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Abstract Let V be a variety of residuated lattices axiomatized by a set of identites in the language {∨, ·,1}.
We characterize when V has the finite embeddability property via regularity of a certain collection of
languages. Several applications of this characterization are presented.

1 Introduction

A class of algebras K has the finite embeddability property (FEP) if every finite subset of any of its mem-
bers has an isomorphic copy in a finite member of K. Finitely axiomatizable classes of algebras with this
property have decidable universal theories. Due to this reason there are several decidability proofs in the
literature which rely on this property. Likely one of the first proofs using the FEP (without an explicit defi-
nition of this property) was done in 1940’s by McKinsey. He proved in [20] that the modal logics S2 and S4
are decidable by showing that the corresponding algebraic semantics has the FEP. A few years later McK-
insey and Tarski showed that the variety of closure algebras (i.e., Boolean algebras with a closure operator)
has the FEP and concluded that its universal theory is decidable [21]. Later they used this result in order to
show that the variety of Heyting algebras has decidable universal theory [22]. In 1950’s Henkin mentioned
in [11] that the variety of abelian groups has the FEP (he attributed the result to John Tate). Afterward
he introduced (likely for the first time) explicitly the notion of FEP under the name the finite imbedding
property (see [12]). In late 1960’s Evans introduced in [8] the same notion again under the name finite
embeddability property. He also gave a characterization of this property for varieties of algebras. Namely,
a variety has the FEP iff its finitely presented algebras are residually finite.

In this chapter we deal with the FEP for classes of residuated lattices. Residuated lattices form an
algebraic semantics for substructural logics. Roughly speaking, they play the same role as Boolean algebras
in classical logic and Heyting algebras in intuitionistic logic (see [10]). Although the above-mentioned
McKinsey and Tarski’s result on Heyting algebras can be viewed as a result dealing with special residuated
lattices, the first explicit results on the FEP for classes of residuated lattices were proved by Blok and van
Alten. In [1] they proved that the variety of integral commutative residuated lattices has the FEP. They also
gave a characterization of the FEP for classes closed under finite direct products. Namely, such a class K
has the FEP iff its quasi-equational theory has the finite model property (i.e., every quasi-identity which
fails in K fails in a finite member of K). Later they generalized this result to various classes of residuated
groupoids (see [2]). Among others results on the FEP let us mention [25] where it is shown that the variety
of commutative residuated lattices satisfying xm ≤ xn for m 6= n has the FEP. The paper [9] contains a
generalization of the result from [1]. Namely, [9] proves that every variety of integral residuated lattices
axiomatized by identities in the language {∨, ·,1} has the FEP. Last but not least there is a recent result
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by Cardona and Galatos [3] where the FEP was established for varieties satisfying xm ≤ xn and having a
weaker form of commutativity.

On the other hand, there are also negative results. Usually non-integral varieties do not enjoy the FEP.
For instance, the variety of all residuated lattices does not enjoy the FEP for the simple reason since its
universal theory is undecidable. In fact, even word problem is undecidable for the variety of all residuated
lattices (see [16]). The same holds for the variety of commutative residuated lattices as follows from results
on linear logic in [18]. Further, it follows from the result in [1] that every class of residuated lattices
containing the abelian lattice-ordered group on integers with addition and the usual linear order cannot
have the FEP (see also [10]).

The above-mentioned list of positive and negative results on the FEP for classes of residuated lattices
is not for sure exhaustive. Nevertheless it might suggest that we are closer to delimit the border between
varieties of residuated lattices having the FEP and varieties without this property. This chapter is an attempt
in this direction. For any variety V of residuated lattices axiomatized by a set of identities in the language
{∨, ·,1} it provides sufficient and necessary conditions for V to have the FEP. Another interesting fact worth
to stress consists in a tight connection between the FEP and the theory of regular languages. Namely, we
are going to characterize the FEP for V via regularity of certain finite collections of languages. Due to this
many of currently known results can be easily proved using various regularity conditions from the formal
language theory as is shown in the last section of this chapter. Although the chapter is rather a compilation
of already known facts, the connection with the theory of regular languages and our characterization of the
FEP seem to be new.

The presented material is heavily based on the results from [4] and [9]. Both these papers use residuated
frames as a tool for proving their results. Although the content of this chapter could be fully presented in
terms of residuated frames, we decided to work rather with collections of languages. The reason for this is
that we believe that in this way the connection with formal languages is more transparent. We should also
point out that the characterization of FEP provided in this chapter might be done for any quasi-variety of
FL-algebras (i.e., pointed residuated lattices) axiomatized by a set of analytic structural quasi-identities. In
order to be less technical, we restrict ourselves only to varieties of residuated lattices axiomatized by a set
of identities in the signature {∨, ·,1}.

2 Finite embeddability property

We recall the definition of the FEP together with a couple of auxiliary definitions. Then we prove that the
FEP for a class of algebras K is equivalent to the finite model property for its universal theory.

Let A = 〈A,〈 f A
i | i ∈ K〉〉 be an algebra and B⊆ A. Then B = 〈B,〈 f B

i | i ∈ K〉〉 is a partial subalgebra of
A where for every n-ary operation fi, i ∈ K, we define

f B
i (a1, . . . ,an) =

{
f A
i (a1, . . . ,an) if f A

i (a1, . . . ,an) ∈ B,
undefined otherwise.

Given an algebra C of the same type as A and a one-to-one map g : B→C, we call g an embedding of B
into C if g preserves all existing operations, i.e., for every n-ary operation fi, i ∈ K, and a1, . . . ,an ∈ B we
have

g( f B
i (a1, . . . ,an)) = f C

i (g(a1), . . . ,g(an)),

whenever f B
i (a1, . . . ,an) is defined. Finally, we say that a partial subalgebra B of A is embeddable into C

if there is an embedding g : B→C.

Definition 1. Let K be a class of algebras of the same type. Then K is said to have the finite embeddability
property (FEP) if every finite partial subalgebra B of any member A∈K is embeddable into a finite member
C ∈ K.

Let K be a class of algebras of the same type. Consider its universal theory Th∀(K), i.e., the set of
all universal sentences valid in K. We say that Th∀(K) has the finite model property if every universal
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sentence Φ which fails to hold in K fails in a finite member of K. The importance of the FEP stems from
the following theorem.

Theorem 1. A class of algebras K of the same type has the FEP iff Th∀(K) has the finite model property.

Proof. (⇒): Suppose that K has the FEP and a universal formula ∀x1 . . .xnΦ(x1, . . . ,xn) fails in K. Note
that Φ is a Boolean combination of atomic formulas of the form t(x1, . . . ,xn) = s(x1, . . . ,xn) for some
terms t,s. Since ∀x1 . . .xnΦ(x1, . . . ,xn) fails in K, there are A ∈ K and elements a1, . . . ,an ∈ A such that
A 6|= Φ(a1, . . . ,an). Consider a set T of all subterms occurring in atomic subformulas of Φ . We define a
subset B⊆ A as follows

B = {tA(a1, . . . ,an) ∈ A | t(x1, . . . ,xn) ∈ T}.

By the FEP B can be embedded into a finite member C ∈ K via an embedding g. Then we claim that
C 6|= Φ(g(a1), . . . ,g(an)) which implies that ∀x1 . . .xnΦ(x1, . . . ,xn) fails in C. To see this observe that for
any atomic subformula t = s occurring in Φ we have

tA(a1, . . . ,an) = sA(a1, . . . ,an) iff g(tA(a1, . . . ,an)) = g(sA(a1, . . . ,an))

iff tC(g(a1), . . . ,g(an))) = sC(g(a1), . . . ,g(an)),

because g is an embedding, i.e., it is injective and preserves existing operations.
(⇐): Let B be a finite partial subalgebra of A. Suppose that B = {b1, . . . ,bn}, where bi 6= b j for 1≤ i <

j ≤ n. Consider a formula Ψ(x1, . . . ,xn) which is a conjunction of all atomic formulas of the form

f (xi1 , . . . ,xik) = xi j ,

where
f B(bi1 , . . . ,bik) = bi j

for an operation f in the signature of B. The following sentence

∀x1, . . . ,xn

(
Ψ(x1, . . . ,xn)⇒

∨
1≤i< j≤n

(xi = x j)

)

fails in K because A |=Ψ(b1, . . . ,bn) and A 6|=
∨

1≤i< j≤n(bi = b j). By the finite model property there is a
finite member C ∈ K and elements c1, . . . ,cn ∈C such that C |=Ψ(c1, . . . ,cn) and C |=

∧
1≤i< j≤n(ci 6= c j).

Thus bi 7→ ci for 1≤ i≤ n defines an embedding of B into C. ut

Corollary 1. Let K be a finitely axiomatized class of algebras of the same type. If K has the FEP then
Th∀(K) is decidable.

3 Regular languages and syntactic congruences

Since the notion of regular language will play an important role in our characterization of the FEP, we
recall several well-known facts on regular languages.

Throughout the rest of this chapter B always denotes a finite set which is called alphabet. The set of
all finite words (i.e., finite sequences) over B is denoted B∗. Recall that B∗ together with empty word ε

and concatenation forms the B-generated free monoid which we denote B∗ = 〈B∗, ·,ε〉. A subset L⊆ B∗ is
called a language. Given languages L,K ⊆ B∗, one can define their concatenation as follows

LK = {uv ∈ B∗ | u ∈ L, v ∈ K}. (1)

This operation is associative so we can define powers of a language L by letting L0 = {ε} and Ln+1 = LLn.
The union of all Ln is known as Kleene-star of the language L, i.e.,
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L∗ =
⋃

n∈N
Ln. (2)

Definition 2. The collection of regular languages over B is defined as the smallest collection containing all
finite languages L⊆ B∗ and closed under concatenation, union and Kleene-star.

It follows from the above definition that {b} is a regular language for every b ∈ B. Other regular lan-
guages can be constructed by means of concatenation, union and Kleene-star. For instance,

({a}({a}∪{b})∗)∪{b}∗

is a regular language. In what follows we will abuse notation in the usual way and omit symbols {,} in the
above expression. In addition, we assume that Kleene-star binds stronger than concatenation which in turn
binds stronger than union. Thus the above expression is simplified as follows

a(a∪b)∗∪b∗.

Note that b might stand in different contexts for an element from B and also for the singleton language {b}.
Similarly ε denotes the empty word and at the same time the language {ε}.

Let L ⊆ B∗ be a language and ∼ a monoid congruence on B∗. The language L is said to be saturated
by ∼ if L is a union of congruence classes, i.e., a ∈ L and a ∼L b implies b ∈ L. We call L recognizable
if there is a monoid congruence ∼ on B∗ saturating L and having finite index (i.e., the quotient B∗/∼ is
finite). Equivalently, L is recognizable if there is a finite monoid M, a monoid homomorphism h : B∗→M
and S⊆M such that h−1[S] = L.

Recognizable languages are precisely languages accepted by finite automata (see e.g. [19]). Thus the
following result can be viewed as a variant of famous Kleene’s theorem [17].

Theorem 2. Let L⊆ B∗. Then L is regular iff it is recognizable.

Next we recall the notion of syntactic congruence. This notion plays a crucial role in the algebraic theory
of regular languages (see [23]). Let L ⊆ B∗ be a language. The syntactic congruence of the language L is
defined as follows:

x∼L y iff ∀u,v ∈ B∗(uxv ∈ L⇐⇒ uyv ∈ L). (3)

The syntactic congruence is also known in Abstract Algebraic Logic under the name Leibniz congruence
(see [5]). The syntactic congruence can be characterized as follows (see e.g. [19] or [5]).

Theorem 3. Let L ⊆ B∗. The syntactic congruence ∼L is the largest monoid congruence (with respect to
the inclusion) which saturates L.

Note that it follows from Theorem 3 that L ⊆ B∗ is recognizable iff B∗/∼L is finite. Thus using Theo-
rem 2, we obtain the following characterization of regular languages.

Theorem 4. A language L⊆ B∗ is regular iff B∗/∼L is finite.

In order to understand the syntactic congruence of a language L⊆ B∗ better, we introduce the following
languages for every u,v ∈ B∗:

u\L/v = {x ∈ B∗ | uxv ∈ L}. (4)

Then the syntactic congruence ∼L can be defined as follows:

x∼L y iff ∀u,v ∈ B∗(x ∈ u\L/v⇐⇒ y ∈ u\L/v). (5)

Consequently, x,y ∈ B∗ are equivalent iff they belong to the same languages u\L/v. Thus congruence
classes are determined by subsets of the collection

B = {u\L/v | u,v ∈ B∗}.

More precisely, if we define for x ∈ B∗ a set Ex = {〈u,v〉 ∈ B∗×B∗ | x ∈ u\L/v}, we can describe the
congruence class [x]∼L as follows:
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[x]∼L =

 ⋂
〈u,v〉∈Ex

u\L/v

−
 ⋃
〈u,v〉6∈Ex

u\L/v

 . (6)

In the above formula we adopt the convention
⋂

/0 = B∗. Now we can reformulate Theorem 4 in the follow-
ing way.

Theorem 5. Let L⊆ B∗ be a language. Then L is regular iff the collection B = {u\L/v | u,v ∈ B∗} is finite.

Proof. (⇒): Since L is regular, its syntactic congruence ∼L is of finite index by Theorem 4. Consequently,
there are only finitely many languages which are saturated by∼L (precisely 2n where n is the cardinality of
B∗/∼L). Thus it suffices to show that every u\L/v is saturated by ∼L. Let x ∈ u\L/v and x ∼L y. We have
uxv ∈ L. It follows from the definition (3) of ∼L that uyv ∈ L. Hence y ∈ u\L/v.

(⇐): Assume that |B|= n. Since the congruence classes of ∼L are determined by subsets of B there are
at most 2n congruence classes. Thus L is regular by Theorem 4. ut

Example 1. Let B = {a,b}. We compute the syntactic monoid of language L = a(a∪ b)∗b = aB∗b. First,
we have to compute languages B = {u\L/v | u,v ∈ B∗}. By Theorem 5 we know that there are only finitely
many different languages of this form. Namely, we have six pairwise different languages

ε\L/ε = L

a\L/ε = B∗b

ε\L/b = aB∗

b\B∗b/ε = B∗b∪ ε

ε\B∗b/b = B∗

ε\aB∗/a = aB∗∪ ε.

Figure 1 shows how the above languages are ordered by inclusion.

B∗

aB∗∪ ε B∗b∪ ε

aB∗ B∗b

L

[a]∼L [b]∼L

[ab]∼L

[ba]∼L

[ε]∼L

B∗

Fig. 1 (Left) The collection B = {u\L/v | u,v ∈ B∗} ordered by inclusion. (Right) Congruence classes of ∼L. The parabolas
separate respectively aB∗ and B∗b from the rest of B∗.

Now we can describe congruence classes of ∼L corresponding to various subsets of B. Namely, using
the formula (6), we obtain the following congruence classes (see Figure 1):

[ab]∼L =
⋂
B = L

[a]∼L = aB∗−L

[b]∼L = B∗b−L

[ε]∼L = (aB∗∪ ε)∩ (B∗b∪ ε) = {ε}
[ba]∼L = B∗− (aB∗∪B∗b∪ ε).
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4 Residuated lattices induced by a collection of languages

In this section we recall all necessary notions and facts about residuated lattices. Moreover, we describe a
construction which produces a residuated lattice out of a finite collection of languages. Then we prove that
this residuated lattice is finite iff the collection contains regular languages.

A residuated lattice is an algebra A = 〈A,∧,∨, ·,\,/,1〉 such that 〈A,∧,∨〉 is a lattice, 〈A, ·,1〉 is a
monoid and for all a,b,c ∈ A we have

a ·b≤ c iff b≤ a\c iff a≤ c/b. (7)

We will omit some parentheses in residuated-lattice terms. Namely, in absence of parentheses we assume
that the multiplication · is performed first, followed by divisions \, / and finally by the lattice connectives
∧, ∨. Given residuated-lattice terms t,s, we refer to the inequality s≤ t as identity because it is equivalent
to s∨ t = t. A residuated lattice A is said to be complete if its lattice reduct is a complete lattice. For details
on residuated lattices see [10].

It follows from the above condition that the multiplication is monotone in both arguments. The divisions
\, / are monotone in nominator and antitone in denominator. In fact, we have even the following distribution
laws:

• Multiplication distributes over any existing join, i.e., if
∨

X and
∨

Y exist for X ,Y ⊆ A, then so does∨
x∈X ,y∈Y (x · y), and

(
∨

X) · (
∨

Y ) =
∨

x∈X ,y∈Y

(x · y). (8)

• Divisions preserve all existing meets in the numerator and convert all existing joins in the denominator
to meets, i.e., if

∨
X and

∧
Y exist for X ,Y ⊆ A, then for any z ∈ A the following equalities hold (in

particular the right-hand sides exist):

z\(
∧

Y ) =
∧
y∈Y

(z\y) , (
∧

Y )/z =
∧
y∈Y

(y/z), (9)

(
∨

X)\z =
∧
x∈X

(x\z) , z/(
∨

X) =
∧
x∈X

(z/x). (10)

Lemma 1. The following holds in every residuated lattice:

1. a · (a\b)≤ b and (b/a) ·a≤ b,
2. (a ·b)\c = b\(a\c) and c/(b ·a) = (c/a)/b,
3. (a\c)/b = a\(c/b) so we can write a\c/b without parentheses,
4. 1\a = a = a/1.

Let B be a set. It is known (see e.g. [10]) that the powerset of free monoid B∗ forms a complete residuated
lattice P(B∗) = 〈B∗,∩,∪, ·,\,/,ε〉, where for U,V,W ⊆ B∗ the multiplication UV is just the concatenation
of languages (1) and

U\W = {v ∈ B∗ |Uv⊆W},
W/V = {u ∈ B∗ | uV ⊆W}.

Note that in the above definition ε stands for the language {ε}. Similarly Uv and uV denote respectively
languages U{v} and {u}V . Let u,v ∈ B∗ and L ⊆ B∗. We will use a similar convention also for divisions,
namely the division of the form {u}\L/{v} is denoted shortly u\L/v. Note that the set u\L/v is precisely
the set defined in (4). Further, observe that the free monoid B∗ embeds (as a monoid) into P(B∗) via
x 7→ {x}.

We have seen that the collection of all languages forms a complete residuated lattice. Also other col-
lections form a complete residuated lattice. In fact, every collection L of languages over B∗ induces a
collection which forms a complete residuated lattice L(B∗). Let L = {Lb ⊆ B∗ | b ∈ B} be a collection of
languages over B∗ indexed by the set B. Although the most of following considerations works for every
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collection of languages, we restrict ourselves only to collections indexed by the elements of B. This is
precisely what we need in the sequel.

Before we describe the construction of L(B∗), we recall the notion of a closure operator. A self-map
γ : P(B∗)→ P(B∗) is called closure operator if for every X ,Y ⊆ B∗ it satisfies the following conditions
(see e.g. [6]):

• γ(γ(X)) = γ(X),
• X ⊆ γ(X),
• X ⊆ Y implies γ(X)⊆ γ(Y ).

A language X ⊆ B∗ is said to be γ-closed if γ(X) = X . The collection of all γ-closed languages is denoted
P(B∗)γ . A subset B ⊆P(B∗)γ is referred to as basis for γ if every γ-closed language is a (possibly infinite)
intersection of languages from B. Suppose that B is a basis for γ . Then for each language X ⊆ B∗ we have

γ(X) =
⋂
{L⊆ B | X ⊆ L}. (11)

Observe also that for every X ,Y ⊆ B∗ we have

γ(X)⊆ γ(Y ) iff ∀L ∈ B(Y ⊆ L =⇒ X ⊆ L). (12)

Hence the kernel of γ can be described as follows:

γ(X) = γ(Y ) iff ∀L ∈ B(X ⊆ L⇐⇒ Y ⊆ L). (13)

Now we are ready to give the promised construction of the residuated lattice L(B∗) from the collection
L = {Lb ⊆ B∗ | b ∈ B}. The construction has two steps.

1. First, we close L under divisions by elements of B∗. Namely, we define

B = {u\Lb/v | u,v ∈ B∗, b ∈ B}.

2. Second, we define a closure operator γ : P(B∗)→ P(B∗) such that B is a basis for γ , i.e., we define

γ(X) =
⋂
{L ∈ B | X ⊆ L}.

Then the collection of γ-closed languages P(B∗)γ forms a residuated lattice

L(B∗) = 〈P(B∗)γ ,∩,∪γ ,◦γ ,\,/,γ(ε)〉, (14)

where

X ∪γ Y = γ(X ∪Y ),

X ◦γ Y = γ(XY ).

A proof that L(B∗) is a residuated lattice can be found in [9]1. We also provide an explanation why L(B∗)
is a residuated lattice in order to stress some connection with the language theory. It is well known that the
collection of γ-closed sets forms a complete lattice where meets are intersections and joins are closures of
unions (see e.g. [6]). Further, for every X ⊆ B∗ and u\Lb/v ∈ B we have by Lemma 1 and the distribution
laws (8), (10) the following equality:

X\(u\Lb/v) = uX\Lb/v = (
⋃
x∈X

ux)\Lb/v =
⋂
x∈X

(ux\Lb/v).

Thus dividing a language L∈ B from the basis by any language X on the left produces a γ-closed language.
Analogous claim holds for division on the right. Consequently, γ-closed sets are closed under divisions

1 In fact, L(B∗) is nothing else than the dual algebra W+ of unital residuated frame W = 〈B∗,B∗×B∗×B,N, ·,,�,{ε}〉
where x N 〈u,v,b〉 iff uxv ∈ Lb and x〈u,v,b〉= 〈ux,v,b〉, 〈u,v,b〉�x = 〈u,xv,b〉; for details see [9].
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because by (9) we have for every X ,Y ⊆ B∗:

X\γ(Y ) = X\
⋂
{L ∈ B | Y ⊆ L}=

⋂
{X\L ∈ P(B∗)γ | L ∈ B, Y ⊆ L}

and likewise for γ(Y )/X . Now it is easy to see that (7) holds for ◦γ ,\,/, i.e., for γ-closed languages X ,Y,Z⊆
B∗ we have

X ◦γ Y = γ(XY )⊆ Z iff XY ⊆ Z iff Y ⊆ X\Z iff X ⊆ Z/Y.

It remains to show that ◦γ is a monoid operation. To see this note that by (13) the kernel ker(γ) of the
self-map γ can be described as follows:

γ(X) = γ(Y ) iff ∀b ∈ B ∀u,v ∈ B∗(X ⊆ u\Lb/v⇐⇒ Y ⊆ u\Lb/v). (15)

We claim that ker(γ) is a monoid congruence on P(B∗). Let X ,Y,Z ⊆ B∗ such that γ(Y ) = γ(Z). Then for
every u,v ∈ B∗ and b ∈ B we have

XY ⊆ u\Lb/v iff Y ⊆ uX\Lb/v =
⋂
x∈X

(ux\Lb/v)

iff Z ⊆ uX\Lb/v

iff XZ ⊆ u\Lb/v.

Thus γ(XY ) = γ(XZ). Analogously one can show that γ(Y X) = γ(ZX). Consequently, the kernel γ is a
monoid congruence and 〈P(B∗)γ ,◦γ ,γ(ε)〉 is a monoid.

Compare (15) also with the definition of syntactic congruence (5). If X ,Y are singletons (i.e., X = {x}
and Y = {y}), then γ(X) = γ(Y ) iff x ∼Lb y for all b ∈ B. Thus ker(γ) can be seen as a lifting of a monoid
congruence

⋂
b∈B ∼Lb from B∗ to P(B∗).

One can also show that ker(γ) is a semilattice congruence with respect to join. Namely, γ(Y ) = γ(Z)
implies γ(X ∪Y ) = γ(X ∪Z). Indeed,

X ∪Y ⊆ u\Lb/v iff X ,Y ⊆ u\Lb/v

iff X ,Z ⊆ u\Lb/v

iff X ∪Z ⊆ u\Lb/v.

Thus γ can be viewed as {∨, ·,1}-homomorphism from P(B∗) to L(B∗).

Example 2. Let B = {a,b} and L = {La,Lb}, where La = ab∗ and Lb = ba∗. We compute the residuated
lattice L(B∗). First, we construct the basis

B = {u\La/v | u,v ∈ B∗}∪{u\Lb/v | u,v ∈ B∗}

for the closure operator γ . Since La and Lb are regular languages, the basis has to be finite by Theorem 5.
The basis B consists of the following languages:

ε\La/ε = La ε\Lb/ε = Lb

a\La/ε = b∗ b\Lb/ε = a∗

ε\La/a = ε.

Then the γ-closed languages are those which are given by intersections of the basis elements. Namely, the
lattice reduct of L(B∗) is depicted in Figure 2. Note that B∗ can be viewed as the empty intersection.

The multiplication in L(B∗) is computed as follows. Given two languages L1,L2 from L(B∗), we con-
catenate them and then find the least language in L(B∗) containing L1L2. For instance to compute b◦γ ab∗

note that the only γ-closed language containing bab∗ is B∗. Thus b◦γ ab∗ = B∗. On the other hand, we have
ab∗b = ab∗ so ab∗ ◦γ b = ab∗.

In Example 2 we have seen that the resulting residuated lattice L(B∗) is finite. This is not accidental
because we have started with a finite collection L of regular languages.
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Fig. 2 The lattice reduct of L(B∗).

/0

a ε b

ab∗ a∗ b∗ ba∗

B∗

Theorem 6. Let B be an alphabet and L = {Lb | b ∈ B} a finite collection of languages. Then L(B∗) is
finite iff all members of L are regular.

Proof. (⇒): Let Lb ∈ L. We have to show that Lb is regular. Since L(B∗) is finite, the collection

{u\Lb/v | u,v ∈ B∗} ⊆ P(B∗)γ

has to be finite as well. Thus Lb is regular by Theorem 5.
(⇐): It suffices to show that the basis B = {u\Lb/v | u,v ∈ B∗, b ∈ B} is finite since then the collection

of γ-closed languages generated by B contains only finite intersections and so it has to be finite. We have

B =
⋃
b∈B

{u\Lb/v | u,v ∈ B∗}.

By Theorem 5 each {u\Lb/v | u,v ∈ B∗} is finite. Thus B is finite and we are done. ut

5 Analytic identities and corresponding rules

From the previous section we know how to recognize whether a collection L = {Lb ⊆ B∗ | b ∈ B} induces
a finite residuated lattice L(B∗) or not. Next we would like to know which identities are valid in L(B∗).
More precisely, we will show that the residuated lattice L(B∗) satisfies an identity iff the languages in
L are closed under certain rules corresponding to the identity. We restrict our attention only to identities
of a special form. In principle, the method used in this paper would work for all N2-identities which are
preserved by Dedekind-McNeille completion (for details see [4]). In order to keep this paper simpler, we
restrict ourselves even more and consider only identities built up from variables using the operations in
{∨, ·,1}.

Let {x1, . . . ,xm} be a set of distinct variables. An identity is said to be analytic2 if it is of the form

x1 . . .xm ≤ t1∨ . . .∨ tn, (e)

where the terms t1, . . . , tn are products of some variables from {x1, . . . ,xm}. For instance, x1x2 ≤ 1∨x2
1x2 is

an analytic identity. The following lemma is proved in [9].

Lemma 2. Every identity in the signature {∨, ·,1} is equivalent to a set of analytic identities.

Due to Lemma 2, we can deal only with analytic identities because every variety of residuated lattices
axiomatized by a set of identities in the signature {∨, ·,1} can be also axiomatized by a set of analytic
identities.
2 Identities of the form are called simple in [9]. We call them analytic because they are equivalent to analytic structural
quasi-identities; for details see [4].
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Given an analytic identity (e), we have to clarify when (e) holds in L(B∗). We start with a general fact.
Let A be a complete residuated lattice which is generated as a complete join-semilattice by a set E, i.e., for
every a∈ A there is Ea ⊆ E such that a =

∨
e∈Ea e. Consider any term t(x1, . . . ,xm) in the signature {∨, ·,1}.

Then by the distribution law (8) we have for all a1, . . . ,am ∈ A the following equality:

tA(a1, . . . ,am) = tA

 ∨
e1∈Ea1

e1, . . . ,
∨

em∈Eam

em

=
∨

ei ∈ Eai
1≤ i≤ m

tA(e1, . . . ,em). (16)

Now consider an identity s ≤ t for some terms t,s built up from variables x1, . . . ,xm using operations in
{∨, ·,1}. In order to check that s ≤ t holds in A, we claim that it suffices to focus only on interpretations
into the set E. In other words, we claim that A |= s≤ t iff

∀e1, . . . ,em ∈ E(sA(e1, . . . ,em)≤ tA(e1, . . . ,em)). (17)

Clearly, A |= s ≤ t implies (17) because (17) just restricts possible interpretations for variables x1, . . . ,xm.
Conversely, assume that (17) holds. Then using (16) we have for arbitrary a1, . . . ,am ∈ A the following:

sA(a1, . . . ,am) =
∨

ei ∈ Eai
1≤ i≤ m

sA(e1, . . . ,em)≤
∨

ei ∈ Eai
1≤ i≤ m

tA(e1, . . . ,em) = tA(a1, . . . ,am). (18)

The above observation simplify our task because L(B∗) is generated as a complete join-semilattice by
{γ{w} | w ∈ B∗}. Indeed, for every γ-closed language W ⊆ B∗ we have

W =
⋃

w∈W

{w} ⊆
⋃

w∈W

γ{w} ⊆W.

Next we discuss how various terms occurring in (e) are interpreted in the free monoid B∗ and residuated
lattices P(B∗), L(B∗). We have seen in the previous section that these algebras are related as follows:

B∗ P(B∗) L(B∗)
{ } γ

where { } is a monoid embedding and γ is a surjective {∨, ·,1}-homomorphism.

Lemma 3. Let s ≤ t be an analytic identity (e), i.e., s = x1 . . .xm and t = t1 ∨ . . .∨ tn. Then the following
hold for all w1, . . . ,wm ∈ B∗ and 1≤ i≤ n:

sL(B
∗)(γ{w1}, . . . ,γ{wm}) = γ{w1 . . .wm} (19)

tP(B
∗)

i ({w1}, . . . ,{wm}) = {tB∗(w1, . . . ,wm)} (20)

tL(B
∗)(γ{w1}, . . . ,γ{wm}) = γ{tB∗

1 (w1, . . . ,wm), . . . , tB∗
n (w1, . . . ,wm)}. (21)

Proof. The equality (19) follows since γ is a {∨, ·,1}-homomorphism. Namely, we have

sL(B
∗)(γ{w1}, . . . ,γ{wm}) = γ(sP(B

∗)({w1}, . . . ,{wm})) = γ{w1 . . .wm}.

To prove (20) we use the fact that { } is a monoid homomorphism. The equality (21) follows from (20)
and the fact that γ is a {∨, ·,1}-homomorphism. Namely, we have

tL(B
∗)(γ{w1}, . . . ,{wm}) = γ(tP(B

∗)({w1}, . . . ,{wm}))

= γ(tP(B
∗)

1 ({w1}, . . . ,{wm})∪ . . .∪ tP(B
∗)

n ({w1}, . . . ,{wm}))

= γ{tB∗
1 (w1, . . . ,wm), . . . , tB∗

n (w1, . . . ,wm)}.

ut
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Using Lemma 3, it follows that (e) holds L(B∗) iff for all words w1, . . . ,wm ∈ B∗ we have

γ{w1 . . .wm} ⊆ γ{tB∗
1 (w1, . . . ,wm), . . . , tB∗

n (w1, . . . ,wm)}.

Since B = {u\Lb/v | u,v ∈ B∗, b ∈ B} is a basis for γ , the above inclusion is equivalent to the validity of
following implication for all u,v,w1, . . . ,wm ∈ B∗ and b ∈ B:

tB∗
1 (w1, . . . ,wm), . . . , tB∗

n (w1, . . . ,wm) ∈ u\Lb/v =⇒ w1 . . .wm ∈ u\Lb/v. (22)

Thus we have proved that L(B∗) satisfies an analytic identity iff the implication (22) holds. This explains
the next definition.

Definition 3. Let (e) be an analytic identity. A language L ⊆ B∗ is said to be closed under the rule corre-
sponding to (e) if the following implication holds for all u,v,w1, . . . ,wm ∈ B∗:

tB∗
1 (w1, . . . ,wm), . . . , tB∗

n (w1, . . . ,wm) ∈ u\L/v =⇒ w1 . . .wm ∈ u\L/v. (Re)

Example 3. Consider an identity x2≤ x which is equivalent to an analytic identity x1x2≤ x1∨x2. We say that
a language L⊆B∗ satisfies the corresponding rule if the following implication holds for all u,v,w1,w2 ∈B∗:

w1,w2 ∈ u\L/v =⇒ w1w2 ∈ u\L/v. (23)

For instance, the language L = aB∗b from Example 1 satisfies the above condition. To see this note that (23)
expresses the fact that all the languages in

{u\L/v | u,v ∈ B∗}= {L,aB∗,B∗b,aB∗∪ ε,B∗b∪ ε,B∗}

are subsemigroups of B∗ which is easy to check.

To sum up what we have proved above, we can formulate the main result of this section. It was originally
proved in [4].

Theorem 7. Let L = {Lb ⊆ B∗ | b ∈ B} be a collection of languages and (e) an analytic identity. Then
L(B∗) satisfies (e) iff every language Lb ∈ L is closed under the rule (Re).

Example 4. In Example 2 we started with languages La = ab∗ and Lb = ba∗. Both of them are closed under
the (contraction) rule

ww ∈ u\L/v =⇒ w ∈ u\L/v.

Equivalently, this implication can be written as follows:

uwwv ∈ L =⇒ uwv ∈ L.

Therefore the resulting residuated lattice L(B∗) from Example 2 satisfies the identity x≤ x2. On the other
hand, La and Lb are not closed under the (weakening) rule

ε ∈ u\L/v =⇒ w ∈ u\L/v

or equivalently
uv ∈ L =⇒ uwv ∈ L.

Consequently, the residuated lattice L(B∗) from Example 2 does not satisfy the identity x≤ 1.

6 Finite embeddability property

Now we are ready to prove the promised characterization of FEP via regular languages. We start with a
crucial definition of a Gentzen collection of languages. Similarly as surjective homomorphisms from an
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algebra A correspond to congruences on A, embeddings of partial subalgebras correspond to separating
Gentzen collections of languages.

Let A be a residuated lattice and B a finite partial subalgebra of A. Assume that there is an embedding
g of B into a residuated lattice C. Since B∗ is the free B-generated monoid, there is a unique monoid
homomorphism g∗ : B∗→C such that g∗(b) = g(b) for all b ∈ B, i.e., the diagram in Figure 3 commutes.

B C

B∗

g

ι
g∗

Fig. 3 The extension g∗ : B∗→C of g : B→C where ι : B→ B∗ is the inclusion map.

Every b ∈ B defines a language over B∗ as follows:

Lb = {x ∈ B∗ | g∗(x)≤ g(b)}.

One can ask what properties languages Lb’s have if we know that g is an embedding of partial subalgebra
B into a residuated lattice C. In this situation it can be shown that the collection L = {Lb ⊆ B∗ | b ∈ B}
is closed under the rules from Figure 4 for any a,b,c ∈ B and u,v,x ∈ B∗. These rules are analogous to
the rules from Gentzen’s sequent calculus so we call them Gentzen rules. Every rule might have several
premises (the upper part of the rule) and has a conclusion (the lower part). A rule can be applied only if the
element from B in its conclusion is defined. For instance, the rule

x ∈ La ubv ∈ Lc(\L)
ux(a\b)v ∈ Lc

applies only if a\b ∈ B.

Definition 4. Let A be a residuated lattice and B a finite partial subalgebra of A. A collection of languages
L = {Lb ⊆ B∗ | b ∈ B} is called Gentzen3 if it is closed under the rules in Figure 4 for all u,v,x ∈ B∗ and
a,b,c ∈ B. In addition, the system L is said to be separating if every language Lb ∈ L does not contain any
a ∈ B such that a 6≤ b.

Now we show that for every embedding of a partial subalgebra there is a separating Gentzen collec-
tion of languages. In what follows, the multiplication in the partial subalgebra B is denoted by · and the
multiplication in the free monoid B∗ by concatenation.

Lemma 4. Let A be a residuated lattice and B a finite partial subalgebra of A. Assume that there is an
embedding g of B into a residuated lattice C. Then the collection L = {Lb | b ∈ B}, where

Lb = {x ∈ B∗ | g∗(x)≤ g(b)},

is separating and Gentzen. In addition, if C satisfies an analytic identity (e) then every Lb is closed under
the corresponding rule (Re).

Proof. It is easy to see thatL is separating since g is an order-embedding. Indeed, since g preserves existing
operations, we have

a≤ b iff a∨b = b iff g(a)∨g(b) = g(b) iff g(a)≤ g(b).

3 Gentzen collections are closely related to Gentzen residuated frames defined in [9]. More precisely, a Gentzen collection
L = {Lb ⊆ B∗ | b ∈ B} is nothing else than the basis of the nucleus induced by the unital Gentzen residuated frame 〈W,B〉,
where 〈B∗,B∗×B∗×B,N, ·,,�,{ε}〉, x〈u,v,b〉= 〈ux,v,b〉, 〈u,v,b〉�x = 〈u,xv,b〉 and x N 〈u,v,b〉 iff uxv ∈ Lb; for details
see [9].
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Fig. 4 Gentzen rules for a collection L = {Lb ⊆ B∗ | b ∈ B}; a,b,c ∈ B and u,v,x ∈ B∗.

(Id)
a ∈ La

x ∈ La uav ∈ Lb(Cut)
uxv ∈ Lb

uabv ∈ Lc(·L)
u(a ·b)v ∈ Lc

x ∈ La y ∈ Lb(·R)
xy ∈ La·b

x ∈ La ubv ∈ Lc(\L)
ux(a\b)v ∈ Lc

ax ∈ Lb(\R)
x ∈ La\b

x ∈ La ubv ∈ Lc(/L)
u(b/a)xv ∈ Lc

xa ∈ Lb(/R)
x ∈ Lb/a

uav ∈ Lc ubv ∈ Lc(∨L)
u(a∨b)v ∈ Lc

x ∈ Lai(∨R) for i = 1,2
x ∈ La1∨a2

uaiv ∈ Lc(∧L) for i = 1,2
u(a1∧a2)v ∈ Lc

x ∈ La x ∈ Lb(∧R)
x ∈ La∧b

uv ∈ La(1L)
u1v ∈ La

(1R)
ε ∈ L1

It is also clear that b ∈ Lb for every b ∈ B.
We check that L is closed under the rule (Cut). Suppose that x ∈ La and uav ∈ Lb. Then

g∗(x)≤ g(a) and g∗(uav) = g∗(u)g(a)g∗(v)≤ g(b).

Consequently, g∗(uxv)≤ g(b) by monotonicity of multiplication in C. Thus uxv ∈ Lb.
Next consider the rule (\L). Suppose that a\b∈B and x∈ La, ubv∈ Lc. Then g∗(x)≤ g(a) and g∗(ubv)≤

g(c). Since g preserves operations in B, we have g(a)g(a\b) = g(a)(g(a)\g(b)) ≤ g(b) by Lemma 1.
Consequently, we obtain ux(a\b)v ∈ Lc because we have

g∗(u)g∗(x)g(a\b)g∗(v)≤ g∗(u)g(a)g(a\b)g∗(v)≤ g∗(u)g(b)g∗(v)≤ g(c).

Now we show that L is closed under (\R). Assume that a\b ∈ B and ax ∈ Lb, i.e., g(a)g∗(x) ≤ g(b).
Thus g∗(x)≤ g(a)\g(b) = g(a\b), i.e. x ∈ La\b.

Consider the rule (·L). Suppose that a ·b ∈ B. If uabv ∈ Lc then g∗(u)g(a)g(b)g∗(v)≤ g(c) by definition
of Lc. Since g is an embedding, we have g(a ·b) = g(a)g(b). Thus u(a ·b)v ∈ Lc. To check the rule (·R) we
assume that x ∈ La and y∈ Lb. Thus g∗(x)≤ g(a) and g∗(y)≤ g(b). Consequently, g∗(xy) = g∗(x) ·g∗(y)≤
g(a) ·g(b) = g(a ·b) and so xy ∈ La·b. The proof for the remaining rules is similar.

Finally, we prove the additional part of the lemma. Suppose that C satisfies an analytic identity

x1 . . .xm ≤ t1∨ . . .∨ tn. (e)

Consider its corresponding rule for the language Lb:

tB∗
1 (w1, . . . ,wm), . . . , tB∗

n (w1, . . . ,wm) ∈ u\Lb/v =⇒ w1 . . .wm ∈ u\Lb/v. (Re)

Assume that the premises are satisfied for some u,v,w1, . . . ,wm ∈ B∗ and b ∈ B. Thus for 1≤ i≤ n we have

g∗(u) · tC
i (g

∗(w1), . . . ,g∗(wm)) ·g∗(v) = g∗(utB∗
i (w1, . . . ,wm)v)≤ g(b),
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where the first equality holds because g∗ is a monoid homomorphism from B∗ to C. Using the fact that (e)
holds in C, we obtain

g∗(uw1 . . .wmv) = g∗(u) ·g∗(w1) · . . . ·g∗(wm) ·g∗(v)
≤ g∗(u) · (tC

1 (g
∗(w1), . . . ,g∗(wm))∨ . . .∨ tC

n (g
∗(w1), . . . ,g∗(wm))) ·g∗(v)

≤ g(b).

Consequently, w1 . . .wm ∈ u\Lb/v and so we have shown that Lb is closed under (Re). ut

Now we will prove the converse of Lemma 4. Namely, for every separating Gentzen collection of lan-
guages L= {Lb ⊆ B∗ | b ∈ B} we show that there is an embedding g from the partial subalgebra B into the
residuated lattice L(B∗). The following lemma was originally proved in [9].

Lemma 5. Let A be a residuated lattice and B a finite partial subalgebra of A. Suppose that we have a
separating Gentzen collection L = {Lb ⊆ B∗ | b ∈ B}. Then B can be embedded into L(B∗).

Proof. We claim that the map g : B→ P(B∗)γ given by g(b) = Lb is an embedding of B into L(B∗). It
is clearly injective since L is separating. Indeed, if a 6= b then either a 6≤ b or b 6≤ a. Without any loss of
generality assume that a 6≤ b. Then a 6∈ Lb and a ∈ La by (Id). Thus La 6= Lb. It remains to check that g
preserves all existing products, joins, meets, divisions and multiplicative unit 1 in B.

Suppose that 1 ∈ B. We have to check that L1 = γ(ε). First, γ(ε)⊆ L1 by (1R). Conversely, it suffices to
show that ε ∈ u\Lb/v =⇒ L1⊆ u\Lb/v for all languages u\Lb/v from the basisB. Assume that ε ∈ u\Lb/v,
i.e., uv ∈ Lb. By (1L) we obtain 1 ∈ u\Lb/v. Thus it follows that L1 ⊆ u\Lb/v by the rule (Cut).

Now assume that a,b,a\b ∈ B. We have to show La\b = La\Lb. By the definition of L(B∗) we have

La\Lb = {x ∈ B∗ | Lax⊆ Lb}.

Suppose that Lax ⊆ Lb for x ∈ B∗. By the rule (Id) we have ax ∈ Lb. Thus x ∈ La\b by (\R). Conversely,
assume that x ∈ La\b. We have to show that Lax ⊆ Lb, i.e., yx ∈ Lb for all x ∈ La. Using Gentzen rules, we
obtain the following derivation:

x ∈ La\b

y ∈ La
(Id)

b ∈ Lb(\L)
y(a\b) ∈ Lb

(Cut)
yx ∈ Lb

Next assume that a,b,a · b ∈ B. We have to show La·b = La ◦γ Lb. By the definition of operations in
L(B∗) we have

La ◦γ Lb = γ(LaLb).

Clearly, LaLb ⊆ La·b by (·R). Thus γ(La ·Lb)⊆ La·b. Conversely, suppose that LaLb ⊆ u\Lc/v. Then uabv ∈
Lc by (Id). Hence u(a ·b)v ∈ Lc by (·L). Thus La·b ⊆ u\Lc/v by (Cut).

Finally, we check that g preserves existing joins. The proof for meets is analogous. Assume that a,b,a∨
b ∈ B. We have to show

La∨b = La∪γ Lb = γ(La∪Lb).

We have La,Lb ⊆ La∨b by (∨R). Thus γ(La∪Lb)⊆ La∨b. Conversely, suppose that La,Lb ⊆ u\Lc/v. Then
a∨b ∈ u\Lc/v by (∨L). Thus La∨b ⊆ u\Lc/v by (Cut). ut

Now we combine all the above results in order to obtain the main result of this chapter.

Theorem 8. Let V be a variety of residuated lattices axiomatized by a set E of analytic identities. Then the
following are equivalent:

1. V has the FEP.
2. For every algebra A ∈ V and a finite partial subalgebra B of A there is a separating Gentzen collection
L = {Lb ⊆ B∗ | b ∈ B} of regular languages closed under the rules from {Re | e ∈ E}, i.e., the rules
corresponding to the analytic identities in E.
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Proof. (1⇒2): Let B be a finite partial subalgebra of A ∈ V. By the FEP there is a finite residuated lattice
C and an embedding g : B→ C. Consider the unique monoid homomorphism g∗ : B∗ → C. By Lemma 4
the collection of languages Lb = {x ∈ B∗ | g∗(x) ≤ g(b)} for b ∈ B is Gentzen, separating and every Lb is
closed under the rules Re. Since C is finite, Lb is regular because it is saturated by ker(g∗).

(2⇒1): By Lemma 5 the partial subalgebra B is embeddable into the residuated lattice LB(B∗). More-
over, this residuated lattice is finite by Theorem 6 since the languages are regular. Finally, LB(B∗) belongs
to V by Theorem 7. ut

The following theorem which might be useful for disproving the FEP for a class of algebras follows
from the above proof of (1⇒2) just by disregarding parts concerning the rules Re.

Theorem 9. Let K be a class of algebras of the same type. If K has the FEP then for every algebra A ∈ K
and a finite partial subalgebra B of A there is a separating Gentzen collection L = {Lb ⊆ B∗ | b ∈ B} of
regular languages.

7 Applications

In this section we present several application of the main result. In particular, we cover several known
results from literature concerning the FEP for classes of residuated lattices. We also give a new one. Finally,
we illustrate how to use Theorem 9 in order to show that a class do not have the FEP.

If we want to show that a variety V of residuated lattices axiomatized by a set E of analytic identities has
the FEP, we have to find for every partial subalgebra B of a residuated lattice A ∈ V a separating Gentzen
collection L= {Lb ⊆ B∗ | b ∈ B} of regular languages. First, note that the identity map is an embedding of
B into A. In particular, the diagram in Figure 5 commutes. Thus the collection

L = {Lb ⊆ B∗ | b ∈ B}, where Lb = {x ∈ B∗ | id∗(x)≤ b}, (24)

is a separating Gentzen collection closed under the rules Re for e ∈ E by Lemma 4. By Theorem 8 the
only remaining step to prove the FEP for V is to show that the languages Lb are regular. In what follows
we will apply several results from the theory of regular languages in order to prove for various varieties of
residuated lattices that the collection L consists of regular languages.

B A

B∗

id

ι

id∗

Fig. 5 The extension id∗ : B∗→ A of id : B→ A where ι : B→ B∗ is the inclusion map.

7.1 Integral residuated lattices

A residuated lattice A is said to be integral if the identity x ≤ 1 holds in A. It was proved in [1, 2] that the
variety of integral residuated lattices IRL has the FEP. Later this result was generalized to any subvariety of
IRL axiomatized by analytic identities [9]. We prove this result using the above machinery. We first recall a
useful characterization of regular languages from [7]. Before that recall that a quasi-order �⊆ B∗×B∗ is a
reflexive and transitive binary relation. If it is in addition antisymmetric then� is an order. The quasi-order
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� is called well if there is neither infinite antichain nor infinite descending chain (see e.g. [19]). Finally, �
is said to be compatible if x� y implies uxv� uyv for all u,v,x,y ∈ B∗.

Theorem 10 (Generalized Myhill Theorem). A language L⊆ B∗ is regular iff there is a compatible well-
quasi-order on B∗ with respect to which L is upward closed (i.e. x ∈ L & x� y =⇒ y ∈ L).

Now we can simply apply well-known Higman’s lemma [13] in order to show that subvarieties of IRL
axiomatized by analytic identities has the FEP. Recall the divisibility order on B∗. It is defined as follows:

x� y iff x = a1 . . .an and y = u0a1u1a2u2 . . .un−1anun for some a1, . . . ,an ∈ B and u0, . . . ,un ∈ B∗.

It is easy to see that this order is compatible.

Lemma 6 (Higman Lemma). The divisibility order � on B∗ is well.

Let L be the separating Gentzen collection defined by (24) for a finite partial subalgebra B of an integral
residuated lattice A. Since A satisfies x ≤ 1, every language Lb = {x ∈ B∗ | id∗(x) ≤ b} is closed under
the rule uv ∈ Lb =⇒ uwv ∈ Lb by Lemma 4. Consequently, each Lb is upward closed with respect to the
divisibility order �. Thus by Theorem 10 each language Lb is regular and we obtain the following theorem
originally proved in [9].

Theorem 11. Every V variety of integral residuated lattices axiomatized by a set of analytic identities has
the FEP.

7.2 Knotted residuated lattices

A residuated lattice is said to be commutative if its monoid reduct is commutative, i.e., x · y = y · x. The
variety of commutative residuated lattices is denoted CRL. Let RLn

m denote the variety of residuated lattices
satisfying xm ≤ xn. In [25] it was proved that the variety CRL∩RLn

m for any m 6= n has the FEP. We will
generalize this result a little bit. We need not deal with the cases for m = 0 or n = 0. It is easy to show that
RLn

0 is the trivial variety and RL0
m = IRL. Thus we will assume m,n 6= 0 in the rest of this section.

We recall another characterization of regular languages from [19, Chapter 6]. A language L ⊆ B∗ is
called permutable if there exist k > 1 such that for any sequence of words w1, . . . ,wk ∈ B∗ there exists a
nontrivial permutation σ ∈ Sk such that for all u,v ∈ B∗ we have

uw1 . . .wkv ∈ L⇐⇒ uwσ(1) . . .wσ(k)v ∈ L. (25)

The language L is called quasi-periodic if for all w ∈ B∗ there exist integers 0 < n < m such that for all
u,v ∈ B∗ one has

uwnv ∈ L =⇒ uwmv ∈ L. (26)

A language L is called co-quasi-periodic if the complement of L is quasi-periodic. Observe that co-quasi-
periodic languages satisfy the converse implication of (26).

Theorem 12 ([19]). A language L ⊆ B∗ is regular iff it is permutable and quasi-periodic or co-quasi-
periodic.

Let A ∈ CRL∩RLn
m for m 6= n and B a finite partial subalgebra of A. Consider the collection L defined

by (24). Since A is commutative, every language Lb ∈ L is closed under the rule

uw1w2v ∈ Lb =⇒ uw2w1v ∈ Lb

by Lemma 4. Thus Lb is obviously permutable. Moreover, it is quasi-periodic or co-quasi-periodic. It does
not follow immediately from Lemma 4 because the identity xm ≤ xn is not analytic. Nevertheless, it is easy
to see that Lb is closed under the rule uwnv ∈ Lb =⇒ uwmv ∈ Lb. Indeed, suppose that uwnv ∈ Lb. Then
we have
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id∗(uwmv) = id∗(u) · (id∗(w))m · id∗(v)≤ id∗(u) · (id∗(w))n · id∗(v) = id∗(uwnv)≤ b.

Hence Lb is quasi-periodic if n < m and co-quasi-periodic if m < n. Consequently, Lb is regular by Theo-
rem 12 and we obtain the following theorem.

Theorem 13. Let m 6= n and let V⊆ CRL∩RLn
m be a subvariety axiomatized by a set of analytic identities.

Then V has the FEP.

In the above case, the commutativity immediately implies permutability of the languages Lb. Neverthe-
less, permutability is a weaker notion so that it is implied by weaker forms of commutativity. Consider the
subvariety of RLn

m for m 6= n axiomatized by xyx = x2y which might be seen as a weaker form of com-
mutativity. It was proved in [3] that this variety has the FEP. In fact, they proved the same result also for
other analogous forms of weak commutativity. We will use our results in order to show that any subvariety
V ⊆ RLn

m for m 6= n axiomatized by xyx = x2y and any set of analytic identities has the FEP.
Let A ∈ V and B a finite partial subalgebra of A. Consider the collection L defined by (24). We know

from the above considerations that each language Lb is quasi-periodic of co-quasi-periodic because A |=
xm ≤ xn. We will prove that Lb is also permutable. Since xyx = x2y holds in A, one can show by analogous
reasoning as above that Lb is closed under the following rule:

uw1w2w1v ∈ Lb⇐⇒ uw2
1w2v ∈ Lb. (27)

Let x∈B∗. We define the content c(x) of x as the set of all letters occurring in x. For example, if B= {a,b,c}
and x = ccaaac then c(x) = {a,c}.

Lemma 7. Let u,v,x,y,z ∈ B∗. If c(z)⊆ c(x) then uxyzv ∈ Lb⇐⇒ uxzyv ∈ Lb.

Proof. By induction on the length |z|. For z= ε there is nothing to prove. Assume that z= z′a for some a∈B
and z′ ∈ B∗. By induction hypothesis we have uxyz′av ∈ Lb⇐⇒ uxz′yav ∈ Lb. It follows from c(z)⊆ c(x)
that x = x1ax2 for some x1,x2 ∈ B∗. Thus by (27) we have

ux1ax2z′yav ∈ Lb⇐⇒ ux1a2x2z′yv ∈ Lb⇐⇒ ux1ax2z′ayv ∈ Lb.

ut

Clearly there are only 2|B| many different contents. Consider uw1 . . .wkv ∈ Lb for k = 2|B|+ 2. Since
k = 2|B|+2, there must be 1 ≤ i < j < k such that c(wi) = c(w j) by the pigeonhole principle. If j ≥ i+1
then

uw1 . . .wkv ∈ Lb⇐⇒ uw1 . . .wiw jwi+1 . . .w j−1w j+1 . . .wkv ∈ Lb

by Lemma 7. If j = i+1 then

uw1 . . .wkv ∈ Lb⇐⇒ uw1 . . .wiwi+2 . . .wkwi+1v ∈ Lb

again by Lemma 7. Therefore the language Lb is permutable. Consequently, Lb is regular by Theorem 12
and we obtain the following theorem.

Theorem 14. Let V ⊆ RLn
m for m 6= n be a subvariety axiomatized by xyx = x2y and a set of analytic

identities. Then V has the FEP.

Without any form of commutativity most of the varieties RLn
m do not have the FEP because they have

undecidable word problem (see [15]). Nevertheless for some combinations of m and n, they could have the
FEP. Apart from the above-mentioned cases m = 0 or n = 0, the only cases which are not covered by [15]
and therefore still might have the FEP are varieties satisfying xm ≤ x for m > 1. We show here that for
m = 2 this is the case.

Consider any subvariety V ⊆ RL1
2 axiomatized by a set of analytic identities. Let A ∈ V and B a finite

partial subalgebra of A. Recall that the identity x2 ≤ x is equivalent to the analytic identity x1x2 ≤ x1∨ x2
(see Example 3). Since A |= x1x2 ≤ x1∨ x2, the collection L defined by (24) is closed under the rule

uw1v,uw2v ∈ Lb =⇒ uw1w2v ∈ Lb.
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The following theorem was proved in [14].

Theorem 15. Let L⊆ B∗ be a language closed under the following rule:

uw1v,uw2v ∈ L =⇒ uw1w2v ∈ L.

Then L is regular.

Consequently, all languages Lb ∈ L are regular. Thus the next theorem follows immediately.

Theorem 16. Let V⊆ RL1
2 by a subvariety axiomatized by a set of analytic identities. Then V has the FEP.

7.3 Disproving the FEP

Our characterization can be used also for disproving the FEP for a class of algebras. In particular, Theo-
rem 9 might be of use. It is known that any variety of residuated lattices containing the abelian `-group on
integers with addition and the usual linear order cannot have the FEP (see [1, 10]). We prove this fact via
Theorem 9.

Let V be a variety of residuated lattices containing the above-mentioned abelian `-group G. We will
use multiplicative notation, i.e., G = 〈G,∧,∨, ·,÷,1〉, where G = {2n ∈ R | n ∈ Z}, ∧,∨ are interpreted
respectively by min and max, · is the usual multiplication of reals and ÷ the usual division. If V would
have the FEP then for the set B = {2−1,1,2} there would be a separating Gentzen collection L of regular
languages. Let a = 2, b = 2−1. Thus L = {La,Lb,L1}. We will show that Lb ∩ a∗b∗ = {ambn | m,n ∈
N and m < n}. This language is not regular (see e.g. [24]) which is a contradiction because a∗b∗ is regular
and regular languages are closed under finite intersections.

To show that ambn ∈ Lb for m < n, note that ambn = ambmbk for some k ≥ 1. Using (Id) and (·R), it
follows that ab ∈ La·b. Since a ·b = 1, we have La·b = L1. Thus ab ∈ L1. Consequently, one can show that
ambm ∈ L1 by induction on m. For m = 0 we have 1 ∈ L1 by (Id). For m > 0 we have am−1bm−1 ∈ L1 by
induction hypothesis. By (1L) it follows that am−11bm−1 ∈ L1. Thus ambm ∈ L1 by (Cut). Now it remains
to show that ambmbk ∈ Lb by induction on k. If k = 1 then ambmb ∈ Lb by (Id) and (·R). Suppose that k > 1.
Since b∨1 = 1, we have b∈ Lb∨1 = L1 by (∨R). Thus x ∈ Lb implies xb∈ Lb·1 = Lb by (·R). Consequently,
ambmbk ∈ Lb for all k ≥ 1.

Suppose now that ambn ∈ Lb and m≥ n. Since b ∈ L1, we have ambm ∈ Lb by repetitive applications of
(·R). Consequently, ε ∈ Lb by repetitive applications of (·L), (Cut) and ε ∈ L1 = La·b. Thus 1 ∈ Lb by (1L)
which contradicts the fact that L is separating because 1 6≤ b.

Theorem 17. Let V be a variety of residuated lattices containing the abelian `-group G. Then V does not
enjoy the FEP.
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