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Abstract. It is known that every countable totally-ordered set can be embedded into a count-

able dense one. We extend this result to totally ordered commutative monoids and to totally-
ordered commutative residuated lattices (the latter result fails in the absence of commutativity).
The latter has applications to density elimination of semilinear substructural logics. In partic-
ular we obtain as a corollary a purely algebraic proof of the standard completeness of uninorm

logic; the advantage over the known proof-theoretic proof and the semantical proof is that it is
extremely short and transparent and all details can be verified easily using standard algebraic
constructions. As another corollary we obtain a modified form of amalgamation.

1. Introduction

1.1. Presentation style and modularity of the paper. One of the benefits of working in areas
that touch on different research subjects is that the main ideas of certain results can be adopted and
presented so as to be of interest to a range of readers. We therefore opt for a modular presentation,
as we do not want to assume or impose knowledge of other fields to the reader. At the same time, for
the sake of interested readers, we include comments that illustrate the connections, in the context
of our special setting, between different research areas such as polynomial rings in classical algebra,
syntactic congruences in language theory and semigroup theory, Dedekind-MacNeille completions
in order-theory, syntactic arguments for density eliminations in proof theory, as well as the theory
of nuclei and of residuated frames in residuated lattices and substructural logics. In particular,
we give a very accessible and economical presentation of each result using the tools from the
corresponding area in order to avoid mentioning any general theory, and only in later sections
we explain our design choices (for definitions that seem to be ad hoc) and the connections with
related constructions using different tools, in order to make the paper useful for future research
attempts in related topics. A side goal of the paper is to demonstrate that methods and ideas
from these distinct areas are actually very much related.

1.2. Results and layout. A feature of all of our constructions is that they produce a dense
structure in steps by inserting (at least) one new element in a given gap in the original totally-
ordered structure. A gap is simply a pair of elements g < h, such that no other element is
between them. Each of the next three sections has two parts. The first part presents a proof
of the corresponding construction in a spartan fashion, with no discussion of the choices of the
definitions or any motivation. The second part has a detailed discussion and justification of the
definition by connecting to a more general theory. The final section aims at connecting these
three sections and discusses the similarities and differences of the methods, essentially giving to
our results case-study status in a more general project of linking different areas.

In detail, we prove that every totally-ordered commutative monoid can be embedded into a
dense one, by considering the natural syntactic congruence given by languages that separate the
points of the given monoid from each other and from the additional point used in the densification.
Readers with background in language theory or semigroup theory and interested in densification
of totally-ordered monoids should start by reading Section 2.

Then we show that also every totally-ordered commutative residuated lattice can be embedded
into a dense one. The dense totally-ordered monoid given above may not include the residuals
of the new elements, hence the need of a modification of the construction. For this we use linear
polynomials, where the indeterminate X essentially plays the role of the element filling the given
gap. Readers with background in classical algebra and ring theory should start their reading from
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Section 3. As an aside we show that a modification of our construction leads to the standard
approach of adding square roots to (totally ordered) abelian groups.

An alternative approach which actually produces an order-complete residuated lattice is by
using the tool of residuated frames. By analyzing the proof using linear polynomials, we can
extract a very simplified version of the construction given in [1]; see Section 4.

An application of densification to logic, and in particular to the standard completeness of certain
semilinear logics, is discussed in Section 1.4. A second application of our results is discussed in
Section 5 and provides a variant of the amalgamation property for totally-ordered structures.

En route to proving the above results, we introduce novel constructions. In particular, we
present a construction of a residuated lattice based on the polynomial semiring over a residuated
lattice. Also, we elaborate on the connections between modules over idempotent semirings and
residuated lattices. In particular, we explain how we can obtain residuated lattices as images of
module morphisms. Both of these constructions work in a more algebraic setting and have more
algebraic flavor than those employing residuated frames, as they do not force order-completeness
of the resulting algebra.

1.3. Connections to existing results. Part of our motivation for considering densification of
totally-ordered algebras comes from substructural logic. More specifically, uninorm logic UL is the
semilinear extension of full Lambek calculus with exchange FLe [6], i.e., it is a logic complete with
respect to the class of all FLe-chains (namely, totally-ordered bounded commutative residuated
lattices) ; see [9]. In [9, 3] it is shown that the logic UL is standard complete, i.e., it is complete with
respect to the class of all bounded FLe-chains whose universe is the real unit interval [0, 1]. The
proof is based on a proof-theoretical elimination of the density rule and the inductive arguments
involve many cases, thus making it hard to verify them all.

A semantical proof inspired by this proof-theoretic argument is given in [1]. The semantical
proof simplifies the verification, but still involves a lengthy case analysis for checking the com-
munication rule in order to establish the linearity of the resulting structure; the communication
rule directly corresponds to the proof-theoretic rendering of (pre)linearity. We provide a purely
algebraic and also very short proof of densification (and thus also standard completeness). At
the same time, and more importantly, we provide an explanation of why the construction really
works, using basic tools from classical algebra. In particular, we believe that our explanations
justify some of the ad hoc design choices in [3] and [1]. Furthermore, our approach provides a
simpler methodology which can be used for checking densifiability of other logics while avoiding a
convoluted proof-theoretic case analysis or verification of the communication rule. Actually, the
simplified tools provided in this paper have already allowed us to prove densifiability for a large
class of subvarieties axiomatized by equations in the signature of multiplication and join; as the
inclusion of these results would make the current paper too lengthy and also distract from its
explanatory nature, we present them in a separate forthcoming paper.

1.4. The one-step densification approach. In order to densify a countable totally ordered
algebra A, we first present a construction that given a gap g < h in A, namely a pair g < h of
elements of A for which there is no element of A between them, produces a new totally ordered
algebra Ā into which A embeds and which contains an element strictly between the images in Ā
of g and h, thus filling, or resolving, the gap; we call Ā a one-step densification or one-step linear
extension of A. Of course this process could result in Ā having new gaps, even if A had a single
gap.

However, having established the above, given a countable totally-ordered algebraA, we consider
all countable totally-ordered algebras that have A as a subalgebra and we order them by the
subalgebra relation. By an easy application of Zorn’s Lemma to this poset we obtain the existence
of a maximal superalgebra B of A, which has to be dense by maximality (otherwise, if it has a
gap, an isomorphic copy of B̄ has B as a proper subalgebra).

Unfortunately, B need not be countable. Nevertheless, using the downward Löwenheim-Skolem
theorem (see [8, Cor. 3.1.4]), there is a countable elementary substructure C of B containing A.
Since the property of being dense is a first-order property, C has to be dense as well. As C is
countable and dense its order reduct (C,≤) is isomorphic to the rationals. It is well known that
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the Dedekind-MacNeille completion of (C,≤) is isomorphic to the interval [0, 1]. Moreover, in case
A, and thus C, is a totally-ordered commutative monoid or residuated lattice, we can define on the
Dedekind-MacNeille completion of (C,≤) the same algebraic structure (see e.g. [6]), so it becomes
a totally-ordered commutative monoid or residuated lattice based on [0, 1]. In the case of totally
ordered commutative residuated lattices (or commutative residuated chains), these algebras are
known as standard and our result implies that they generate (even via quasivariety generation)
the variety of all semilinear commutative residuated lattices, namely the variety generated by all
commutative residuated chains.

2. Totally ordered monoids and syntactic congruences

Before presenting the construction of one-step densification we recall the definition of a com-
mutative totally ordered monoid. A partially ordered monoid (or pomonoid) is a structure
(M, ·, 1,≤) where (M, ·, 1) is a monoid, ≤ is partial order on M and a ≤ b implies cad ≤ cbd
for all a, b, c, d ∈ M ; it is called commutative if the monoid reduct is commutative. If the order
is total/linear, then M is said to be a totally ordered monoid (or tomonoid). Also, we define
↓a = {m ∈ M : m ≤ a}.

2.1. The construction. Now given a commutative tomonoid A with a gap g < h we will con-
struct a one-step linear extension of it, namely a commutative tomonoid Ā such that A is em-
beddable into Ā via an embedding φ : A → Ā. Moreover, there is an element p ∈ Ā such that
φ(g) < p < φ(h).

The first and naive way to create a one-step densification is of course to add a single new
element p to the algebra A. The operations of the new algebra based on A ∪ {p} should extend
those of A, as we require an embedding. In the new algebra, by order preservation and g ≤ p ≤ h,
we have ag ≤ ap ≤ ah, for all a ∈ A. Therefore, a natural way to define multiplication by p is to
set a · p = ah (or similarly a · g = ag), for a ∈ A; of course we would have to exclude a = 1, as
we surely want 1 · p = p. However, this causes complications with associativity. In particular, if
ab = 1 for some a, b ∈ A, then p = 1 · p = (ab) · p = a(b · p) = a(bh) = (ab)h = h, a contradiction.
So we have to proceed differently.

First we define a monoid extension of A by the new element p and then look for a congruence
which does not collapse the elements of A ∪ {p} and is large enough to produce a totally-ordered
quotient. We explain in Section 2.2.2 why it suffices to consider the following small extension. Let
A∪Ap be the commutative monoid, where Ap = {ap | a ∈ A} (formally speaking we write ap for
(a, p) and Ap for A× {p}) and multiplication is given by stipulating that for all a, b ∈ A:

a · b = ab a · (bp) = (ab)p, (ap) · (bp) = (abh)p.

Note that the order on A can be naturally extended to Ap by setting ap ≤ bp iff a ≤ b. Then
A ∪Ap can be ordered as a disjoint union of posets (see Figure 1). Further, we can define a total
order ⊑ on the subset A ∪ {p} of A ∪ Ap, by simply stipulating that ⊑ extends the order of A
by the conditions g ⊑ p ⊑ h. In that sense A ∪ Ap contains an ordered part, namely the chain
(A ∪ {p},⊑); see Figure 1.

For every a, b ∈ A we define the set a ⇒ b = {c ∈ A | ac ≤ b}. The following lemma states
some simple properties of such sets.

Lemma 2.1. Let a, b, c ∈ A. Then the following hold:

(1) a ⇒ b is downward closed.
(2) 1 ⇒ b = {c ∈ A | c ≤ b} = ↓b.
(3) b ≤ c implies a ⇒ b ⊆ a ⇒ c.
(4) b ≤ c implies c ⇒ a ⊆ b ⇒ a.
(5) The collection {a ⇒ b | a, b ∈ A} of subsets of A forms a chain under inclusion, as

downsets of a chain.
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Figure 1. (Left) The monoid extension A ∪ Ap together with the chain (A ∪
{p},⊑) depicted by the thick line; (Right) The subsets Lg, Lp and Lh depicted
by the thick lines.

We define the following subsets of A ∪Ap in an ad hoc way and in Section 2.2.1 we justify the
definition:

La = (1 ⇒ a) ∪ (h ⇒ a)p for a ∈ A,

Lp = (1 ⇒ g) ∪ (1 ⇒ 1)p,

where (b ⇒ c)p = {dp ∈ Ap | d ∈ b ⇒ c} for b, c ∈ A. The subsets Lg, Lp and Lh are depicted in
Figure 1 (note that h ⇒ g ( 1 ⇒ 1 ⊆ h ⇒ h).

Given L ⊆ A ∪Ap, which we will call a language of A ∪Ap, and u ∈ A ∪Ap, we define the
quotient of L by u as follows:

u−1L = {x ∈ A ∪Ap | ux ∈ L}.
We first show that there are only two types of sets of the form u−1Lz, for u ∈ A ∪Ap.

Lemma 2.2. Let u ∈ A ∪Ap and z ∈ A ∪ {p}. Then u−1Lz is of the form

b−1La = (b ⇒ a) ∪ (bh ⇒ a)p or b−1Lp = (b ⇒ g) ∪ (b ⇒ 1)p

for some a, b ∈ A.

Proof. Let a, b ∈ A. Then we have

b−1La = {x ∈ A ∪Ap | bx ∈ La} = {c ∈ A | bc ∈ 1 ⇒ a} ∪ {cp ∈ Ap | bcp ∈ (h ⇒ a)p}
= {c ∈ A | bc ≤ a} ∪ {cp ∈ Ap | bch ≤ a} = (b ⇒ a) ∪ (bh ⇒ a)p,

(bp)−1La = {c ∈ A | bcp ∈ (h ⇒ a)p} ∪ {cp ∈ Ap | bchp ∈ (h ⇒ a)p} = (bh ⇒ a) ∪ (bh2 ⇒ a)p

= (bh)−1La,

b−1Lp = {c ∈ A | bc ∈ 1 ⇒ g} ∪ {cp ∈ Ap | bcp ∈ (1 ⇒ 1)p} = (b ⇒ g) ∪ (b ⇒ 1)p,

(bp)−1Lp = {c ∈ A | bcp ∈ (1 ⇒ 1)p} ∪ {cp ∈ Ap | bchp ∈ (1 ⇒ 1)p} = (b ⇒ 1) ∪ (bh ⇒ 1)p

= b−1L1.

�

Lemma 2.3. For all z ∈ A ∪ {p} and u ∈ A ∪Ap, we have that u−1Lz is a downset for ⊑.

Proof. By Lemma 2.2, it suffices to prove that for all a, b ∈ A the sets b−1La and b−1Lp are
downsets for ⊑. To that goal let x, y ∈ A ∪ {p} with x ⊑ y. Downset closure is trivially true for
x = y, so we assume that x ⊏ y for the rest of the proof. Note that the following implications
hold and also their hypotheses exhaust all cases:

• if x, y ∈ A then x ≤ y,
• if x = p then h ≤ y,
• if y = p then x ≤ g.
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From y ∈ b−1La we will derive x ∈ b−1La. If x, y ∈ A then y ∈ b ⇒ a. Since b ⇒ a is downward
closed, we have x ∈ (b ⇒ a) ⊆ b−1La. If x = p then h ≤ y and y ∈ b ⇒ a, so bh ≤ by ≤ a.
Thus 1 ∈ bh ⇒ a, i.e., p ∈ (bh ⇒ a)p ⊆ b−1La. Finally, if y = p then 1 ∈ bh ⇒ a. Thus
bx ≤ bg ≤ bh ≤ a and x ∈ (b ⇒ a) ⊆ b−1La.

Similarly from y ∈ b−1Lp we will obtain x ∈ b−1Lp. If x, y ∈ A we can use the same argument
as above in order to show that x ∈ b−1Lp. If x = p then h ≤ y and y ∈ b ⇒ g, so bh ≤ by ≤ g.
Thus b ≤ 1 (otherwise we would have h ≤ bh ≤ g < h). Consequently, 1 ∈ b ⇒ 1, i.e.,
p ∈ (b ⇒ 1)p ⊆ b−1Lp. Finally, if y = p then 1 ∈ b ⇒ 1. Thus b ≤ 1 which implies bx ≤ g.
Consequently, x ∈ b ⇒ g ⊆ b−1Lp. �

For any pomonoid M, the syntactic preorder �L (introduced in [13], see also [11]) given by a
language L ⊆ M is defined as follows: for x, y ∈ M ,

x �L y iff ∀u ∈ M(y ∈ u−1L =⇒ x ∈ u−1L).

The symmetrization ∼L = �L ∩ (�L)
−1 is the syntactic congruence corresponding to the set L

(also known as Leibniz congruence in Abstract Algebraic Logic; see e.g. [4]). It is easy to see
that the syntactic congruence ∼L is the largest monoid congruence which saturates the set L (i.e.,
a ∈ L and a ∼L b implies b ∈ L). Consequently, ∼L separates the elements of L from those in the
complement Lc of L, that is if a ∈ L and b ∈ Lc then a 6∼L b; here complements are computed
relative to M . Then the quotient monoid M/∼L, endowed with the ordering ≤ given by

[x]L ≤ [y]L iff x �L y,

becomes a pomonoid; here [x]L denotes the congruence class of x with respect to ∼L. Given
an indexed system of languages {Li | i ∈ I}, the intersection θ =

⋂
i∈I ∼Li

is again a monoid
congruence and the quotient M/θ forms a pomonoid where the order is given by

[x]θ ≤ [y]θ iff x �Li
y for all i ∈ I.

Here we consider the collection {Lz | z ∈ A ∪ {p}} of languages and the congruence θ =⋂
z∈A∪{p} ∼Lz

.

Lemma 2.4. (A ∪ Ap)/θ is a pomonoid in which A is embeddable via a 7→ [a]θ. In addition,
[g]θ < [p]θ < [h]θ.

Proof. Clearly, (A ∪Ap)/θ is a pomonoid. Thanks to Lemma 2.3, for all x, y ⊆ A ∪ {p} we have
[x]θ ≤ [y]θ whenever x ⊑ y. Moreover, if x ⊏ y then x ∈ Lx but y 6∈ Lx. Indeed, if x, y ∈ A then
x < y. Thus y 6∈ (1 ⇒ x)∪(h ⇒ x)p = Lx. If x = p then h ≤ y. Thus y 6∈ (1 ⇒ g)∪(1 ⇒ 1)p = Lx.
Finally, if y = p then x ≤ g. Thus h 6≤ x, i.e., p 6∈ (1 ⇒ x) ∪ (h ⇒ x)p = Lx. Consequently,
x 6∼Lx

y. Thus [x]θ < [y]θ. In particular, the map φ : A → (A ∪ Ap)/θ defined by a 7→ [a]θ is a
pomonoid embedding. �

It remains to prove that (A ∪ Ap)/θ is totally ordered. In order to prove it, we will use the
following lemma.

Lemma 2.5. The subsets {b−1La | a, b ∈ A} ∪ {b−1Lp | b ∈ A} of A ∪ Ap form a chain under
inclusion.

Proof. We first prove that b−1Lp and c−1Lp are always comparable by showing that b ≤ c implies
c−1Lp ⊆ b−1Lp for all b, c ∈ A. If b ≤ c then c ⇒ g ⊆ b ⇒ g and also c ⇒ 1 ⊆ b ⇒ 1 by
Lemma 2.1. Thus c−1Lp ⊆ b−1Lp.

Second we check that for all a, b, c, d ∈ A the sets b−1La and d−1Lc can be compared. Since the
sets b ⇒ a and d ⇒ c are comparable by Lemma 2.1, it suffices to prove that b ⇒ a ⊆ d ⇒ c implies
bh ⇒ a ⊆ dh ⇒ c for all a, b, c, d ∈ A. Let x ∈ bh ⇒ a, i.e., bhx ≤ a. Then hx ∈ b ⇒ a ⊆ d ⇒ c.
Consequently, dhx ≤ c, i.e., x ∈ dh ⇒ c.

Finally, we check that b−1La and c−1Lp are comparable for all a, b, c ∈ A. Suppose that
b ⇒ a ⊆ c ⇒ g. Then we have to show that bh ⇒ a ⊆ c ⇒ 1. Let x ∈ bh ⇒ a, i.e., bhx ≤ a. Thus
hx ∈ b ⇒ a ⊆ c ⇒ g. Consequently, chx ≤ g. It follows that cx ≤ 1 (otherwise h ≤ chx ≤ g < h).
Hence x ∈ c ⇒ 1. Conversely, assume that b ⇒ a ) c ⇒ g. Then we have to show that
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c ⇒ 1 ⊆ bh ⇒ a. By the assumption there is y ∈ b ⇒ a such that y 6∈ c ⇒ g (i.e., by ≤ a and
g < h ≤ cy). Let x ∈ c ⇒ 1, i.e., cx ≤ 1. Then bhx ≤ bcyx ≤ by ≤ a, i.e., x ∈ bh ⇒ a. �

Theorem 2.6. (A ∪Ap)/θ is a tomonoid in which A is embeddable via a 7→ [a]θ. In addition,
[g]θ < [p]θ < [h]θ.

Proof. In view of Lemma 2.4, it remains to show that (A ∪Ap)/θ is totally ordered. Let x, y ∈
A∪Ap. Assume that [x]θ 6≤ [y]θ. By definition of θ there is w ∈ A∪ {p} such that x 6�Lw

y. This
means that there exists u ∈ A ∪ Ap such that y ∈ u−1Lw and x 6∈ u−1Lw. We have to show that
[y]θ ≤ [x]θ. Again by definition of θ we have to prove that for all z ∈ A∪{p} we have [y]Lz

≤ [x]Lz

(i.e., y �Lz
x). Let x ∈ v−1Lz. Since x 6∈ u−1Lw, we must have u−1Lw ⊆ v−1Lz by Lemma 2.5.

Thus y ∈ v−1Lz. Consequently, y �Lz
x. �

2.2. Explanation of design choices. Having given the full proof, here we explain the ad hoc
choice of languages that we considered, as well as the choice of the monoid extension of A.

2.2.1. The definition of the sets. To solve the one-step densification problem, we wish to find a
congruence θ on A ∪Ap satisfying the conditions:

• A/θ is totally ordered and
• [x]θ < [y]θ for all x, y ∈ A ∪ {p} such that x ⊏ y.

The congruence θ will be the intersection of syntactic congruences of languages in the collection
{Lz | z ∈ A ∪ {p}}. In order to satisfy at least the version of the second condition above that
has to do with weak inclusions (≤ and ⊑), we want the syntactic congruences ∼Lz

to preserve the
order ⊑ on A ∪ {p}, i.e., the following condition must be satisfied for all x, y ∈ A ∪ {p}:
(1) x ⊑ y =⇒ [x]Lz

≤ [y]Lz
.

It is further desirable for ∼Lz
to separate z from as many elements in A ∪ {p} as possible, so as

to obtain the strict version of the second condition in a smooth way. Thus we will define Lz to be
the smallest set containing z and satisfying (1). At this stage, for the first, linearity, property we
can only hope that Lemma 2.1(5) will be of some use.

Condition (1), which simply states that each u−1Lz is downward closed with respect to ⊑, can
be expressed as a system of closure rules using the definition of the syntactic preorder. For every
x, y ∈ A ∪ {p} such that x ⊑ y we have the following rule:

(2) ∀u ∈ A ∪Ap (y ∈ u−1Lz =⇒ x ∈ u−1Lz).

In particular, for u = 1 we get that Lz has to be downward closed with respect to ⊑. Since z ∈ Lz,
it follows that 1 ⇒ a ⊆ La for all a ∈ A and 1 ⇒ g ⊆ Lp. Furthermore, for b ∈ A with b ≤ 1 we
have b ⊑ 1. By (2) for u = p we obtain 1p ∈ Lp =⇒ bp ∈ Lp. Since p ∈ Lp, we infer bp ∈ Lp.
Consequently, (1 ⇒ 1)p ⊆ Lp.

Let a ∈ A. Since p ⊑ h, we must have uh ∈ La implies up ∈ La for all u ∈ A∪Ap. In particular,
for u = b ∈ A we have bh ∈ La implies bp ∈ La. Hence, if bh ≤ a (i.e., b ∈ h ⇒ a) then bh ∈ La

and therefore bp ∈ La. Consequently, (h ⇒ a)p ⊆ La.
As mentioned above we want Lz’s to be smallest possible. Thus we define

La = (1 ⇒ a) ∪ (h ⇒ a)p for a ∈ A,

Lp = (1 ⇒ g) ∪ (1 ⇒ 1)p.

The above languages define the congruence θ which gives us the final linear extension (A∪Ap)/θ.
There is also another illuminating way of viewing the congruence θ. Namely, θ = Θ(p, h) ∩ ∼Lp

where Θ(p, h) is the principal congruence on A ∪Ap generated by the pair (p, h). To see this, it
suffices to show that Θ(p, h) =

⋂
a∈A ∼La

. First we prove that Θ(p, h) ⊆ ∼La
for all a ∈ A. Since

p ⊑ h, we have p �La
h. Conversely, we need to show that h �La

p. This by definition boils
down to the validity of the implication p ∈ b−1La =⇒ h ∈ b−1La for all b ∈ A. If p ∈ b−1La

then 1 ∈ bh ⇒ a (i.e., bh ≤ a). Consequently, h ∈ b ⇒ a ⊆ b−1La. Thus every ∼La
contains

the principal congruence Θ(p, h), i.e., Θ(p, h) ⊆ ⋂a∈A ∼La
. Assume that this inclusion would be

strict. Then at least two congruence classes of Θ(p, h) have to be collapsed in the quotient by⋂
a∈A ∼La

. Note that every congruence class of Θ(p, h) has a representative c ∈ A. Consequently,
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⋂
a∈A ∼La

would collapse congruence classes [c]Θ(p,h) and [d]Θ(p,h) for some c, d ∈ A such that
c < d. However, this is impossible since c 6∼Lc

d. Hence Θ(p, h) =
⋂

a∈A ∼La
.

This way of viewing θ as Θ(p, h) ∩ ∼Lp
offers another explanation of how the linear extension

(A ∪ Ap)/θ was constructed. Namely, the principal congruence Θ(p, h) has almost all desired
properties. It preserves the order ⊑ on A∪ {p} and it separates all elements in A and also g from
p. Nevertheless, it collapses p and h. That is why we consider a finer congruence, namely the
intersection Θ(p, h)∩∼Lp

. This step is reasonable because the syntactic congruence ∼Lp
separates

p from h and preserves the order ⊑ on A ∪ {p}.

2.2.2. Small monoid extension. The choice of the monoid extension A∪Ap seems ad hoc. A more
reasonable candidate for the monoid extension is the free extension Ap∗, where Ap∗ = {apn : a ∈
A,n ∈ N} under the multiplication given by apn · bpm = (ab)pn+m. It turns out that such a large
extension is not necessary because if we would choose the free monoid extension Ap∗ and follow
the same strategy as above, the resulting congruence θ would contain the congruence η generated
by p2 = ph. Consequently, we can start immediately with Ap∗/η ∼= A∪Ap without changing the
final result.

To see that η is contained in θ, consider the same strategy as before looking for the smallest sets
Lz ⊆ Ap∗ such that they separate all element from A ∪ {p} and satisfy (1). Using the analogous
arguments replacing A ∪Ap with Ap∗, we would end up with the following sets:

La =
⋃

n∈N

(hn ⇒ a)pn for a ∈ A,

Lp = (1 ⇒ g) ∪
⋃

n∈N

(hn ⇒ 1)pn+1.

By the definition of θ, it suffices to prove that η ⊆ ∼Lz
for every z ∈ A ∪ {p}. We clearly have

[p2]Lz
≤ [ph]Lz

(i.e., p2 �Lz
ph) since p ⊑ h. Conversely, we have to show ph �Lz

p2, i.e.,
p2 ∈ u−1Lz implies ph ∈ u−1Lz for all u ∈ Ap∗. Suppose that p2 ∈ u−1Lz. Then up2 ∈ Lz for
some u = apk, a ∈ A and k ∈ N. Consequently, a is either in hk+2 ⇒ b, if z = b ∈ A, or in
hk+1 ⇒ 1, if z = p. In the first case ah ∈ hk+1 ⇒ b. Thus uph = ahpk+1 ∈ (hk+1 ⇒ b)pk+1 ⊆ Lb.
In the second case ah ∈ hk ⇒ 1. Thus uph = ahpk+1 ∈ (hk ⇒ 1)pk+1 ⊆ Lp.

3. Densification of commutative residuated chains, via linear polynomials

We first describe the construction in an economical and relatively ad hoc way so as to give a
very short proof. In the next section we explain why these design choices are natural.

3.1. The construction. A commutative residuated lattice-ordered semigroup is a structure A =
(A,∧,∨, ·,→) such that

• (A,∧,∨) is a lattice,
• (A, ·) is a commutative semigroup and
• the residuation condition holds: x · y ≤ z ⇔ y ≤ x→ z, for all x, y, z ∈ A.

If there is an element 1 ∈ A such that 1x = x for all x ∈ A then we call A a commutative residuated
lattice. If, in addition, the lattice order is total, A is said to be a commutative residuated chain. It
follows easily from the residuation condition that the multiplication · distributes over finite joins
(i.e., x(y ∨ z) = xy ∨ xz). In particular, it is monotone in both arguments. Similarly, we have
(x∨y)→ z = (x→ z)∧ (y→ z) and x→ (y∧ z) = (x→y)∧ (x→ z). Consequently the residuum →
is antitone in the first argument and monotone in second one. For details on residuated structures
see [6].

Let A be a commutative residuated lattice and let A(X) be the set {a ∨ bX : a, b ∈ A} of
linear polynomials over the {∨, ·} reduct of A in one indeterminate X. This can be ordered by
the cartesian product ordering (as A(X) is isomorphic to A×A) and it becomes a lattice. Clearly,
A ∨AX is not closed under the usual product of polynomials. However, given an element h ∈ A,
we define in an ad hoc way the product of two linear polynomials p = p0 ∨ p1X and q = q0 ∨ q1X
by:

(p0 ∨ p1X) ·h (q0 ∨ q1X) = p0q0 ∨ (p0q1 ∨ p1q0 ∨ p1q1h)X.
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We further define implication →h on A(X) by

(p0 ∨ p1X)→h (q0 ∨ q1X) = ((p0 → q0) ∧ (p1 → q1)) ∨ ((p0 → q1) ∧ (p1h→ q1))X.

Lemma 3.1. The set A(X) forms a commutative residuated lattice-ordered semigroup A(X) under
the above operations.

Proof. The operation ·h is clearly commutative and it is straightforward to check that it is asso-
ciative. To show that A(X) is residuated we have

(p0 ∨ p1X) ·h (q0 ∨ q1X) ≤ r0 ∨ r1X ⇔
p0q0 ∨ (p0q1 ∨ p1q0 ∨ p1q1h)X ≤ r0 ∨ r1X ⇔
p0q0 ≤ r0, p0q1 ≤ r1, p1q0 ≤ r1, p1q1h ≤ r1 ⇔
q0 ∨ q1X ≤ ((p0 → r0) ∧ (p1 → r1)) ∨ ((p0 → r1) ∧ (p1h→ r1))X ⇔
q0 ∨ q1X ≤ (p0 ∨ p1X)→h (r0 ∨ r1X).

As it is a lattice, it follows that it is a commutative residuated lattice-ordered semigroup. �

For all a ∈ A, we consider in an ad hoc fashion the linear polynomials

â = a ∨ (h→ a)X and ã = (a→ g) ∨ (a→ 1)X.

We denote by Ā the set of these two types of polynomials, for all a ∈ A, and we write a∧ for â
and a∼ for ã if a long expression takes the place of a.

Lemma 3.2. Ā is a totally-ordered subset of A(X).

Proof. Indeed, if a ≤ b, then â ≤ b̂ and b̃ ≤ ã. We now compare â and b̃.
If ab ≤ g, then a ≤ b→ g. Also, b ≤ a→ g, so b(h→ a) ≤ (h→ a)(a→ g) ≤ h→ g < 1, hence

h→ a ≤ b→ 1.
If g < ab (i.e., h ≤ ab as g < h is a gap), then a 6≤ b → g, so b → g < a. Also, h(b → 1) ≤

ab(b→ 1) ≤ a, so b→ 1 ≤ h→ a. �

For any linear polynomial P = p0 ∨ p1X we define γ(P ) = P̂ (h)∧ ((p0→ g)∧ (p1→ 1))∼, where
P (h) = p0 ∨ p1h.

Lemma 3.3. Given a linear polynomial P , γ(P ) is the smallest element of Ā that is above P .
Thus, γ is a closure operator on A(X) with image Ā.

Proof. We first find the smallest â above P by considering p0 ∨ p1X ≤ a∨ (h→a)X. Then p0 ≤ a
and p1h ≤ a, namely, p0 ∨ p1h ≤ a. Clearly, the minimal a is then p0 ∨ p1h = P (h).

To find the smallest ã above P , we consider p0 ∨ p1X ≤ (a→ g) ∨ (a→ 1)X. Then p0 ≤ a→ g
and p1 ≤ a→ 1, namely a ≤ (p0 → g) ∧ (p1 → 1). The largest a (yielding the smallest ã) is then
(p0 → g) ∧ (p1 → 1). �

We define the algebra Ā = (Ā,∧,∨γ , ·γ ,→h, 1̂), where x ·γ y = γ(x ·h y), x ∨γ y = γ(x ∨ y).

Lemma 3.4. The algebra Ā is a commutative residuated chain and ĝ < 1̃ < ĥ.

Proof. We first check that for all P ∈ A(X) and Q ∈ Ā, we have P →h Q ∈ Ā.

P →h â = (p0 ∨ p1X)→h (a ∨ (h→ a)X)

= ((p0 → a) ∧ (p1 → (h→ a))) ∨ ((p0 → (h→ a)) ∧ (p1h→ (h→ a)))X

= ((p0 → a) ∧ (p1h→ a)) ∨ ((h→ (p0 → a)) ∧ (h→ (p1h→ a)))X

= ((p0 ∨ p1h)→ a)∧

= (P (h)→ a)∧
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P →h ã = (p0 ∨ p1X)→h ((a→ g) ∨ (a→ 1)X)

= ((p0 → (a→ g)) ∧ (p1 → (a→ 1))) ∨ ((p0 → (a→ 1)) ∧ (p1h→ (a→ 1)))X

= ((p0a→ g) ∧ (p1a→ 1)) ∨ ((p0a→ 1) ∧ (p1ha→ 1))X

= ((p0a→ g) ∨ (p0a→ 1)X) ∧ ((p1a→ 1) ∨ (p1ha→ 1)X)

= p̃0a ∧ ̂p1a→ 1

Since γ is a closure operator by Lemma 3.3 whose image Ā satisfies P →hQ ∈ Ā for all P ∈ A(X)
and Q ∈ Ā, it follows that γ is a nucleus on A(X), namely a closure operator satisfying γ(x)γ(y) ≤
γ(xy), so Ā is a commutative residuated lattice-ordered semigroup; see e.g. [6, Section 3.4.11] for
details.

Next we have to show that 1̂ is a multiplicative unit. We have

1̂ ·γ â = γ(1̂ ·h â) = γ(a ∨ ((h→ a) ∨ a(h→ 1) ∨ h(h→ 1)(h→ a))X) = γ(â) = â,

because a(h→ 1), h(h→ 1)(h→ a) ≤ h→ a. Similarly,

1̂ ·γ ã = γ((a → g) ∨ ((a → 1) ∨ (a → g)(h → 1) ∨ h(h → 1)(a → 1))X) = γ(ã) = ã.

By Lemma 3.2 Ā is a chain, so it is a commutative residuated chain.

We also have ĝ < 1̃ < ĥ, namely g ∨ (h→ g)X < g ∨X < h∨ (h→ h)X, because g ≤ g < h and
h→ g < 1 ≤ h→ h (if we had 1 ≤ h→ g, then h ≤ g, a contradiction). �

Theorem 3.5. The map φ : A→ Ā, given by φ(a) = â is a residuated lattice embedding. Thus,
Ā serves as a one-step densification of A.

Proof. It is clear that a ≤ b iff â ≤ b̂, so φ is an order embedding. For implication we have

â→h b̂ = (a ∨ (h→ a)X)→h (b ∨ (h→ b)X)

= ((a→ b) ∧ ((h→ a)→ (h→ b))) ∨ ((a→ (h→ b)) ∧ ((h→ a)h→ (h→ b)))X

= ((a→ b) ∧ ((h→ a)h→ b)) ∨ ((ah→ b) ∧ ((h→ a)h2 → b))X

= (a→ b) ∨ (ah→ b)X

= â→ b.

Next we show that φ preserves multiplication. We have â ·h b̂ = ab ∨ (a(h → b) ∨ b(h → a))X.

Thus we have â ·h b̂ ≤ âb. Consequently, â ·γ b̂ = γ(â ·h b̂) ≤ âb as âb is γ-closed. For the

converse inequality it suffices to show that â ·h b̂ ≤ Q implies âb ≤ Q for all Q ∈ Ā showing

that the least γ-closed element above â ·h b̂ is âb. Assume that â ·h b̂ ≤ ĉ. Then ab ≤ c and

so h → ab ≤ h → c. Thus âb ≤ ĉ. Analogously, if â ·h b̂ ≤ c̃ then ab ≤ c → g. Hence

h → ab ≤ h → (c → g) = c → (h → g) ≤ c → 1. Thus âb ≤ c̃.
Finally, by Lemma 3.4 the gap g < h is filled in Ā by 1̃, so Ā serves as a one-step densification

of A. �

3.2. Intuition and explanation of ad hoc constructions. We would like to point out that
readers who are only interested in the results may simply skip this section and read only the
previous section with the construction (or even just the statement of the theorem for that matter).
On the other hand, readers who want to use the real ideas behind the proof and the constructions
in order to modify them and apply them to related questions may benefit from the explanations
and constructions in this section.

Throughout the rest of Section 3 we will assume that the commutative residuated chain A

which we want to extend by a new element has a bottom element ⊥. It follows that A has also
a top element ⊤ because ⊥ → ⊥ = ⊤. This assumption is not necessary (we have not assumed
it in the previous section) but it simplifies our notation so that we can introduce a semiring of
(formal) polynomials over A in the usual way and A(X) will become a residuated lattice (not
only a residuated lattice-ordered semigroup). Moreover, this assumption does not harm much
the generality of our results because one can easily extend A by an additional bottom and a top
element if A does not have them. For elements ⊥,⊤ 6∈ A, it is well known [6, Section 3.6.7] that
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there is a unique commutative residuated lattice A⊥ on the set A⊥ = A∪ {⊥,⊤} specified by the
following conditions

• A is a subalgebra of A⊥,
• ⊥ < a < ⊤ for all a ∈ A,
• a · ⊤ = ⊤ = ⊤ · a, for all a ∈ A ∪ {⊤},
• b · ⊥ = ⊥ = ⊥ · b, for all b ∈ A ∪ {⊥,⊤},
• c→⊤ = ⊤, for all c ∈ A ∪ {⊥,⊤},
• ⊥→⊥ = ⊤ and b→⊥ = ⊥, for b ∈ A ∪ {⊤}.

As we wish to extent A by a new element that fills the gap g < h, it is natural to consider
an extension, as in classical algebra, similar to the construction of field extensions through the
ring of polynomials. It turns out that our approach above works partly because A, although
not a field or ring, can be viewed as an (idempotent) semiring with respect to the operations ∨
and ·; see Section 3.2.1. This is what allows us to construct the semiring A[X] of polynomials;
although A[X] does not form in general a residuated lattice as the multiplication of polynomials
is not residuated, the restriction of this multiplication on the set of at most linear polynomials is
residuated as we will see in Section 3.2.2. This allows us to introduce in Section 3.2.3 a residuated
lattice A(X) on the set of at most linear polynomials with the operations ·h and →h on A(X).

It is also interesting that, unlike in field extensions, the final extension Ā is not a quotient of
A[X] (or even A(X) in our case) by some principal congruence, since A[X] is nothing as simple as
a principal ideal domain. Rather, the correct way to think about Ā is actually as an A(X)-module
which then happens to be a residuated lattice. The actual reason that it happens to be linear
is a consequence of the fact that it is the module image of another natural module AX which
is totally ordered. The module AX is obtained by minimalistic considerations of asking that it
contains A and an additional element X, and it is a module. We explain the full details of the
module approach to residuated lattices in Sections 3.2.4 and 3.2.5, and this takes away a lot of
the guesswork that goes behind the above slick, but unmotivated construction.

Finally, it is not even clear that the semiring A[X] of polynomials will be a natural enough free
extension, as apart from semiring operations we also have the implications. The more natural and
general extension is that of powerseries A[[X]] and this is what we used in our original proof of
the result, before distilling it down to the (even linear) polynomials.

Also, in Section 3.3 we provide a slight modification that yields the construction of adding
square roots to totally ordered abelian groups.

3.2.1. Residuated lattices as semirings and modules. For every commutative residuated lattice L

we have that a(b ∨ c) = ab ∨ ac, for all a, b, c ∈ L, which together with the fact that (L, ·, 1) is a
commutative monoid and (L,∨) is a commutative idempotent semigroup shows that the {·,∨, 1}
reduct of L is an idempotent semiring. We denote this semiring by L∨. (If L has a bottom element
⊥, then we also have that (L,∨,⊥) is a monoid and a · ⊥ = ⊥, for all a ∈ L.)

Moreover, we have the conditions

• 1→ x = x,
• (ab)→ x = a→ (b→ x),
• a→ (x ∧ y) = (a→ x) ∧ (a→ y) and
• (a ∨ b)→ x = (a→ x) ∧ (b→ x),

which together with the fact that (L,∧) is a commutative semigroup shows that (L,∧) is a module
(whose elements we think of as vectors) over the semiring (L,∨, 1) (whose elements we think of
as scalars) where the action (or scalar multiplication) is →, the residuum of L. We denote this
L∨-module by L∧. (If L has a top element ⊤, then we also have that (L,∧,⊤) is a monoid and
a→⊤ = ⊤ for all a ∈ L.)

We recall the notion of a nucleus and its relation with semiring congruences and submodules.
A nucleus on a commutative residuated lattice L is a closure operator γ : L → L (i.e., a ≤ γ(a),
γ(γ(a)) = γ(a) and a ≤ b implies γ(a) ≤ γ(b)) such that γ(a)γ(b) ≤ γ(ab) for all a, b ∈ L. Given a
nuclues on L, one can introduce a residuated lattice Lγ = (Lγ ,∧,∨γ , ·γ ,→, γ(1)) called a nuclear
retraction of L, where Lγ = γ[L] is the set of γ-closed elements and a∨γ b = γ(a∨b), a ·γ b = γ(ab);
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see e.g. [6, Section 3.4.11]. The following are equivalent characterizations of nuclei (see [6] and
[12, Section 8.3]):

(1) γ is a nucleus on a commutative residuated lattice L,
(2) the kernel ∼γ of γ is a semiring congruence on L∨ such that Lγ are precisely maxima of

congruence classes; in particular we have γ(a) = max [a]∼γ
,

(3) Lγ forms a closure system (i.e., an image of a closure operator) and an L∨-submodule of
L∧.

Thus one can view Lγ as a semiring quotient of L∨ being at the same time an L∨-submodule
of L∧. The fact that Lγ forms a submodule follows because the condition γ(a)γ(b) ≤ γ(ab) is
equivalent to γ(a→ γ(b)) = a→ γ(b). The elements of a congruence class [a]∼γ

act in the same
way on Lγ . To see that note that a→γ(b) = γ(a)→γ(b). Indeed, we have γ(a)→γ(b) ≤ a→γ(b)
since a ≤ γ(a). Conversely, we have

γ(a)(a→ γ(b)) ≤ γ(a)γ(a→ γ(b)) ≤ γ(a(a→ γ(b))) ≤ γ(γ(b)) = γ(b).

Thus every a acts as the maximum γ(a) of its equivalence class [a]∼γ
.

The semiring congruence ∼γ can be equivalently described as follows:

a ∼γ b iff a→m = b→m for all m ∈ Lγ .

Indeed, a ∼γ b (i.e., γ(a) = γ(b)) implies a→m = γ(a)→m = γ(b)→m = b→m. Conversely,
assume that a→m = b→m for all m ∈ Lγ . Then we have γ(b) ≤ γ(a) since 1 ≤ γ(a)→ γ(a) =
γ(b)→ γ(a). Further we have γ(a) ≤ γ(b) by the symmetric argument. Thus a ∼γ b.

3.2.2. Semiring of polynomials. Thinking of A as a semiring, we denote by A[X] the set of all
polynomials with coefficients from A over the indeterminate X. We use the notation P = p0 ∨
p1X ∨ p2X

2 ∨ . . . ∨ pnX
n =

∨n
i=0 piX

i for polynomials of degree at most n. As usual, every
polynomial of degree at most n can be considered as a polynomial of degree at most m, for m ≥ n,
by appending terms of the form ⊥Xi.

Clearly A[X] is a semiring (see e.g. [7]) with operations given by
(

n∨

i=0

piX
i

)
∨
(

n∨

i=0

qiX
i

)
=

n∨

i=0

(pi ∨ qi)X
i,

(
n∨

i=0

piX
i

)
·




m∨

j=0

qjX
j


 =

n+m∨

k=0


 ∨

i+j=k

piqj


Xk.

However, since A is a lattice, we can further define
(

n∨

i=0

piX
i

)
∧
(

n∨

i=0

qiX
i

)
=

n∨

i=0

(pi ∧ qi)X
i.

Thus A[X] forms also a lattice (namely, the direct sum of ω copies of A). Nevertheless, A[X]
does not form a residuated lattice (for instance because it does not possess a top element). Still
multiplication of polynomials is residuated in a certain restricted sense. We recall the notion of
a residuated binary commutative map (see e.g. [6]). Let U, V be posets and ◦ : U × U → V a
commutative map (i.e., u ◦ v = v ◦ u for all u, v ∈ U). The map ◦ is said to be residuated if there
is a map → : U × V → U such that

u ◦ v ≤ w iff v ≤ u→ w.

Denote the set of polynomials of degree at most n by An[X]. If we restrict the multiplication
in A[X] to An[X] × An[X] we obtain a map from An[X] × An[X] to A2n[X]. This restriction is
residuated in the above sense. Indeed, it suffices to find a map → : An[X]×A2n[X] → An[X] such
that for all P,Q ∈ An[X] and R ∈ A2n[X] we have P ·Q ≤ R iff Q ≤ P →R. Let P =

∨n
i=0 piX

i,
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Q =
∨n

i=0 qiX
i and R =

∨2n
i=0 riX

i. Then we have

P ·Q =

(
n∨

i=0

piX
i

)
·Q =

n∨

i=0

(piX
iQ) ≤ R iff piX

iQ ≤ R for all i = 0, . . . , n,

iff piqj ≤ ri+j for all i, j = 0, . . . , n,

iff qj ≤ pi → ri+j for all i, j = 0, . . . , n,

iff qj ≤
n∧

i=0

(pi → ri+j) for all j = 0, . . . , n,

iff Q ≤
n∨

i=0

(
n∧

i=0

(pi → ri+j)

)
Xj .

Thus the desired operation → is the following one:

P →R =

n∨

j=0

(
n∧

i=0

(pi → ri+j)

)
Xj .

We want to point out that the semiring of formal powerseries over A can be defined in an
analogous way. If, in addition, A is complete as a lattice, we obtain a residuated lattice A[[X]]
with almost identical operations (actually the operations for polynomials are the restrictions of
the ones for powerseries).

We note that for X → P =
∨n−1

i=0 pi+1X
i, which we call the derivative or shift of P and we

denote it by P ′.

3.2.3. From polynomials to linear polynomials. The next step is to introduce a residuated lattice
A(X) on the set A1[X] of all polynomials of degree at most 1. We define the semiring structure
of A(X) as the semiring quotient of A[X] given by the congruence generated by X2 = hX; this
congruence is the kernel of the semiring homomorphism φh : A[X] → A(X) given by φh(P ) =
p0 ∨ P ′(h)X. This map induces the operations on A(X): P ∨h Q = φh(P ∨ Q) = P ∨ Q,
P ·h Q = φh(PQ), φh(1) = 1, for polynomials P and Q of degree at most 1. The semiring A(X)
forms clearly a lattice but even a residuated lattice due to the following general fact.

Let U, V be partially ordered sets and ◦ : U × U → V a residuated commutative map. Thus
there is a map → : U × V → U such that x ◦ y ≤ z ⇔ y ≤ x→ z. Also, assume that we have maps
q : U → V , ℓ : V → U such that ℓ(x) ≤ y ⇔ x ≤ q(y), i.e., they form an adjunction. In particular,
q(y) is the largest element of U whose image by ℓ is less than or equal to y. Then one can define
a residuated operation ⋆ : L×L → L by setting x ⋆ y = ℓ(x ◦ y) and the corresponding residual by
x→ q(y). Indeed, we have

x ⋆ y = ℓ(x ◦ y) ≤ z ⇔ x ◦ y ≤ q(z) ⇔ y ≤ x→ q(z).

Now we can use the above general fact in order to show that A(X) forms a residuated lattice.
First, we know that the restriction of multiplication in A[X] to A1[X] × A1[X] is residuated,
i.e., there is an operation → : A1[X] × A2[X] → A1[X] such that PQ ≤ R ⇔ Q ≤ P → R.
Further there is a map q : A2[X] → A1[X] such that for all P ∈ A2[X] and R ∈ A1[X] we have
φh(P ) ≤ R ⇔ P ≤ q(R). Indeed, the largest quadratic polynomial q(r0 ∨ r1X) whose image by
φh is below r0 ∨ r1X is r0 ∨ r1X ∨ (h→ r1)X

2 as is shown below:

φh(p0 ∨ p1X ∨ p2X
2) ≤ r0 ∨ r1X ⇔ p0 ∨ (p1 ∨ p2h)X ≤ r0 ∨ r1X

⇔ (p0 ≤ r0 & p1 ≤ r1 & p2h ≤ r1)
⇔ p0 ∨ p1X ∨ p2X

2 ≤ r0 ∨ r1X ∨ (h→ r1)X
2

⇔ p0 ∨ p1X ∨ p2X
2 ≤ q(r0 ∨ r1X).

Consequently, for P,Q,R ∈ A1[X] we have

P ·h Q = φh(PQ) ≤ R ⇔ PQ ≤ q(R) ⇔ Q ≤ P → q(R).
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g
X

h

AX

⊳

A(X)

h⊳

X⊳

g⊳

[AX ]⊳

Figure 2. Module morphism ⊳ : AX → A(X).

3.2.4. The plan. Recall that we assume thatA is a commutative residuated chain, namely a totally
ordered commutative residuated lattice. We also assume that there are elements g, h ∈ A such
that g < h and there is no element of A between g and h, namely g < h forms a gap. Our goal
is to construct a new commutative residuated chain Ā into which A will embed, say under an
embedding that we call ⊳ : A→ Ā, such that Ā will contain at least one more element between
g⊳ and h⊳.

This can be alternatively rephrased as saying that we actually want to embed into Ā the partial
algebra A ∪ {X}, namely ⊳ : A ∪ {X} → Ā, where X is a new element such that g < X < h, in
order to have g⊳ < X⊳ < h⊳ in Ā. (In viewing A ∪ {X} as a partial algebra we consider the set
A ∪ {X} under the partially defined operations that extend the operations on A with a ∧X = a
and a ∨X = X, for a ≤ g, and with a ∧X = X and a ∨X = a for h ≤ a.)

It will turn out that Ā will be a nuclear retraction of A(X), i.e., Ā ∼= A(X)γ for some nucleus

γ. Thus Ā will be a semiring quotient of A(X) and at the same time an A(X)
∨
-submodule of

A(X)
∧
. In order to find this submodule, we will look for a totally ordered A(X)∨-module AX

containing the set A ∪ {X} and a module morphism ⊳ : AX → A(X) which will be injective on
A ∪ {X} and whose image [AX ]⊳ will form the desired nuclear retraction Ā (see Figure 2). In
addition, we will require that z⊳ = γ(z) for any z ∈ A ∪ {X} so that the element z in our partial
algebraA∪{X} is mapped to the maximum of congruence class [z]∼γ

of the corresponding element
in A(X).

3.2.5. The module. Based on our requirements, we look for a totally ordered A(X)
∨
-module AX

and a module morphism ⊳ : AX → A(X)∧ whose image [AX ]⊳ forms a nuclear retraction induced
by a nucleus γ, i.e., it is an A(X)

∨
-submodule of A(X)

∧
and at the same time a closure system.

In order to define the A(X)
∨
-module AX , we will look for a totally ordered set containing A∪{X}

which at the same time admits a module action1 
 from A(X)
∨
. Summing up our requirements,

we look for

(1) a totally ordered A(X)
∨
-module AX containing the ordered set A ∪ {X},

(2) a module morphism ⊳ : AX → A(X)
∧
, i.e., it preserves ∧ and (P
z)⊳ = P →h z⊳,

(3) for all z ∈ A∪{X} we require z⊳ = γ(z) (hence u→h z
⊳ = u⊳→h z

⊳ for all u ∈ A∪{X}),
(4) ⊳ is injective on A ∪ {X}, i.e., u ≤ z iff u⊳ ≤ z⊳ for u, z ∈ A ∪ {X},
(5) the restriction of ⊳ to A becomes a residuated lattice embedding, i.e., (ab)⊳ = a⊳ ·h b⊳

and (a→ b)⊳ = a⊳ →h b⊳.

1Recall that a module action of a semiring (R,∨, ·, 1) to a semigroup (M,∧) is a map 
 : R×M→M that satisfies
the usual axioms of a vector space, where R is the set of scalars, M the set of vectors and 
 is scalar multiplication:

1
m = m, r1
(r2
m) = (r1r2)
m, r
(m1 ∧m2) = (r
m1) ∧ (r
m2) and (r1 ∨ r2)
m = (r1
m) ∧ (r2
m).



14 NIKOLAOS GALATOS AND ROSTISLAV HORČÍK

Note that for every module action from A(X)∨ the following has to hold for all z ∈ AX :

(p0 ∨ p1X)
z = p0
z ∧ (p1X)
z = p0
z ∧ p1
(X
z).

So it is enough to define the action by elements of A and by X.
First we define a
b for a, b ∈ A. Using the requirements (2), (3) and (5), the following has to

hold:

(a
b)⊳ = a→h b⊳ = a⊳ →h b⊳ = (a→ b)⊳.

Thus it makes sense to define a
b = a→ b for a, b ∈ A since then the above equality holds.
For the elements X
a we note that for all b ∈ A we have by requirements (2), (3), (5), (4) and

the fact that h is the least element of A above X in AX the following chain of equivalences:

b⊳ ≤ (X
a)⊳ = X⊳ →h a⊳ iff b⊳ ·h X⊳ ≤ a⊳

iff X⊳ ≤ b⊳ →h a⊳ = (b→ a)⊳

iff X ≤ b→ a

iff h ≤ b→ a

iff b ≤ h→ a.

In an attempt to be economical and define AX to be as small as possible, we explore the possibility
of defining X
a = h→ a, namely X
a does not yield a new element of AX but an old element of
A, which then has to be h→ a by the above calculation.

Further, by the requirement (3) we have X ≤ X⊳ = 1 →h X⊳ = 1⊳ →h X⊳. Consequently,
1⊳ ≤ X →h X⊳ = (X
X)⊳. Again trying to be economical we define X
X = 1 so that X
X is
an old element of A.

Concerning the definition of a
X for a ∈ A, we note that for all b ∈ A the following holds:

b⊳ ≤ (a
X)⊳ = a⊳ →h X⊳ iff (ab)⊳ = b⊳ ·h a⊳ ≤ X⊳

iff ab ≤ g(*)

iff b ≤ a→ g.

Unlike the above case, we cannot hope to define a
X = a → g, as for example for a = 1 this
would collapse X with g, but also because it turns out that this will not yield an action. Namely,
a→ 1 = a
(X
X) = X
(a
X) = X
(a→ g) = h→ (a→ g) = ha→ g which does not hold in
general. This means that the elements of the form a
X need to be new elements of AX ; formally
we could define them as pairs (a,X), but we use the more suggestive notation a
X. So we actually
define AX := A ∪ (A
X), and note that it contains A ∪ {X} if we identify X with 1
X. This
means that with our method it is impossible to define a commutative residuated chain structure
on just the set A ∪ {X}, but we need to add new elements that will materialize the implications
a→X. In summary we have motivated the definition

• b
a := b→ a,
• X
a = h→ a,
• b
(a
X) = (ab)
X,
• X
X = 1,

which uniquely extends to the action of A(X)
∨
to AX = A ∪A
X according to the definition:

(p0 ∨ p1X)
a = (p0 → a) ∧ (p1h→ a), (p0 ∨ p1X)
(a
X) = (p0a
X) ∧ (p1a→ 1).

The final step is to define the order structure on AX , which is also used in the computation of
the above meets. This order extends the order on A. Further, we set a
X ≤ b
X iff b ≤ a for
a, b ∈ A. This makes sense because b ≤ a implies (a
X)⊳ = a →h X⊳ ≤ b →h X⊳ = (b
X)⊳.
Finally following (*), we set b ≤ a
X iff b ≤ a→ g.

Clearly this is a total ordering so AX is a totally-ordered module. We observe that for this
ordering the set of positive elements (elements greater or equal to 1) of AX is (AX)+ = A+ ∪ (↓
g)
X, where A+ is the set of positive elements of A.
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Concluding we define ⊳ : AX→A(X)∧ by setting z⊳ to be the maximum of the set {P ∈ A(X) :
1 ≤ P
z}. This is motivated by the fact that P ≤ z⊳ = 1⊳ →h z⊳ iff 1⊳ ≤ P →h z⊳ = (P
z)⊳.
The following theorem shows that a⊳ = â and (a
X)⊳ = ã.

Theorem 3.6. Assume that A is a commutative residuated chain with a gap g < h.

(1) For all a ∈ A, we have a⊳ = a ∨ (h→ a)X and (a
X)⊳ = (a→ g) ∨ (a→ 1)X.
(2) The map ⊳ : AX →A(X)∧ is an A(X)∨-module morphism that is injective on A ∪ {X}.
(3) The image Ā = [AX ]⊳ forms a closure system and the least closed element above P =

p0 ∨ p1X ∈ A(X) is P (h)⊳ ∧ (((p0 → g) ∧ (p1 → 1))
X)⊳.
(4) Ā is a commutative residuated chain and g⊳ < X⊳ < h⊳.
(5) The restriction of ⊳ to A is a residuated lattice embedding.

Proof. (1) We compute a⊳ by finding the maximum linear polynomial P = p0 ∨ p1X such that
1 ≤ P
a, namely such that 1 ≤ (p0→a)∧(p1h→a), which is equivalent to p0 ≤ a and p1 ≤ h→a.
We also compute (a
X)⊳ by finding the maximum linear polynomial P = p0 ∨ p1X such that
1 ≤ P
(a
X). The last condition is equivalent to 1 ≤ (p0a
X)∧(p1a→1), namely to 1 ≤ (p0a
X)
and 1 ≤ (p1a→ 1). From the second we get p1 ≤ a→ 1 and from the first we get, based on the
definition of (AX)+, that p0a ≤ g, namely p0 ≤ a→ g.

(2) To show that ⊳ is a ∧-homomorphism it is enough to show that it preserves the order, as its
domain is totally ordered. To that direction note that if a ≤ b then a∨ (h→ a)X ≤ b∨ (h→ b)X.
Also, if a
X ≤ b
X then b ≤ a (by definition) and then (a→ g)∨ (a→ 1)X ≤ (b→ g)∨ (b→ 1)X.
Since a ≤ b
X iff ab ≤ g, the order preservation is exactly the content of the proof of Lemma 3.2.

To show that it preserves the action by elements of A(X)∨ we have

(P
a)⊳ = ((p0 ∨ p1X)
a)⊳ = ((p0 → a) ∧ (p1h→ a))⊳ = (P (h)→ a)⊳ = P →h a⊳,

where the last equality is from the proof of Lemma 3.4 and the fact that a⊳ = â. Also, we have

(P
(a
X))⊳ = ((p0∨p1X)
(a
X))⊳ = ((p0a
X)∧(p1a→1))⊳ = p̃0a∧ ̂p1a→ 1 = P→h (a
X)⊳,

where the last equality follows from the proof of Lemma 3.4 and the fact that (a
X)⊳ = ã, while
for the next to the last equation we used that ⊳ is a ∧-homomorphism.

(3) This follows from Lemma 3.3.
(4) We know that Ā is an A(X)

∨
-submodule of A(X)

∧
being an image of a module morphism

⊳. Also it is actually a closure system in A(X), namely for every linear polynomial P there
is a smallest element γ(P ) of Ā that is above the polynomial P . This means that Ā supports a
residuated lattice structure being a nuclear retraction of A(X) by γ. The fact that g⊳ < X⊳ < h⊳

follows from Lemma 3.4.
(5) This follows from Theorem 3.5. �

3.3. Totally ordered abelian groups. If the commutative residuated chain A is a group, then
Ā will be an commutative residuated chain, but may not be (actually it is not) a group.2 However,
we can slightly modify the construction to produce a group. We consider the congruence on A[X]
given by X2 = h and this yields the following multiplication on A(X).

(p0 ∨ p1X) · (q0 ∨ q1X) = (p0q0 ∨ p1q1h) ∨ (p0q1 ∨ p1q0)X.

By analogy to the above we consider the elements a⊳ = a ∨ (h→ a)X and (a
X)⊳ = (a→ g) ∨
(a→ 1)X. It turns out that if we apply this construction at an arbitrary gap g < h, we may not
get a totally ordered algebra. However, such a gap exists in a totally-ordered group iff there is
also a gap 1 < g → h. It turns out that filling the latter gap also results in filling the former, so
without loss of generality we may assume that g = 1 and that h is a cover of 1. Then we will see
that the construction produces a totally-ordered group, which fills the gap.

The elements we obtain are a⊳ = a ∨ (h−1a)X and (a
X)⊳ = (a−1) ∨ (a−1)X. Since all
elements are invertible the latter type of elements can be written as a ∨ aX. Since h is an
upper cover of 1, h−1 is a lower cover of 1, and h−1a is a lower cover of a. This means that

2For the case where A is the ℓ-group of integers, then Ā ends up being an commutative residuated chain

isomorphic to Z ∪ {n− : n ∈ Z}, where n ·m− = (nm)− and n− ·m− = (nm)−.
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h−1a ∨ h−1aX < a ∨ h−1aX < a ∨ aX are coverings and thus we have an interweaving of the
two types of elements in a transparent way, exactly as the odd and the even integers are ordered
within the set of all integers.

We can also compute the multiplication of these types of elements according to the above
definition.

(a ∨ h−1aX) · (b ∨ h−1bX) = (ab ∨ h−1ah−1bh) ∨ (ah−1b ∨ bh−1a)X = ab ∨ h−1abX.

(a ∨ h−1aX) · (b ∨ bX) = (ab ∨ h−1abh) ∨ (ab ∨ bh−1a)X = ab ∨ abX.

(a ∨ aX) · (b ∨ bX) = (ab ∨ abh) ∨ (ab ∨ ba)X = abh ∨ h−1abhX.

If we denote a∨ (h−1a)X simply by a and a∨ aX by a
√
h, the above computations show that we

extend the multiplication of A and also a · b
√
h = ab

√
h and a

√
h · b

√
h = ab.

So this provides exactly the usual construction of adding square roots of h. For example,
repeating this construction on the totally-ordered group of integers and taking the direct limit
produces the dyadic numbers.

4. Complete and dense commutative residuated chain, via residuated frames

We follow the patterns of the previous two sections of first providing a short proof of the result
followed by a discussion of the ad hoc choices made in the construction.

4.1. The construction. Given an commutative residuated chain A and an element p 6∈ A, its
one-step densification will consist of subsets of some monoid extension of A as in Section 2. The
monoid extension of A is again taken to be W = A ∪ Ap under the operation that extends
the multiplication on A and satisfies p2 = ph; in detail the operation is given by a · b = ab,
a · bp = ap · b = (ab)p and ap · bp = (abh)p. Recall that the order ≤ on A extends naturally to W
so that we can view it as a disjoint union of two chains.

We refer to the subsets of W that we will be taking as closed subsets, and they will all be
downsets with respect to above-mentioned extended order. More specifically, they will be described
with the help of a new set W ′ of elements, which will serve as formal names for the closed subsets,
with the understanding that multiple names may end up describing the same closed subset. We
define W ′ = A ∪ (A× {p}).

We also define an action of W to W ′, namely a function 
 : W ×W ′→W ′ that satisfies 1
z = z
and x
(y
z) = (xy)
z, for all x, y ∈ W and z ∈ W ′; in the following we will write simply p for
(1, p). The action will be generated by the conditions:

a
b = a→ b, p
b = h→ b, p
p = 1.

In detail the action is given by the following definition, which covers all combinations of types of
elements in W and W ′, and can be derived by the above generating conditions and the properties
of an action. It is then straightforward to check that this definition indeed yields an action.

a
b = a→ b, a
(b, p) = (ab)
p = (ab, p), ap
b = ah→ b, ap
(b, p) = ab→ 1.

Note that (a, p) = a
(1, p) = a
p, so we obtain the more intuitive description W ′ = A ∪ A
p,
where of course A
p := {a
p : a ∈ A}.

We consider the subset D = {a : 1 ≤ a} ∪ {a
p : a ≤ g} of W ′ and we define the relation
N ⊆ W ×W ′ by: x N z iff x
z ∈ D. In detail,

a N b ⇔ a ≤ b, a N b
p ⇔ ab ≤ g, ap N b ⇔ ah ≤ b, ap N b
p ⇔ ab ≤ 1.

Note that for all x, y ∈ W and z ∈ W ′, we have

x · y N z ⇔ (x · y)
z ∈ D ⇔ y
(x
z) ∈ D ⇔ y N x
z.

We have verified that W = (W,W ′, N, ·, 1,
) is a commutative residuated frame, in the sense
of [5].3 It follows from results in [5] that the dual algebra W+ is a commutative residuated lattice,

3The definition in [5] is fairly general, but for our purposes we can define a commutative residuated frame to be
a structure of the form (W,W ′, N, ◦, ε,
), where (W, ◦, ε) is a commutative monoid, W ′ is a set, N ⊆ W ×W ′ is a

relation, 
 : W ×W ′ →W ′, and the nuclearity condition holds: x ◦ y N z ⇔ y N x
z.
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where W+ = (γ[P(W )],∩,∪γ , ·γ ,→, γ{1}); for X,Y ⊆ W and Z ⊆ W ′ we define

X⊲ = {z ∈ W ′ | ∀x ∈ X : x N z}, Z⊳ = {x ∈ W | ∀z ∈ Z : x N z}, γ(X) = X⊲⊳,

X · Y = {xy | x ∈ X, y ∈ Y }, X ·γ Y = γ(X · Y ),

X ∪γ Y = γ(X ∪ Y ), X → Y = {w ∈ W | X · {w} ⊆ Y }.
In fact, (P(W ),∩,∪, ·,→, {1}) forms a commutative residuated lattice and W+ is its nuclear
retraction induced by the above-defined nucleus γ.

It also follows that every closed set, namely every element of W+, is an intersection of basic
closed sets, namely sets of the form {z}⊳, for z ∈ W ′ (see e.g.[5]). We have only two types of basic
closed sets

{a}⊳ = {w ∈ W | w N a} = {b ∈ A | b ≤ a} ∪ {bp ∈ Ap | bh ≤ a} = ↓a ∪ ↓(h→ a) · {p},

{a
p}⊳ = {w ∈ W | w N a
p} =

= {b ∈ A | b ≤ a→ g} ∪ {bp ∈ Ap | ba ≤ 1} = ↓(a→ g) ∪ (↓(a→ 1)) · {p}.
Note that the basic closed sets are really downward closed. Compare them also with the languages
La, a

−1Lp from Section 2 and polynomials â, ã from Section 3.

Lemma 4.1. If A is an commutative residuated chain, then so is W+.

Proof. It suffices to show that the basic closed sets are totally ordered by inclusion.
Clearly, if a ≤ b, then {a}⊳ ⊆ {b}⊳ and {b
p}⊳ ⊆ {a
p}⊳. Consider {a}⊳ and {b
p}⊳.
If ab ≤ g, then a ≤ b→ g, so ↓a ⊆ ↓(b→ g). Also, b ≤ a→ g, so b(h→ a) ≤ (h→ a)(a→ g) ≤

h→ g < 1, hence h→ a ≤ b→ 1 and ↓(h→ a) ⊆ ↓(b→ 1).
If h ≤ ab, then a 6≤ b→ g, so b→ g < a and ↓(b→ g) ⊆ ↓a. Also, h(b→ 1) ≤ ab(b→ 1) ≤ a, so

↓(b→ 1) ⊆ ↓(h→ a). �

A Gentzen frame is a pair (W,S) of a residuated frame W = (W,W ′, N, ◦, ε,
) and a partial
algebra S (in the language of residuated lattices) such that S that can be viewed as a common
subset of W and W ′ and under this identification the following conditions (called logical rules)
hold for all x, y ∈ W , z ∈ W ′ and a, b ∈ S; we consider a logical rule only in case the operation
on the elements of S in the conclusion is defined.

x N a a N z
x N z

(cut)
a N a

(id) ε N z
1 N z

(L1)
ε N 1

(R1)

a N z
a ∧ b N z

(L∧) b N z
a ∧ b N z

(L∧) x N a x N b
x N a ∧ b

(R∧)
a N z b N z
a ∨ b N z

(L∨) x N a
x N a ∨ b

(R∨) x N b
x N a ∨ b

(R∨)

a ◦ b N z
a · b N z

(L·) x N a y N b

x ◦ y N a · b (R·) x N a b N z
a→ b N x
z

(L→)
x N a
b

x N a→ b
(R→)

Note that A∪ {p} can be considered as a partial algebra where we extend the operations of A
with a ∨ p = p and a = a ∧ p if a ≤ g, and a ∨ p = a and p = a ∧ p if h ≤ a. Thus A ∪ {p} forms
a chain ordered by the order ⊑ defined in Section 2 (see Figure 1). The partial algebra A ∪ {p}
will play the role of S above. By results of [5] it follows from the next theorem that the function
mapping z ∈ A∪{p} to {z}⊳ is an embedding of this partial algebra into W+, so indeed the latter
can serve as a one-step densification at g < h.

Theorem 4.2. The pair (W,A ∪ {p}) forms an antisymmetric Gentzen frame.

Proof. We first show antisymmetry of the Gentzen frame, namely that q N r and r N q implies
q = r, for all q, r ∈ A ∪ {p}. This is clear for elements of A and for q = r = p. It is also true for
q = p and r ∈ A, as h ≤ r and r ≤ g is impossible.

Next we have to verify that the relation N satisfies all the logical rules. The identity rule (id)
holds since p
p = 1 ∈ D and a ≤ a for all a ∈ A. The rule (L1) and (R1) clearly hold as ε and
1 coincide in our case. The validity of (L∨) and (R∧) follows since A ∪ {p} forms a chain. The
validity of (L∧) amounts to the fact that the basic closed sets are downward closed with respect
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to ⊑ (cf. Lemma 2.3). As the basic closed sets are totally ordered by inclusion according to the
proof of Lemma 4.1, the rule (R∨) holds as well.

The cut rule holds if we prove that u ∈ {z}⊳ implies {u}⊳ ⊆ {z}⊳ for u ∈ A∪{p} and z ∈ W ′.
If u = a ∈ A then a ≤ b or a ≤ b→ g depending whether z = b or z = b
p for some b ∈ A. In the
first case {a}⊳ ⊆ {b}⊳. In the second we have h→ a ≤ bh→ g ≤ b→ 1. Hence {a}⊳ ⊆ {b
p}⊳
also in this case. If u = p then 1 ≤ h→ b or 1 ≤ b→ 1 again depending whether z = b or z = b
p
for some b ∈ A. The first case follows since g ≤ h ≤ b which further implies {p}⊳ ⊆ {b}⊳. In the
second case, g ≤ b→ g since b ≤ 1. Thus {p}⊳ ⊆ {b
p}⊳.

The rules (L·), (R·), (L→) and (R→) have to be checked only for a, b ∈ A because a·p, p·b, a→p
and p→b are not defined. The rules (L·) and (R→) are trivial because for a, b ∈ A we have a◦b = a·b
and a
b = a→b in our setting. Concerning the right logical rule (R·), assume that x = cpm ∈ {a}⊳
and y = dpn ∈ {b}⊳ for some c, d ∈ A and m,n ∈ {0, 1}. Then chm ≤ a and dhn ≤ b. Thus
cdhm+n ≤ ab which is equivalent to x · y = cdhmax{0,m+n−1}pmin{1,m+n} ∈ {ab}⊳. Finally, for the
validity of (L→), assume that b ∈ {z}⊳ and x = cpk ∈ {a}⊳ for some c ∈ A and k ∈ {0, 1}. From
the second assumption we have chk ≤ a. Consequently, chk(a→ b) ≤ a(a→ b) ≤ b ∈ {z}⊳. Since
{z}⊳ is downward closed, we have chk(a → b) N z which is equivalent to hk N c(a → b)
z. It
follows that pk N c(a→ b)
z because the basic closed sets are also downward closed with respect
to ⊑ and p ⊑ h. Consequently, a→ b N cpk
z.

�

4.2. Explanations of design choices. In this section we again explain our design choices made
in the previous section. We also mention how the construction of our residuated frame is related
to the one given in [1].

4.2.1. Residuated frames as M-sets with a designated subset. We first note that in most residuated
frames considered in applications we have that 
 is an action. Recall that given a monoid (W, ◦, ε),
the pair (W ′,
) is called a (W, ◦, ε)-set if 
 is an action. So, such residuated frames are simply
(W, ◦, ε)-sets (W ′,
) together with an arbitrary subset D of W ′. This subset D is interdefinable
with the relation N by: D = {z ∈ W ′ : ε N z} = {ε}⊲ and x N z ⇔ x
z ∈ D. Also the nuclearity
property of N follows directly from properties of the action.

4.2.2. Residuated frame construction. To produce a one-step densification of A, we essentially
start from the standard frame associated with A, which is (A,A,≤, ·, 1,→). Then it is natural to
extend this frame by a new element p in a free fashion. This involves taking the free extension of
the monoid (A, ·, 1) with the new element p, namely the monoid W = Ap∗ = {apn : a ∈ A,n ∈ N},
where apn ·bpm = abpn+m. Furthermore, we need to extent the right universe A to at least A∪{p}.
Since we want an action from Ap∗ to the right universe, we can take the free action and choose
W ′ = W ×(A∪{p}), where x
(y, q) = (x◦y, q). This is exactly the approach used in [1]. However
we have seen that in Section 4.1 both W and W ′ were chosen much smaller. Nevertheless, we
actually obtain exactly the same dual algebra as in [1].

The reasons why we can consider a smaller monoid extension W follows from the fact that the
nucleus constructed in [1] identifies p2 with ph, in the sense that γ({p2}) = γ({ph}), so we can
make this identification much earlier at the level of the initial W .

Our choice of W ′ = A ∪ A
p is also smaller than W × (A ∪ {p}) Although the big W ′ =
W × (A ∪ {p}) yields the same dual algebra, it produces seemingly many more basic closed sets
{z}⊳, z ∈ W ′ simply because W ′ is bigger. It turns out that a lot of these basic closed sets
coincide, but if one checks properties at the frame level directly the large W ′ creates an explosion
of cases, making the verification of conditions, such as linearity, extremely cumbersome; see [1].
Of course W ′ needs to be a natural set of names for the basic closed sets; this is important as one
could otherwise choose as elements of W ′ all closed sets (usually a very hard task anyway), thus
beating the purpose of even using frames to construct the dual algebra. However, we want to stress
that it is a wise idea to reduce W ′ to a point where it still remains natural, but has no obvious
redundancies. To explain our point we show how to calculate the reduction from Ap∗ × (A∪ {p})
to A∪(A×{p}), or in more intuitive notation, and using the identification q ≡ (1, q), the reduction
from Ap∗
(A ∪ {p}) to A ∪ (A
p).
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Note that p∗ = {1} ∪ p+ and also p+ = pp∗, where p+ = {pn : n > 0}, so Ap∗ = Ap+ ∪ A =
Ap∗p ∪A. Using properties of the action and lifting 
 to sets elementwise we have

Ap∗
(A ∪ {p}) ≡ (Ap∗
A) ∪ (Ap∗
{p})
≡ (Ap∗
A) ∪ ((Ap∗p ∪A)
{p})
≡ (Ap∗
A) ∪ (Ap∗p
{p}) ∪ (A
{p})
≡ (p∗
(A
A)) ∪ (p∗
(A
({p}
{p}))) ∪ (A
{p})

Defining Y
P→ Z = {y → z : y ∈ Y, z ∈ Z} and making the identifications p∗
(A
A) ≡ p∗
(A

P→
A) ≡ p∗
A ≡ h∗ P→ A ⊆ A and p∗
(A
({p}
{p})) ≡ p∗
(A

P→ {1}) ≡ h∗ P→ (A
P→ {1}) ⊆ A,

stemming from the definition of 
 in the frame, we conclude with the set A∪A
{p}. In the above
we wrote z ≡ z′ for {z}⊳ = {z′}⊳, and we lifted ≡ to sets of elements in an elementwise fashion.

4.2.3. Adding square roots to an abelian group. To obtain the construction of Section 3.3, we
modify the multiplication of W = A ∪ Ap so that p2 = h. Then picking W ′ as above does not
yield an action in general, so we define W ′ = W × (A∪ {p}). However, it turns out that the basic
closed sets again fall under two categories if g = 1 and h is its cover.

5. Mixed amalgamation

The one-step densification described in the previous sections can be also viewed as a form of
amalgamation. More precisely, given a commutative residuated chain A with a gap g < h and
its one-step densification Ā, one can view Ā as an amalgam of A and the three element chain
{g < p < h} over the two element chain {g < h} (see Figure 3).

Here we will show that the above result can be further generalized. In particular, any com-
mutative residuated chain B can be amalgamated with any chain C over any chain A to produce
a commutative residuated chain D. The analogous result also holds for commutative tomonoids.
Note that usual amalgamation for commutative residuated chains neither follows from nor im-
plies the above mixed amalgamation property. In particular, densification is not really related to
the usual amalgamation property as there is no a priori prescribed structure of the subalgebra
generated by the new element(s) in the densified algebra.

We will make use of the following auxiliary constructions. Given a commutative residuated
chain A, one can define a residuated chain on the set U(A) of all upward closed subsets of A.
Indeed, it is easy to see that the map γ : P(A) → P(A) defined by γ(S) = ↑S, where ↑S is the
upset generated by S, is a nucleus on the residuated lattice P(A) = (P(A),∩,∪, ·,→, {1}). Thus
U(A) = P(A)γ is a residuated chain. Moreover, the map a 7→ ↑{a} is an order-reversing injection
preserving multiplication in A. If we apply this construction twice, we obtain a residuated chain
U(U(A)) and an order-embedding τ : A → U(U(A)) defined by τ(a) = Ua, where Ua = ↑{↑{a}} =
{U ∈ U(A) | a ∈ U}. In addition, it is a residuated lattice homomorphism. It clearly preserves
multiplication so it suffices to check that it preserves →. We have

Ua →Ub = {V ∈ U(A) | Ua ·γ V ⊆ Ub}
= {V ∈ U(A) | ∀U ∈ Ua : ↑(U · V ) ∈ Ub}
= {V ∈ U(A) | ∀U ∈ Ua : b ∈ ↑(U · V )}
= {V ∈ U(A) | b ∈ ↑(↑{a} · V )}
= {V ∈ U(A) | ∃v ∈ V : av ≤ b}
= {V ∈ U(A) | ∃v ∈ V : v ≤ a→ b} = Ua→b.

In fact, the above construction is just the canonical extension of A (details on canonical extensions
for residuated lattices can be found in [6, Chapter 6]).

Now we are ready to describe a construction which plugs a new element into any place within a
given commutative residuated chain A. Let G ⊆ A be a downset, we will define an extension AG

of A that inserts a new element just above all the elements of G and below all elements in A \G.
If G has a maximum g which is covered by h (i.e., g < h forms a gap) then AG is defined as the
one-step densification of A. Otherwise G has no maximum element, or it has a maximum element
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Figure 3. (Left) The one-step densification as amalgamation; (Right) The V-
formation and its completion.

but its complement has no minimum element (in other words G does not define a gap g < h).
Then we define AG to be U(U(A). This construction creates new elements for each infinitary join
and infinitary meet, so AG will contain one or two new elements between G and its complement.

In all of the above cases we have a construction which extends A by at least one element which
is above all elements in G and below all elements in A \G. We will denote by φ the embedding of
A into AG and actually we replace the image of φ by the original elements of A, thus converting
φ into an inclusion map and A into a subalgebra of AG.

Theorem 5.1. Let A, C be chains, let B be a commutative residuated chains and let fB : A→B
and fC : A→C be order embeddings. (The tuple (A,B, fB , C, fC) is often called a V-formation.)
Then there is a commutative residuated chain D, an order embedding gC : C→D and a residuated
lattice embedding gB : B→D such that the right diagram in Figure 3 commutes, i.e., gBfB = gCfC .

Proof. Without any loss of generality we identify the elements of A with their images in C under
fC . So we assume that A ⊆ C and fC is just the inclusion map. Using the axiom of choice, we can
index the elements of C \A by an ordinal α, i.e., C \A = {cβ ∈ C \A | β < α}. We will construct
the algebra D starting from B and inserting the elements of C \A by transfinite recursion.

We define C0 = A, D0 = B and g0 = fB . Further, we consider the chain {Cβ | β ≤ α} ordered
by inclusion, where Cβ = A ∪ {cδ ∈ C \A | δ < β}, i.e., Cβ contains all elements from A plus the
elements in C \A indexed by ordinals less than β. The minimum of this chain is C0 = A and the
maximum is Cα = C.

Now we define algebras Dβ and the maps gβ : Cβ → Dβ for ordinals 0 < β ≤ α. If β = δ+1 for
some ordinal δ. Then define Dβ = (Dδ)G for G = ↓gδ[↓{cβ} ∩ Cδ]. The map gβ is an extension
of gδ mapping cβ to an element in (Dδ)G which is above all elements in G and below all elements
in Dδ \ G. Thus gβ is an order-embedding and gβ |Cδ

= gδ so the corresponding inner diagram
commutes in Figure 4.

If β is a limit ordinal then we define Dβ =
⋃

δ<β Dδ and gβ =
⋃

δ<β gδ. It is obvious that Dβ is

a commutative residuated chain and gβ an order-embedding from Cβ to Dβ . Moreover gβ |Cδ
= gδ

for every δ < β.
Finally, the algebra D = Dα is the desired amalgam since B is its subalgebra and gα|A = g0 =

fB . So the outer diagram in Figure 4 commutes. �

6. Comparison of methods and viewpoints

Finally, we compare and relate the three approaches we described in this paper.

6.1. From residuated frames to modules. First we observe that the construction via residu-
ated frames is related to that one using modules.

Assume that W = (W, ◦, ε) is a commutative monoid and W ′ a W-set with action 
. Then

(P(W ),∪, ◦, {ε}) is a complete semiring and (P(W ′),
⋃∂

), namely with reverse inclusion, is a
module over (P(W ),

⋃
, ◦, {ε}) with lifted action X
Z = {x
z : x ∈ X, z ∈ Z}; we use the
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A = C0 C1 C2

B = D0 D1 D2

g 0 g 1 g 2

C = Cα

D = Dα

gα

Figure 4. The proof of the mixed amalgamation.

nonstandard notation
⋃∂

to denote the union operation, but considered as the meet of the module.

Indeed,
⋃
Xi


⋃∂
Zj =

⋃∂
(Xi
Zj) and Y 
(X
Z) = (X ◦ Y )
Z.

We also know that since P(W ) is a residuated lattice, (P(W ),
⋂
) is also a module over

(P(W ),
⋃
, ◦, {ε}), where the action is →.

Note that the map ⊳ : (P(W ′),
⋃∂

) → (P(W ),
⋂
) is a module morphism. Indeed, we have

X ◦ Y N Z iff Y N X
Z. Namely, Y ⊆ X → Z⊳ iff X ◦ Y ⊆ Z⊳ iff Y ⊆ (X
Z)⊳. So,

(X
Z)⊳ = X → Z⊳. Also, (
⋃∂

Zi)
⊳ =

⋂
Z⊳

i . The image of this map is an (P(W ),∪, ◦, {ε})-
submodule of (P(W ),

⋂
) and actually an intersection-closed structure in P(W ), so it forms a

residuated lattice and is exactly the dual algebra W+ of the frame W.

6.2. From residuated frames to polynomials. Given a (commutative) residuated lattice A,
we consider the residuated frame W = (W,W ′, N, ·, 1,
) we defined in Section 4.1. To show the
relationship between this residuated frame and the residuated lattice A(X), we consider the subset
X = {p} of W . By collecting all the monomials cpn for the same n together, we note that each
subset C of W can be written as C = C0 ∪ C1X, where Cn = {c ∈ A : cpn ∈ C}.

Note that multiplication in the powerset P(W ) is given by the formula

(C0 ∪ C1X)(D0 ∪D1X) = C0D0 ∪ (C0D1 ∪ C1D0 ∪ C1D1{h})X

and join is defined as the componentwise union. The resulting structure is a semiring which is
similar to A(X) in the sense that we replaced the coefficient semiring A by (P(A),∪, ·, {1}) and
X is not an abstract indeterminate this time but the set {p}.

We also note that in the case when A is complete, for every principal downset D ⊆ A and
arbitrary subset C ⊆ A, we have that C → D ∈ P(A) is also a principal downset; also the
intersection of principal downsets is also principal. In other words the principal downsets form a
nuclear retraction of (P(A),∪,∩, ·,→, {1}), where the nucleus is given by S 7→ ↓(∨S).

We extend this function to the powerset of W = A∪Ap, under the direct product ordering, by
setting C0 ∪C1X 7→ ↓∨C0 ∪ (↓∨C1)X. This defines also a nucleus now on the residuated lattice
P(W) = (P(W ),∪,∩, ·,→, {1}), whose image is isomorphic to the semiring (actually residuated
lattice) A(X).

Since A(X) is a nuclear retraction of the residuated lattice P(W), it is also a homomorphic
image of the semiring P(W) and also a P(W)

∨
-submodule of P(W)

∧
. It turns out that the final

dual algebra W+ is a further submodule of it. Thus in case that A is complete the approach of
residuated frames and the approach using polynomials coincide by simply taking X = {p}.

6.3. From residuated frames to languages. Finally, we compare the approaches using resid-
uated frames and syntactic congruences. Assume that we have a commutative residuated chain
A with a gap g < h, θ is the pomonoid congruence on A ∪ Ap defined in Section 2 and γ is
the nucleus induced by the residuated frame W defined in Section 4.1. We claim that x θ y iff
γ({x}) = γ({y}) for all x, y ∈ A ∪Ap.
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Indeed, first note that if A is residuated then the language b−1La for a, b ∈ A is just the
language Lb→a. Further note that for a, b ∈ A we have {a}⊳ = La and {b
p}⊳ = b−1Lp. Thus
b−1La = {b→ a}⊳. Consequently, we have (cf. Lemma 2.2)

x
⋂

a∈A

∼La
y iff x ∼La

y for all a ∈ A

iff x ∈ b−1La ⇔ y ∈ b−1La for all a, b ∈ A

iff x ∈ {b→ a}⊳ ⇔ y ∈ {b→ a}⊳ for all a, b ∈ A

iff x ∈ {a}⊳ ⇔ y ∈ {a}⊳ for all a ∈ A.

Similarly, we have (cf. Lemma 2.2)

x ∼Lp
y iff x ∈ u−1Lp ⇔ y ∈ u−1Lp for all u ∈ A ∪Ap

iff x ∈ b−1Lp ⇔ y ∈ b−1Lp and x ∈ b−1L1 ⇔ y ∈ b−1L1 for all b ∈ A

iff x ∈ {b
p}⊳ ⇔ y ∈ {b
p}⊳ and x ∈ {b→ 1}⊳ ⇔ y ∈ {b→ 1}⊳ for all b ∈ A.

Using the above facts, we finally obtain the following chain of equivalences:

x θ y iff x
⋂

a∈A

∼Lz
y and x ∼Lp

y

iff x ∈ {a}⊳ ⇔ y ∈ {a}⊳ and x ∈ {b
p}⊳ ⇔ y ∈ {b
p}⊳ for all a, b ∈ A

iff x ∈ {z}⊳ ⇔ y ∈ {z}⊳ for all z ∈ A ∪A
p

iff γ({x}) = γ({y}).

6.4. Combinations with completions. Given a commutative residuated chain A with a gap
g < h, the approach with residuated frames produces a complete residuated chain, the one with
polynomials produces a residuated chain (which may not be complete) and the approach with
languages yields simply a tomonoid, and the three results sit one inside the other. However, the
last two sit as appropriate substructures of the first, and to be precise the first complete residuated
chain is the Dedekind-MacNeille completion of each of the other two. In that sense the approach
by residuated frames subsumes the other two, as one can then take the residuated sublattice or
subtomonoid of the complete residuated chain and obtain the desired result.

The approaches via residuated frames and polynomials suppose that the original algebra A is
a commutative residuated chain. Thus it is not clear whether we can use it in order to obtain
a one-step densification of a commutative tomonoid. Nevertheless, every commutative tomonoid
can be embedded into a commutative residuated chain using a nuclear completion. Namely, one
can take the nuclear retraction of P(A) generated by downsets {a ⇒ b ⊆ A | a, b ∈ A} (cf. [2, 10]).

Thus any of the three approaches can be applied, in combination with completions at appro-
priate places, to subsume the others. All these are of course not clear in the beginning as the
tools and methods come from different disciplines and this is why we felt compelled to describe
in detail the three approaches and their connections hoping to initiate a partial unification of the
three subjects.
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