the set of natural numbers N whose supports are finite.
In particular, if I is finite, then FN(I) = NI . Similarly we denote the free Abelian group FZ(I)
and the free Q-vector space FQ(I). The sets FZ(I) and FQ(I) consist of all functions from I
to Z and Q respectively, whose supports are finite. Clearly, we have FN(I) ⊆ FZ(I) ⊆ FQ(I).
All the algebras FN(I), FZ(I), FQ(I) are generated by the set of functions {εi ∈ NI | i ∈ I}
where

εi(x) =

{

1 if x = i ,

0 otherwise.

Let A be an algebra. The congruence lattice of A is denoted by Con(A). Let θ ∈ Con(A)
and a ∈ A. The congruence class containing a with respect to θ is denoted by a/θ. Let R =
(R,+,−,≤, 0) be the totally ordered additive ℓ-group of real numbers. The finite lexicographic
product of n-copies of R is the totally ordered Abelian ℓ-group Rn

lex
= (Rn,+,−,≤lex, 0),

where ≤lex denotes the lexicographic order on Rn (see e.g. [7]).

2.1 Integral commutative residuated chains

All monoids in this paper are commutative. Thus by the word “monoid” we always mean a
commutative monoid. A lattice ordered monoid (ℓ-monoid) is an algebra S = (S, ·,∧,∨, 1),
where (S, ·, 1) is a monoid, (S,∧,∨) is a lattice and the identity a · (b ∨ c) = (a · b) ∨ (a · c)
is valid in S. Instead of a · b we write shortly ab. An ℓ-monoid S = (S, ·,∧,∨, 1) is called
integral if s ≤ 1 for all s ∈ S. For us the most important subclass of ℓ-monoids will be the
class of totally ordered ℓ-monoids which we call shortly ordered monoids.

It is well known that each finitely generated integral ordered monoid is dually well-ordered
due to Dickson’s Lemma. This result can be further extended to any dually well-ordered set
of generators.

1The authors of [6] calls such an ℓ-monoid formally integral. We change the name because we use the word
“integral” in a different meaning.
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Theorem 2.1 ([14]) An integral ordered monoid S which is generated by a dually well-ordered
set is dually well-ordered as well.

An ℓ-monoid S = (S, ·,∧,∨, 1) is said to be residuated if for each a, b ∈ S the inequality
ax ≤ b has a maximum solution. This solution is called a residuum and is denoted a → b.
The enriched algebra S = (S, ·,→,∧,∨, 1) is called a commutative residuated lattice (CRL).
A totally ordered CRL is referred to as a commutative residuated chain (CRC). We call a
CRL, which is integral as an ℓ-monoid, an integral CRL (ICRL). Analogously ICRC stands
for integral CRC.

It is well known that the class of ICRLs forms a congruence distributive variety ICRL.
The class of subdirect products of ICRCs forms a subvariety of ICRL denoted ICRLC . The
members of ICRLC are called representable ICRLs.

2.2 Nucleus and conucleus

Let P be a poset. A mapping γ : P → P is called closure operator if it is expanding, monotone
and idempotent, i.e., x ≤ γ(x), x ≤ y implies γ(x) ≤ γ(y), and γ(γ(x)) = γ(x) for all x, y ∈ P .
Dually, an interior operator σ : P → P is a contracting (σ(x) ≤ x), monotone and idempotent
mapping on P. The closure and interior operators γ and σ are completely determined by their
images Pγ = γ(P ) and Pσ = σ(P ) (see [10, 16]), namely

γ(x) = min{a ∈ Pγ | x ≤ a} , σ(x) = max{a ∈ Pσ | a ≤ x} .

A closure operator γ on a CRL A is called a nucleus if for all x, y ∈ A we have γ(x)γ(y) ≤
γ(xy). Dually, an interior operator σ on A is said to be a conucleus if σ(x)σ(y) ≤ σ(xy) for
all x, y ∈ A and σ(1) = 1. For details on these notions see [8, 10, 16].

Let A = (A, ·,→,∧,∨, 1) be a CRC and γ a nucleus on A. The algebra Aγ = (Aγ , ·γ ,→
,∧,∨, γ(1)), where x ·γ y = γ(xy), is called the γ-retraction of A. Dually, if σ is a conucleus
on A then the algebra Aσ = (Aσ, ·,→σ,∧,∨, 1), where x →σ y = σ(x → y), is called the
σ-contraction of A.

Theorem 2.2 ([8]) Let A,B be CRCs, γ a nucleus on A, and σ a conucleus on B. Then
the γ-retraction Aγ and the σ-contraction Bσ are CRCs.

It is not difficult to prove that each nucleus γ satisfies γ(γ(x)γ(y)) = γ(xy) and each conucleus
σ satisfies σ(σ(x)σ(y)) = σ(x)σ(y). Due to these facts we have the following lemma.

Lemma 2.3 Let A,B be CRCs, γ a nucleus on A, and σ a conucleus on B. Then Bσ forms
a sub-ℓ-monoid of B and γ is an ℓ-monoidal homomorphism from A to Aγ.

Although a nucleus γ on a CRC A is an ℓ-monoidal homomorphism, it need not preserve the
residuum. Nevertheless, we have at least the following lemma.

Lemma 2.4 Let A = (A, ·,→,∧,∨, 1) be a CRC and γ a nucleus on A. If a ∈ A and b ∈ Aγ,
then γ(a→ b) = a→ b = γ(a) → b = γ(a) → γ(b). In particular, a→ b ∈ Aγ.

proof: Clearly, γ(a) → γ(b) = γ(a) → b since we assume that b ∈ Aγ . Further, a → b ≤
γ(a → b). Conversely, since a(a → b) ≤ b, we have γ(a)γ(a → b) ≤ γ(a(a → b)) ≤ γ(b) = b
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showing that γ(a→ b) ≤ γ(a) → b. Moreover, γ(a) → b ≤ a→ b since γ(a) ≥ a. All together
we have

a→ b ≤ γ(a→ b) ≤ γ(a) → b ≤ a→ b .

2

2.3 Cones and orders

Further, we have to recall several facts on orders on FN(I), FZ(I), and FQ(I). Let V be
a Q-vector space. A subset C ⊆ V is called a convex cone if for all non-negative rational
numbers α, β we have αC + βC ⊆ C. In addition, if C contains no proper subspace then C
is said to be pointed. A pointed cone C is said to be a T-cone if V = C ∪ −C. T-cones are
in fact maximal (with respect to inclusion) pointed cones on V and each pointed cone C can
be extended to a T-cone by Zorn’s Lemma.

Each total order ≤ on V, which makes V a totally ordered Abelian ℓ-group, can be
characterized by means of a T-cone. Namely, we can assign to ≤ a T-cone C≤ = {x ∈ V |
0 ≤ x}. Conversely, if C is a T-cone, then the relation defined by setting x ≤C y iff y−x ∈ C
is a total order making V a totally ordered Abelian ℓ-group.

The total orders on vector spaces are important for us since each total order on FN(I),
which makes FN(I) an ordered monoid, uniquely determines a total order on FQ(I). Namely,
we have the following proposition (for the proof see e.g. [6]).

Proposition 2.5 Each total order on FN(I) making FN(I) an ordered monoid can be uniquely
extended to a total order on FQ(I) (resp. FZ(I)) making FQ(I) (resp. FZ(I)) a totally ordered
Abelian ℓ-group.

If we restrict ourselves to finite dimensional Q-vector spaces, then we have even better
characterizations of total orders. Let A ∈ Rm×n be a matrix. The ith-row of A is denoted
Ai ∈ Rm. Let x, y ∈ Rm. Then ‖x‖ denotes the usual Euclidean norm of x and x⊥y expresses
that x and y are perpendicular.

Definition 2.6 A matrix A ∈ Rm×n is called canonical if the following conditions are satis-
fied:

1. Ai⊥Aj for i 6= j,

2. ‖Ai‖ = 1,

3. {x ∈ Qn | Ax = 0} = {0}.

Each canonical matrix defines a total order on Qn making it a totally ordered Abelian ℓ-group
by setting x ≤ y iff Ax ≤lex Ay. Moreover, each total order on Qn is of this type (see [12, 17]).

Theorem 2.7 Let ≤ be a total order on Qn making it a totally ordered Abelian ℓ-group.
Then there is a uniquely determined canonical matrix A ∈ Rm×n, m ≤ n, such that x ≤ y iff
Ax ≤lex Ay.
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2.4 Regular ordered monoids

Now we introduce the important class of ordered monoids whose structure can be described
by means of a totally ordered Abelian ℓ-group.

Definition 2.8 An ordered monoid S = (S, ·,≤S , 1) is called regular if there is a set I, a
surjective monoidal homomorphism φ : FN(I) → S and a total order ≤ on FN(I) making
FN(I) an ordered monoid such that x ≤ y implies φ(x) ≤S φ(y), i.e., S is a homomorphic
image (as an ℓ-monoid) of the ordered monoid (FN(I),+,≤, 0).

Observe that regularity does not seem to be a very strict condition since each monoid is a
homomorphic image of a free monoid. We only require that at least one of such free monoids
can be totally ordered so that the homomorphism becomes order-preserving. The fact that
an ordered monoid is regular can be recognized from a certain convex cone in FQ(I).

Definition 2.9 Let S = (S, ·,≤S , 1) be an ordered monoid and φ : FN(I) → S a monoidal
homomorphism. Then

D(φ) = {y − x ∈ FZ(I) | x, y ∈ FN(I) and φ(x) <S φ(y)} .

The convex cone in FQ(I) generated by D(φ) will be denoted C(φ).

The following criteria of regularity were proved in [6].

Theorem 2.10 ([6]) For any ordered monoid S, the following are equivalent:

1. S is regular,

2. for some surjective monoidal homomorphism φ : FN(I) → S, C(φ) ⊆ FQ(I) is pointed,

3. for all monoidal homomorphisms φ : FN(I) → S, C(φ) ⊆ FQ(I) is pointed.

Let us also recall the following facts which we will need in the sequel.

Proposition 2.11 ([6]) Let S be a regular ordered monoid. Then we have the following:

1. Each sub-ℓ-monoid of S is regular as well.

2. If φ : FN(I) → S is a monoidal homomorphism, then there is a total order on FN(I)
making FN(I) an ordered monoid and φ an ℓ-monoidal homomorphism.

3 Structure of regular ordered monoids and ICRCs

We start with the statement establishing the connection between regular ordered monoids
and totally ordered Abelian ℓ-groups. It is in fact an easy consequence of results published
in [6].

Theorem 3.1 An ordered monoid S is a quotient of a sub-ℓ-monoid of a totally ordered
Abelian ℓ-group G if, and only if, S is regular.

5



proof: Let S be a regular ordered monoid. This means that S is a quotient (as an ℓ-monoid)
of (FN(I),+,≤, 0). Since the order on FN(I) can be extended to FZ(I) by Proposition 2.5,
(FN(I),+,≤, 0) is a sub-ℓ-monoid of the totally ordered Abelian ℓ-group (FZ(I),+,≤, 0).

Conversely, each totally ordered Abelian ℓ-group G is regular by [6, Corollary 4.5]. Since
regularity is preserved under taking sub-ℓ-monoids by Proposition 2.11 and quotients by its
definition, we are done. 2

Observe that the latter theorem tells us quite a lot about the structure of regular ordered
monoids since each totally ordered Abelian ℓ-group can be embedded into a full Hahn group
by Hahn’s Embedding Theorem, i.e., an ℓ-group of functions from a totally ordered set I to
R whose supports are either empty or dually well-ordered (for details see [7, 11]). For finitely
generated ordered monoids we can in fact obtain a better description. The following theorem
can be viewed as a generalization of [6, Proposition 7.2].

Theorem 3.2 Let S = (S, ·,≤S , 1) be an n-generated regular ordered monoid. Then there
is a canonical matrix A ∈ Rm×n, m ≤ n, such that S is a homomorphic image of A =
(ANn,+,≤lex, 0).

If, in addition, S is integral then ANn is a subset of the negative cone of Rm
lex

, i.e., A is
integral as well.

proof: Let φ : Nn → S be the monoidal epimorphism from the free n-generated monoid to
S. We may assume without any loss of generality that φ−1(1) = {0}. Since S is regular, it
follows from Theorem 2.10 that the cone C(φ) is pointed. Let C be a maximal pointed cone
containing C(φ). Then C is a T-cone. Let ≤C be its corresponding total order on Qn hence
also on Nn (see Section 2.3). Then by Theorem 2.7 there is a canonical matrix A ∈ Rm×n,
m ≤ n, such that x ≤C y iff Ax ≤lex Ay. Define ψ : ANn → S by ψ(Ax) = φ(x). The mapping
ψ is a monoidal morphism since φ(0) = 1 and

ψ(Ax+ Ay) = ψ(A(x+ y)) = φ(x+ y) = φ(x) + φ(y) = ψ(Ax) + ψ(Ay) .

Finally, we have to check that ψ is order-preserving, i.e., Ax ≤lex Ay implies ψ(Ax) ≤S ψ(Ay).
Assume that ψ(Ax) >S ψ(Ay). Then φ(x) >S φ(y) and x 6= y. By definition x− y ∈ D(φ) ⊆
C(φ) ⊆ C. Thus x >C y, i.e., Ax >lex Ay.

Let ε1, . . . , εn be the generators of the free monoid on Nn. To see the second claim note
that if S is integral then φ(εi) < φ(0) for all i = 1, . . . , n. Thus −εi ∈ D(φ). Consequently,
for all x ∈ Nn we have x ≤C 0 since

0 − x =
n

∑

i=1

ki(−εi) ∈ C(φ) ⊆ C ,

for some ki ∈ N. Thus Ax ≤lex 0. 2

For finite ICRCs we can obtain a characterization of regularity by means of conuclei and
nuclei. We start with the following lemma.

Lemma 3.3 Let A, B be ICRCs and φ : A → B an ℓ-monoidal surjective homomorphism
such that for each y ∈ B the set φ−1(y) has a maximum. Then the mapping γ : A→ A defined
by

γ(x) = maxφ−1(φ(x)) ,
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is a nucleus on A and Aγ is isomorphic to B.

proof: First, we prove that γ is a nucleus. Let x, y ∈ A. Since x ∈ φ−1(φ(x)), we have
x ≤ maxφ−1(φ(x)) = γ(x). Suppose that x ≤ y. Since φ is order-preserving, we get
φ(x) ≤ φ(y). Consequently, γ(x) ≤ γ(y). Clearly, γ(γ(x)) = γ(x) since max is idempotent.
Finally, observe that φ(γ(x)) = φ(x). Thus

φ(γ(x)γ(y)) = φ(γ(x))φ(γ(y)) = φ(x)φ(y) = φ(xy) .

Consequently, γ(x)γ(y) ∈ φ−1(φ(xy)), i.e., γ(x)γ(y) ≤ γ(xy). Hence γ is a nucleus.
Second, we will show that Aγ

∼= B. Let h : Aγ → B be a mapping defined by h(γ(x)) =
φ(x). The mapping h is a monoidal morphism since for any x, y ∈ Aγ (i.e., x = γ(x) and
y = γ(y)) we have

h(x ·γ y) = h(γ(xy)) = φ(xy) = φ(x)φ(y) = h(γ(x))h(γ(y)) = h(x)h(y) .

It is clearly onto since φ is onto. Let γ(x) < γ(y). Then maxφ−1(φ(x)) < maxφ−1(φ(y)).
Thus φ(x) < φ(y), i.e., h is one-to-one and order-preserving. Thus Aγ and B are isomorphic
as ℓ-monoids. Since the residuum is fully determined by the monoidal operation and the
order, they are isomorphic also as ICRCs. 2

Now we can state the main theorem of this paper classifying those finite ICRCs which can
be obtained as a nuclear retraction of a conuclear contraction of a totally ordered Abelian
ℓ-group. The theorem is slightly more general since it holds not only for finite ICRCs but
also for ICRCs whose monoidal reduct is generated by a dually well-ordered set.

Theorem 3.4 Let A be an ICRC whose monoidal reduct is generated by a dually well-ordered
set. Then the ℓ-monoidal reduct of A is regular if, and only if, A is isomorphic to (Gσ)γ for a
totally ordered Abelian ℓ-group G, a conucleus σ, and a nucleus γ. Moreover, the right-to-left
implication holds for any CRC A.

proof: If A ∼= (Gσ)γ then the ℓ-monoidal reduct of A is a quotient of a sub-ℓ-monoid of G
by Lemma 2.3. Thus the ℓ-monoidal reduct of A is regular by Theorem 3.1.

Conversely, assume that the ℓ-monoidal reduct of A is regular. Since the ℓ-monoidal
reduct of A is generated by a dually well-ordered set I ⊆ A \ {1}, A is a homomorphic image
(as a monoid) of FN(I). For each i ∈ I the corresponding surjective monoidal homomorphism
φ : FN(I) → A maps εi to i. Moreover, there is a total order ≤ on FN(I) making FN(I) an
ordered monoid and φ an ℓ-monoidal homomorphism by Proposition 2.11. Observe that the
set E = {εi ∈ FN(I) | i ∈ I} is dually well-ordered. Indeed, it follows from the fact that
φ restricted to E is an order-preserving bijection between E and I. Consequently, FN(I) is
dually well-ordered as well by Theorem 2.1. Thus FN(I) is residuated, i.e., it forms an ICRC.
By Lemma 3.3 the mapping γ : FN(I) → FN(I) defined by

γ(x) = maxφ−1(φ(x)) ,

is a nucleus and A is isomorphic to (FN(I))γ . The mapping γ is well-defined since FN(I) is
dually well-ordered.

Since ≤ can be extended to a total order on FZ(I) making it a totally ordered Abelian
ℓ-group by Proposition 2.5, we can view FN(I) as a sub-ℓ-monoid of FZ(I). Define a mapping
σ : FZ(I) → FZ(I) as follows:

σ(a) = max{x ∈ FN(I) | x ≤ a} .
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The mapping σ is again well-defined because FN(I) is dually well-ordered. It is easy to check
that σ is a conucleus and FN(I) = (FZ(I))σ. 2

Using Theorem 3.2, we can describe the structure of a finite regular ICRC A. Let
A ∈ Rm×n be a matrix. Note that if (ANn,+,≤lex, 0) is integral (i.e., a sub-ℓ-monoid of
the negative cone of Rm

lex
), then (ANn,+,≤lex, 0) is dually well-ordered by Theorem 2.1.

Consequently, (ANn,+,→,≤lex, 0) forms an ICRC. Then the following theorem follows from
Lemma 3.3.

Theorem 3.5 Let A be an ICRC whose ℓ-monoidal reduct is n-generated and regular. Fur-
ther, let A ∈ Rm×n, m ≤ n, be the canonical matrix from Theorem 3.2 and φ : ANn → A
the corresponding ℓ-monoidal homomorphism. Then A is isomorphic to the γ-retraction of
(ANn,+,→,≤lex, 0) for the nucleus γ : ANn → ANn defined by γ(x) = maxφ−1(φ(x)).

4 Known classes of regular ICRCs

It is quite natural to ask how wide is the class of regular ICRCs since we would like to know
where Theorems 3.4 and 3.5 are applicable. In [6] there is a hint saying that this class is quite
wide since it is not very easy to come up with an example of an ordered monoid which is not
regular. Another way of testing the size of this class, is to look at the well-known classes of
ICRCs from the literature and discuss whether they are regular or not.

Likely the best understood subclass of representable ICRLs is the class of basic hoops,
i.e., representable ICRLs satisfying x ∧ y = x(x → y). As we mentioned in the introduction
each totally ordered basic hoop is an ordinal sum of totally ordered Wajsberg hoops (see [1]).
Further, each totally ordered Wajsberg hoop is either the negative cone of a totally ordered
Abelian ℓ-group G or an interval of the form [a, 0] for some a ∈ G (see [2]). Consequently, it
follows from Theorem 3.1 that the ℓ-monoidal reduct of any totally ordered Wajsberg hoop
is regular. Moreover, we proved in [13] that the ordinal sum preserves regularity, i.e., the
ordinal sum

⊕

i∈I Ai of a family {Ai | i ∈ I} of ICRCs is regular if, and only if, all Ai’s are
regular. Thus we obtain the following theorem.

Theorem 4.1 The ℓ-monoidal reduct of any totally ordered basic hoop is regular.

The ordinal sum is one of the most known construction methods for ICRCs. As we
mentioned, it preserves regularity. Another well-known construction method is the so-called
disconnected rotation producing from an ICRC an involutive ICRC. This construction for
ICRCs was introduced in [15] and independently also in [9]. Let A = (A, ·,→,∧,∨, 1) be
an ICRC. The disconnected rotation A∗ = (A∗, ∗,→∗,∧∗,∨∗, 1

′, 1) of A is an algebra whose
universe is A∗ = A ∪ A′, where A′ = {a′ | a ∈ A} is a disjoint copy of A. Let ≤ be the order
on A. Consider A′ with the inverse order and extend the order to A∗ by letting a′ < b for
all a, b ∈ A. Then ∧∗ and ∨∗ are just minimum and maximum with respect to this extended
order. Let x, y ∈ A. The operations ∗ and →∗ are defined as follows:

x ∗ y = xy , x ∗ y′ = y′ ∗ x = (x→ y)′ , x′ ∗ y′ = 1′ ,

x→∗ y = x→ y , x→∗ y
′ = (xy)′ , x′ →∗ y = 1 , x′ →∗ y

′ = y → x .
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Proposition 4.2 ([15]) Let A be an ICRC. Then the disconnected rotation A∗ of A is
an involutive bounded ICRC, i.e., an ICRC with a bottom element 1′ satisfying the double
negation law ¬¬x = (x→∗ 1′) →∗ 1′ = x.

Now we prove that the disconnected rotation preserves regularity for a certain class of
ICRCs, in particular for finite ICRCs. Let Z be the totally ordered Abelian ℓ-group of
integers.

Theorem 4.3 Let A = (A, ·γ ,→,∧,∨, 0) be an ICRC isomorphic to (Gσ)γ for a totally
ordered Abelian ℓ-group G = (G,+,−,∧,∨, 0), a conucleus σ, and a nucleus γ. Then A∗ is
regular.

proof: Observe that Gσ is a subset of the negative cone of G otherwise A would not be
integral. Consider the lexicographic product G∗ of Z and G, i.e., G∗ = Z × G ordered
lexicographically. We will prove that A∗ is a homomorphic image of the sub-ℓ-monoid M∗ of
G∗ generated by the set

C∗ = {〈0, x〉 ∈ G∗ | x ∈ Gσ} ∪ {〈−1, a− b〉 ∈ G∗ | a ≥ b, a ∈ Gσ, b ∈ (Gσ)γ} .

We in fact define two homomorphisms whose composition gives the desired result. First,
if we identify all the elements less than or equal to 〈−1, 0〉, we obtain a homomorphic image
M∗

1
of M∗. In fact the universe of M∗

1
is C∗. Now we define a mapping φ : M∗

1
→ A∗ as

follows:

φ(z, x) =

{

γ(x) if z = 0,

((γσ)(−x))′ if z = −1.

The symbol γσ stands for the composition of mappings σ and γ. We will check that φ is a
monoidal homomorphism. Let 〈z1, x1〉, 〈z2, x2〉 ∈M∗

1
. There are several cases. If z1 = z2 = 0

then

φ(z1 + z2, x1 + x2) = φ(0, x1 + x2) = γ(x1 + x2) =

= γ(γ(x1) + γ(x2)) = γ(x1) ·γ γ(x2) = φ(z1, x1) ∗ φ(z2, x2) .

If z1 = −1 and z2 = 0 then x1 = a− b for some a ∈ Gσ and b ∈ (Gσ)γ . Thus we have

φ(z1 + z2, x1 + x2) = φ(−1, a− b+ x2) = ((γσ)(b− a− x2))
′ .

Note that the residuum → in A is just the restriction of the residuum in Gσ. Hence we use
the same symbol also to denote the residuum in Gσ. Thus we have x → y = σ(y − x) for
x, y ∈ Gσ. Consequently,

((γσ)(b− a− x2))
′ = (γ((x2 + a) → b))′ = (γ(x2 → (a→ b)))′ .

The second equality follows since xy → z = x→ (y → z) holds in any ICRL. Since b ∈ (Gσ)γ ,
we get a→ b ∈ (Gσ)γ by Lemma 2.4. Thus using Lemma 2.4 once again we obtain

(γ(x2 → (a→ b)))′ = (γ(x2) → γ(a→ b))′ =

= γ(x2) ∗ γ(a→ b)′ = γ(x2) ∗ ((γσ)(b− a))′ = φ(z1, x1) ∗ φ(z2, x2) .
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If z1 = z2 = −1 then we have

φ(z1 + z2, x1 + x2) = φ(−1, 0) = ((γσ)(0))′ = 0′ =

= ((γσ)(−x1))
′ ∗ ((γσ)(−x2))

′ = φ(z1, x1) ∗ φ(z2, x2) .

Next we check that φ is surjective. Let y ∈ A∗. Clearly, if y ∈ A then y ∈ (Gσ)γ . Thus
φ(0, y) = γ(y) = y. If y 6∈ A then y = s′ for some s ∈ (Gσ)γ . Consequently, we have

φ(−1,−s) = ((γσ)(s))′ = s′ = y .

Finally, we have to show that φ is order-preserving. Let 〈z1, x1〉, 〈z2, x2〉 ∈ M∗
1

such that
〈z1, x1〉 ≤lex 〈z2, x2〉. The case for z1 = z2 = 0 is trivial. Also the case when z1 = −1 and
z2 = 0 is obvious because φ(z1, x1) ∈ A′ and φ(z2, x2) ∈ A. Thus suppose that z1 = z2 = −1.
Then x1 ≤ x2, i.e., −x2 ≤ −x1. Consequently, we obtain (γσ)(−x2) ≤ (γσ)(−x1). Hence

φ(z1, x1) = ((γσ)(−x1))
′ ≤ ((γσ)(−x2))

′ = φ(z2, x2) .

Now, the regularity of A∗ follows from Theorem 3.1. 2

Corollary 4.4 Let A be an ICRC whose monoidal reduct is generated by a dually well-ordered
set. Then the ℓ-monoidal reduct of A∗ is regular if, and only if, the ℓ-monoidal reduct of A
is regular.

proof: The left-to-right direction is obvious since A is isomorphic to a subalgebra of A∗ and
regular ordered monoids are closed under taking subalgebras by Proposition 2.11.

Conversely, assume that the ℓ-monoidal reduct of A is regular. Then by Theorem 3.4
there is a totally ordered Abelian ℓ-group G, a conucleus σ on G and a nucleus γ on Gσ such
that A ∼= (Gσ)γ . Thus the statement follows by Theorem 4.3. 2

5 The variety generated by regular ICRCs

Another interesting question concerning the regular ICRCs is whether they generate the
variety ICRLC . Let us denote the variety generated by ICRCs whose ℓ-monoidal reduct is
regular by V. We will show that V is strictly smaller than ICRLC . We will start by the
following example of a non-regular ordered monoid.

Example 5.1 ([6]) Let a, b, c, d ∈ N. Then 〈a, b, c〉 denotes the sub-ℓ-monoid of (N,+,≤, 0)
generated by {a, b, c}. Moreover, 〈a, b, c〉/d denotes its quotient where all elements greater
than or equal to d are identified to one element denoted ∞.

Let S = {32∗} ∪ 〈9, 12, 16〉/30 denote the ordered monoid obtained from 〈9, 12, 16〉/30
by adding one additional element, denoted by 32∗. This element satisfies 16 + 16 = 32∗,
32∗ + z = ∞ for z 6= 0, and the whole monoid is to be ordered as follows:

0 < 9 < 12 < 16 < 18 < 21 < 24 < 25 < 27 < 28 < 32∗ <∞ .

All the relations that do not involve 32∗ are as in 〈9, 12, 16〉/30. This ordered monoid is not
regular (for the proof see [6]).
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Let us consider the ordered monoid S = (S,+,≤, 0) from Example 5.1 which is not regular.
We will construct from this ordered monoid an ICRC A = (A,+,→,∧,∨, 0). Let A = S with
the reverse order, i.e., the elements of A are ordered as follows:

0 > 9 > 12 > 16 > 18 > 21 > 24 > 25 > 27 > 28 > 32∗ >∞ .

It is clear that a residuum exists since A is finite. Thus A is an ICRC whose ℓ-monoidal
reduct is not regular. Now let us introduce the following identity in the language of ICRLs:

(x1z1 → y1z2) ∨ (x2z2 → y2z1) ∨ (y1y2 → x1x2) = 1 . (1)

This identity is not valid in A. Indeed, let

x1 = 16 , y1 = 18 , z1 = 16 ,
x2 = 12 , y2 = 9 , z2 = 12 .

Then we get the following:

x1 + z1 → y1 + z2 = 32∗ → ∞ = 9 ,

x2 + z2 → y2 + z1 = 24 → 25 = 9 ,

y1 + y2 → x1 + x2 = 27 → 28 = 9 .

Thus
(x1 + z1 → y1 + z2) ∨ (x2 + z2 → y2 + z1) ∨ (y1 + y2 → x1 + x2) = 9 6= 0 .

On the other hand we can prove that the identity (1) is valid in each ICRC whose
ℓ-monoidal reduct is regular.

Proposition 5.2 The identity (1) is valid in each ICRC whose ℓ-monoidal reduct is regular.

proof: Assume that there is an ICRC L = (L, ·,→,∧,∨, 1) whose ℓ-monoidal reduct is
regular and (1) is not valid in L. Then there are elements a1, a2, b1, b2, c1, c2 ∈ L such that
a1c1 > b1c2, a2c2 > b2c1, and b1b2 > a1a2. Since (L, ·,∧,∨, 1) is regular, there is a set I,
a total order ≤ on FN(I) making it an ordered monoid, and a surjective order-preserving
homomorphism φ : FN(I) → L. Let a′

1
, a′

2
, b′

1
, b′

2
, c′

1
, c′

2
∈ FN(I) be arbitrary preimages of

a1, a2, b1, b2, c1, c2 respectively. Then

a′1 + c′1 > b′1 + c′2 , a′2 + c′2 > b′2 + c′1 , b′1 + b′2 > a′1 + a′2 ,

since φ is order-preserving. Adding the first two inequalities we get

a′1 + c′1 + a′2 + c′2 > b′1 + c′2 + b′2 + c′1 .

As FN(I) is cancellative, we obtain a′
1
+a′

2
> b′

1
+b′

2
(a contradiction with the third inequality

above). 2

Corollary 5.3 The variety ICRLC is not generated by its members whose ℓ-monoidal reduct
is regular.

Problem 1 Find an axiomatization for the variety V generated by ICRCs whose ℓ-monoidal
reduct is regular.

Another very interesting question concerns a generalization of our results from Section 3.

Problem 2 Is it possible to generalize Theorem 3.4 for any ICRC (not only those whose
ℓ-monoidal reduct is generated by a dually well-ordered set)?
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