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Abstract

It is known that the monoidal t-norm based logic (MTL) and many of its schematic
extensions are decidable. The usual way how to prove decidability of some schematic extension
of MTL is to show that the corresponding class of algebras of truth values has the finite
model property (FMP) or the finite embeddability property (FEP). However this method does
not work for the extensions whose corresponding classes of algebras have only trivial finite
members. Typical examples of such extensions are the product logic and the cancellative
extension of MTL (ΠMTL) because the only finite algebras belonging to the corresponding
varieties are finite Boolean algebras. The product logic is known to be decidable because of its
connection with ordered Abelian groups. However the decidability of ΠMTL was not known.
This paper solves this problem.

1 Introduction

In the last two decades many complexity results on propositional many-valued logics have ap-
peared. This research in our context was started by Mundici in [17] where it is shown that the
set of tautologies of  Lukasiewicz logic ( L) is coNP-complete. The same was proved also for Gödel
logic (G) and the product logic (Π) in [2]. The coNP-completeness of tautologies of Hájek’s basic
fuzzy logic (BL) was shown in [3]. Finally in [13], the same result was also obtained for any
particular t-algebra (i.e. BL-algebra on the real interval [0, 1] with the monoidal operation given
by a continuous t-norm). An overview of these results can be found in [1].

Although for the logics above BL we have the above mentioned results, the situation in the
monoidal t-norm based logic (MTL) and its schematic extensions is still unclear. So far there
are only results on decidability. The usual way how to prove decidability of some schematic
extension of MTL is to show that the corresponding class of algebras of truth values has the finite
model property (FMP) or the finite embeddability property (FEP). MTL, SMTL, and IMTL are
decidable since they have the FEP (for the proof see [6]). However this method does not work for
the extensions whose corresponding classes of algebras have only trivial finite members. Typical
examples of such extensions are Π and the cancellative extension of MTL (ΠMTL) because the only
finite algebras belonging to the corresponding varieties are finite Boolean algebras. Π is known to
be decidable because of its connection with ordered Abelian groups. However the decidability of
ΠMTL was not known. In this paper we solve this problem.

The paper is organized as follows; Section 2 recalls basic definitions and main results needed in
the sequel. In Section 3 we improve the completeness theorem in the sense that ΠMTL is complete
w.r.t. the class of ΠMTL-chains arising from finitely generated submonoids of finite lexicographic
products of reals. Section 4 then shows that we can consider instead of lexicographic products of
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reals lexicographic products of integers. Thus we obtain a completeness w.r.t. a countable class
of algebras. Finally, using this result we prove that ΠMTL is decidable in Section 5.

2 Preliminaries

We start with basic definitions and results on MTL and its schematic extensions which we will
need in the sequel. The language of MTL consists of a countable set of propositional variables,
a strong conjunction &, a minimum conjunction ∧, an implication ⇒, and a truth constant ⊥.
Derived connectives are defined as follows:

ϕ ∨ ψ is ((ϕ⇒ ψ)⇒ ψ) ∧ ((ψ ⇒ ϕ)⇒ ϕ) ,
¬ϕ is ϕ⇒ ⊥ ,

ϕ ≡ ψ is (ϕ⇒ ψ)&(ψ ⇒ ϕ) ,
> is ¬⊥ .

MTL has a Hilbert style calculus introduced in [7]. The following are the axioms of MTL:

(A1) (ϕ⇒ ψ)⇒ ((ψ ⇒ χ)⇒ (ϕ⇒ χ)) ,
(A2) ϕ&ψ ⇒ ϕ ,
(A3) ϕ&ψ ⇒ ψ&ϕ ,
(A4) (ϕ ∧ ψ)⇒ ϕ ,
(A5) (ϕ ∧ ψ)⇒ (ψ ∧ ϕ) ,
(A6) (ϕ&(ϕ⇒ ψ))⇒ (ϕ ∧ ψ) ,
(A7a) (ϕ⇒ (ψ ⇒ χ))⇒ (ϕ&ψ ⇒ χ) ,
(A7b) (ϕ&ψ ⇒ χ)⇒ (ϕ⇒ (ψ ⇒ χ)) ,
(A8) ((ϕ⇒ ψ)⇒ χ)⇒ (((ψ ⇒ ϕ)⇒ χ)⇒ χ) ,
(A9) ⊥ ⇒ ϕ .

The deduction rule of MTL is modus ponens. The notion of a proof is defined in the usual
way. Let T be a theory over MTL and ϕ be a formula. Then we write T ` ϕ if ϕ is provable from
T in the system MTL.

MTL has several important axiomatic extensions. Some of them were mentioned in the intro-
duction. BL is the extension of MTL by the following axiom schema:

(Div) (ϕ ∧ ψ)⇒ (ϕ&(ϕ⇒ ψ)) .

 Lukasiewicz logic can be obtained by adding the law of involution to BL, i.e.

(Inv) ¬¬ϕ⇒ ϕ .

Finally, the product logic is the extension of BL by the following schema:

(C) ¬ψ ∨ ((ψ ⇒ ϕ&ψ)⇒ ϕ) .

Originally the product logic was defined as the extension of BL by the axiom schemata (Π1)
and (Π2), see [10]. Our definition comes from [18] where it was shown that both definitions are
equivalent.

If we add (Inv) to MTL, we obtain the involutive monoidal t-norm based logic (IMTL) which is
strictly weaker than  Lukasiewicz logic. If we extend MTL by (C), we get the cancellative extension
of MTL (ΠMTL) which is strictly weaker than product logic. Similarly as in the case of product
logic, the original definition of ΠMTL in [12] used the schemata (Π1) and (Π2) instead of (C), for
details see [18].

The semantical part of MTL is based on the notion of an MTL-algebra which is a special kind
of residuated lattice (for details on residuated lattices see [16]). A commutative residuated lattice
A = (A, ∗,→,∧,∨,1) is an algebraic structure, where (A, ∗,1) is a commutative monoid, (A,∧,∨)
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is a lattice, and (∗,→) forms a residuated pair, i.e. x ∗ y ≤ z iff x ≤ y → z . When we refer to a
commutative residuated lattice, we will omit the word commutative since we will deal here only
with the commutative case. The symbol xn stands for x ∗ · · · ∗ x (n times). In the absence of
parenthesis, ∗ is performed first, followed by →, and finally ∨ and ∧. The operation → is called
residuum. It follows from the definition that → is antitone in the first argument and monotone
in the second one. Moreover, the residuum is fully determined by ∗ and the order. It can be
expressed as follows:

x→ y = max{z ∈ A | x ∗ z ≤ y} .

We also have the following:

Lemma 2.1 Let A = (A, ∗A,→A,∧A,∨A,1A) and B = (B, ∗B ,→B ,∧B ,∨B ,1B) be residuated
lattices such that their→-free reducts are isomorphic. Then A and B are isomorphic as residuated
lattices as well.

proof: Let h : A→ B be the isomorphism between the →-free reducts of A and B. We have to
show that h(x→A y) = h(x)→B h(y). By residuation we have x ∗A (x→A y) ≤A y. Since h is a
lattice and monoidal homomorphism, we get

h(x ∗A (x→A y)) = h(x) ∗B h(x→A y) ≤B h(y) .

Thus again by residuation we obtain h(x→A y) ≤B h(x)→B h(y).
On the other hand, we have h(x) ∗B (h(x)→B h(y)) ≤B h(y). Thus we get

h−1(h(x) ∗B (h(x)→B h(y))) = x ∗A h−1(h(x)→B h(y)) ≤A y .

Finally by residuation we get h−1(h(x) →B h(y)) ≤A x →A y which is equivalent to h(x) →B

h(y) ≤B h(x→A y). �

A residuated lattice A is said to be integral if 1 is the top element of A. In this case we have
x ≤ y iff x→ y = 1. If a residuated lattice possesses a bottom element 0, then we have 0 ∗ x = 0.
A residuated lattice A is said to be cancellative if for all x, y, z ∈ L, x ∗ z = y ∗ z implies x = y.
A totally ordered residuated lattice is called a residuated chain. A residuated lattice, which is
isomorphic to a subdirect product of residuated chains, is said to be representable.

Definition 2.2 An MTL-algebra is a structure L = (L, ∗,→,∧,∨,0,1) where the following con-
ditions are satisfied:

1. (L, ∗,→,∧,∨,1) is an integral residuated lattice,

2. (L,∧,∨,0,1) is a bounded lattice,

3. the identity (x→ y) ∨ (y → x) ≈ 1 is valid in L.

A totally ordered MTL-algebra is called an MTL-chain.

A mapping e from formulas to L is called an L-evaluation if e(>) = 1, e(⊥) = 0, and e(ϕ ◦ ψ) =
e(ϕ) ◦ e(ψ) for ◦ ∈ {&,⇒,∧}. We will write T |=L ϕ if for each L-evaluation e such that
e(T ) ⊆ {1} we have e(ϕ) = 1. Throughout the text we will use without mentioning also the
alternative signature of an MTL-algebra where the lattice operations ∧ and ∨ are substituted by
the corresponding order ≤.

MTL is an algebraizable logic in the sense of Blok and Pigozzi [4] and the variety of MTL-
algebras is its equivalent algebraic semantics. This means that there is one-to-one correspondence
between schematic extensions of MTL and subvarieties of MTL-algebras. If Σ is a set of formulas
and L is the logic obtained by adding to MTL the formulas from Σ as axiom schemata, then
the equivalent algebraic semantics of L is the subvariety of MTL axiomatized by the equations
{ϕ ≈ 1 : ϕ ∈ Σ}. Since this paper deals mainly with ΠMTL, we recall also the precise definition
of a ΠMTL-algebra.
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Definition 2.3 A ΠMTL-algebra L = (L, ∗,→,∧,∨,0,1) is an MTL-algebra satisfying the iden-
tity ¬y ∨ ((y → x ∗ y)→ x) ≈ 1, where ¬y = y → 0. A totally ordered ΠMTL-algebra is called a
ΠMTL-chain.

ΠMTL is complete w.r.t. its algebraic semantics. Moreover, since each ΠMTL-algebra is
isomorphic to a subdirect product of ΠMTL-chains, we have even completeness w.r.t. the class of
totally ordered ΠMTL-algebras.

Theorem 2.4 Let T be a theory over ΠMTL and ϕ be a formula. Then T ` ϕ if and only if
T |=L ϕ for each ΠMTL-chain L.

Let V denote the variety of all ΠMTL-algebras and EL be the set of all L-evaluations. The
main goal of this paper is to show that ΠMTL is decidable, i.e. the following set

TAUT = {ϕ | (∀L ∈ V)(∀e ∈ EL)(e(ϕ) = 1)}

is decidable. Clearly TAUT ∈ Σ1 by Theorem 2.4. Thus it is sufficient to show that also its
complement is in Σ1. Observe also that since ΠMTL is an algebraizable logic, the decidability of
TAUT is equivalent to the decidability of the equational theory of ΠMTL-algebras.

As we mentioned in the introduction the usual method how to prove the decidability of an
algebraizable logic is to show that the corresponding algebraic semantics possesses the finite em-
beddability property (FEP). Let us recall what it means.

Definition 2.5 Let A = (A, 〈fi : i ∈ I〉) be an algebra and let B ⊆ A be an non-empty set. The
partial subalgebra B of A with domain B is the partial algebra (B, 〈fi : i ∈ I〉), where for every
i ∈ I, fi n-ary, b1, . . . , bn ∈ B,

fBi (b1, . . . , bn) =

{
fAi (b1, . . . , bn) if fAi (b1, . . . , bn) ∈ B,
undefined otherwise.

By an embedding of a partial algebra B into an algebra A we mean one-to-one mapping h : B → A
that preserves all existing operations, i.e., if for some operation symbol fi and b1, . . . , bk ∈ B we
have fBi (b1, . . . , bk) is defined, then h(fBi (b1, . . . , bk)) = fBi (h(b1), . . . , h(bk)).

Given a class K of algebras, Kfin will denote the class of its finite members.

Definition 2.6 A class K of algebras has the finite embeddability property (FEP, for short) if,
and only if, every finite partial subalgebra of some member of K can be embedded in some algebra
of Kfin.

The FEP is interesting for its connection to other well-known properties.

Definition 2.7 A class K of algebras of the same type has the strong finite model property
(SFMP, for short) if, and only if, every quasiequation that fails to hold in every algebra of K can
be refuted in some member of Kfin.

Definition 2.8 A class K of algebras of the same type has the finite model property (FMP, for
short) if, and only if, every equation that fails to hold in every algebra of K can be refuted in some
member of Kfin.

A variety has the FMP if, and only if, it is generated by its finite members and a quasivariety
has the SFMP if, and only if, it is generated (as a quasivariety) by its finite members. In [5] it is
proved that for classes of algebras of finite type closed under finite products (hence, in particular,
for varieties of MTL-algebras) the FEP and the SFMP are equivalent. This means that if some
variety has the FEP then its decidability already follows.

However in our case we cannot proceed in this way because the variety of ΠMTL-algebras does
not possess the FEP. In [12] it was shown the following result.
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Lemma 2.9 An MTL-chain L is a ΠMTL-chain if and only if for any x, y, z ∈ L, z 6= 0, we
have x ∗ z = y ∗ z implies x = y.

As a corollary of this lemma we obtain that the only nontrivial finite ΠMTL-chain is the two
element Boolean algebra. Thus the class of all finite ΠMTL-algebras is the class of all finite
Boolean algebras. Consequently, we need to proceed in a different way. In fact, we will prove that
it is enough to show that there is a countable class of ΠMTL-algebras such that each finite partial
subalgebra of a ΠMTL-chain is embeddable into a member of this class.

Before we continue, we will show that we need not consider the bottom element during the
construction of the embedding. Due to Lemma 2.9 it can be shown that there is a connection
between cancellative residuated chains and ΠMTL-chains.

Lemma 2.10 Let L = (L, ∗,→,≤,0,1) be a ΠMTL-chain and L′ = L−{0}. Then the subreduct
L′ = (L′, ∗,→,≤,1) is an integral cancellative residuated chain.

Also the other direction is possible. If we have an integral cancellative residuated chain L =
(L, ∗,→,≤,1), we can extend it to a ΠMTL-chain by adding a bottom element 0. Let L0 = L∪{0}
be the new universe. The order ≤′ is an extension of ≤ in such a way that 0 ≤′ x for all x ∈ L.
The operations are defined as follows:

x ∗′ y =

{
x ∗ y x, y ∈ L ,
0 x = 0 or y = 0 ,

x→′ y =


x→ y x, y ∈ L ,
1 x = 0 ,

0 y = 0 and x > 0 .

Lemma 2.11 Let L = (L, ∗,→,≤,1) be an integral cancellative residuated chain. Then the struc-
ture L0 = (L0, ∗′,→′,≤′,0,1) is a ΠMTL-chain.

Lemma 2.12 Let A and L be integral cancellative residuated chains and B be a partial subalgebra
of A. Further, let A0 and L0 be the ΠMTL-chains constructed as in Lemma 2.11. Suppose that
there is an embedding h′ : B → L. Then there is an embedding h : B0 → L0 of the partial
subalgebra B0 into L0 where B0 = B ∪ {0}.

proof: We will extend h′ to h as follows:

h(x) =

{
h′(x) if x 6= 0 ,

0 otherwise .

We have to show that h is an embedding. Obviously it is one-to-one. Let x ∈ B0. Then

h(0) ∗ h(x) = 0 ∗ h(x) = 0 = h(0) = h(0 ∗ x) .

Similarly for ∧ and ∨. If 0→ x = 1 ∈ B0 we have

h(0)→ h(x) = 0→ h(x) = 1 = h(1) = h(0→ x) .

Finally, if x > 0 then h(x) > 0 and we have

h(x)→ h(0) = h(x)→ 0 = 0 = h(0) = h(x→ 0) .

Hence h is an embedding of the partial subalgebra B0 into L0. �

At the end of this section we also recall the notion of an Archimedean class and some of its
properties. Let us recall that a totally ordered commutative monoid A = (A, ∗,≤,1) is a structure
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where (A, ∗,1) is a commutative monoid, (A,≤) is a chain, and x ≤ y implies x ∗ z ≤ y ∗ z for
any x, y, z ∈ A. Again the word commutative will be omitted since we will deal only with the
commutative monoids. Similarly as in the case of a residuated lattice, a totally ordered monoid is
said to be integral if the neutral element 1 is the top element as well.

Definition 2.13 Let A = (A, ∗,≤,1) be an integral totally ordered monoid, a, b ∈ A, and ∼ be
an equivalence on A defined as follows:

a ∼ b iff there exists an n ∈ N such that an ≤ b ≤ a or bn ≤ a ≤ b.
Then for any a ∈ A the equivalence class [a]∼ is called an Archimedean class.

We list several easy results about Archimedean classes.

Lemma 2.14 Let A = (A, ∗,≤,1) be an integral totally ordered monoid and a, b ∈ A. Then the
following holds:

1. [a]∼ is closed under ∗.

2. [a]∼ is convex, i.e. for all x, y ∈ [a]∼, x ≤ z ≤ y implies z ∈ [a]∼.

3. [a ∗ b]∼ = [min{a, b}]∼.

Note that by Lemma 2.14(2) Archimedean classes of the monoid A can be totally ordered by
letting [a]∼ < [b]∼ iff a < b and [a]∼ ∩ [b]∼ = ∅. Further, if A is finitely generated then the set of
Archimedean classes of A is finite by Lemma 2.14(3).

Now we will discuss a certain class of totally ordered monoids which will be used at the sequel.
Let Rn

lex denote the lexicographic product of n-copies of the additive group of reals (R,+,−,≤, 0),
i.e., the universe of Rn

lex is Rn, the group operation is defined component-wise, and the order is
lexicographic. The neutral element 〈0, . . . , 0〉 of Rn

lex will be denoted by 0 for short. By N(Rn
lex)

we will denote the negative cone of Rn
lex. Observe that N(Rn

lex) forms an integral cancellative
residuated chain if we define x → y = y − x for x > y and 0 otherwise. Moreover, N(Rn

lex) has
n+ 1 Archimedean classes.

We are especially interested in the finitely generated submonoids of N(Rn
lex). Let A be such

a submonoid. Then A has finitely many Archimedean classes as we already mentioned. Let
CA = {C1, . . . , Ck} be the chain of all Archimedean classes of A. Note that k ≤ n + 1 and
Ck = {0}. Moreover, for each Cr, r < k, there is j ∈ {1, . . . , n} such that 〈x1, . . . , xn〉 ∈ Cr iff
xj < 0 and xi = 0 for all i < j. Let t be the following function:

t(r) =

{
n+ 1 if r = k ,

min{j | xj < 0} for some 〈x1, . . . , xn〉 ∈ Cr otherwise .
(1)

If we define an equivalence on N(Rn
lex) by 〈x1, . . . , xn〉 ∼j 〈y1, . . . , yn〉 iff xi = yi for all 1 ≤ i < j,

then for r < k we have

Cr = {x ∈ A | x ∼t(r) 0} − {x ∈ A | x ∼t(r+1) 0} .

Example 2.15 Consider the following subset of N(R4
lex):

X = {〈−1, 1, 1, 1〉, 〈0, 0,−2, 2〉, 〈0, 0, 0,−3〉} .
Let A be the submonoid of R4

lex generated by X with the order inherited from R4
lex. Since all

elements in X are less than 0, A is integral. The following are the Archimedean classes of A:

C1 = {〈x1, x2, x3, x4〉 ∈ A | x1 < 0} ,
C2 = {〈x1, x2, x3, x4〉 ∈ A | x1 = x2 = 0, x3 < 0} ,
C3 = {〈x1, x2, x3, x4〉 ∈ A | x1 = x2 = x3 = 0, x4 < 0} ,
C4 = {0} .

The function defined by Equation 1 looks in our particular case as follows:

t(1) = 1 , t(2) = 3 , t(3) = 4 , t(4) = 5 .
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3 A smaller generating class for ΠMTL-algebras arising
from lexicographic products of reals

In this section we will improve Theorem 2.4 by showing that there is a smaller class generating
the variety of ΠMTL-algebras. Let A be an integral cancellative residuated chain. By Â we will
denote the →-free reduct of A. Given X ⊆ A, M(X) will denote the subalgebra of Â generated
by X. Note that M(X) is in fact submonoid of A generated by X with the order inherited from
A. The following lemma shows that M(X) can be sometimes extended to an integral cancellative
residuated chain (for the proof see [14, Lemma 3.1] or [15, Lemma 5]).

Lemma 3.1 Let B be an integral finitely generated totally ordered monoid. Then B is inversely
well ordered (i.w.o.), i.e., each nonempty subset of B has a maximum.

Thus by the latter lemma M(X) is i.w.o. and a residuum in M(X) exists. It can be computed as
follows:

x→ y = max{z ∈M(X) | x ∗ z ≤ y} .

Let us denote the resulting integral cancellative residuated chain by M(X)→. The extension of
M(X)→ to a ΠMTL-chain by Lemma 2.11 will be denoted by M(X)→0 .

We are going to improve Theorem 2.4 by showing that ΠMTL is complete w.r.t. those ΠMTL-
chains which arise from finitely generated submonoids of N(Rn

lex). More precisely we are claiming
the following statement.

Theorem 3.2 Let T be a finite theory over ΠMTL and ϕ be a formula. Then T ` ϕ iff T |=M(X)→0
ϕ for each finite subset X ⊆ N(Rn

lex) and each n ∈ N.

Proof of Theorem 3.2

Let T be a finite theory over ΠMTL and ϕ be a formula such that T 6` ϕ. Then there is a ΠMTL-
chain L = (L, ∗L,→L,≤L,0L,1L) such that T 6|=L ϕ by Theorem 2.4. Let e be the L-evaluation
such that e(ϕ) < 1L and e(T ) = {1L}. Let X = {e(ψ) | ψ is a subformula of τ ∈ T ∪ ϕ} ∪ {1L}.
Thus X is a finite partial subalgebra of L. We are going to construct an embedding of the partial
subalgebra X into a suitable ΠMTL-chain. By Lemma 2.12 we can assume that 0L 6∈ X. Firstly
we will show the following results.

Lemma 3.3 Let M(X)→ = (M(X), ∗,→,≤,1) be the integral cancellative residuated chain aris-
ing from the submonoid of L generated by X. The identity mapping id : X → M(X)→ is an
embedding of the partial subalgebra X into M(X)→.

proof: Note that ∗, ≤ are just restrictions of ∗L and ≤L respectively. Moreover 1 = 1L. The
mapping id is obviously one-to-one and order-preserving. Let x, y, z ∈ X. Suppose that z = x∗Ly.
Then id(x) ∗ id(y) = x ∗ y = x ∗L y = z = id(z). Now assume that z = x →L y = max{z′ ∈ L |
x ∗L z′ ≤L y}. Then

id(x)→ id(y) = max{z′ ∈M(X) | x ∗L z′ ≤L y} ≤L x→L y = z = id(z) ,

because {z′ ∈M(X) | x∗L z′ ≤L y} ⊆ {z′ ∈ L | x∗L z′ ≤L y}. On the other hand since z ∈M(X)
and x ∗ z ≤ y, we have

id(z) = z ≤ max{z′ ∈M(X) | x ∗ z′ ≤ y} = id(x)→ id(y) .

Thus id(z) = id(x)→ id(y). �

Now we finish the proof of Theorem 3.2. Each cancellative totally ordered monoid can be
embedded into a totally ordered group by introducing fractions (see e.g. [8, Page 161, Corol-
lary 5]). Thus M(X) can be embedded into a totally ordered Abelian group G. Since M(X)
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is finitely generated, G is finitely generated as well. Further it is well-known that each totally
ordered Abelian group can be embedded into a full Hahn group (see [8, 9]). Since G is finitely
generated, this Hahn group is just Rn

lex for some n ∈ N. Thus we can embed M(X) into Rn
lex by

an order-preserving embedding h. Since M(X) is integral, we have h(M(X)) ⊆ N(Rn
lex). Clearly

M(X) ∼= h(M(X)) = M(h(X)). Due to Lemma 2.1 we in fact get M(X)→ ∼= M(h(X))→. Thus
h◦id : X →M(h(X)) is an embedding of the partial subalgebra X into M(h(X)) and the theorem
follows. �

Remark 3.4 Let T be a finite theory over ΠMTL and ϕ be a formula. It follows from the proof
of Theorem 3.2 that if T 6` ϕ then there exists a finite subset X ⊆ N(Rn

lex), 0 ∈ X, and M(X)→0 -
evaluation e such that e(T ) ⊆ {0} and e(ϕ) < 0 (note that 0 is the top element in M(X)→0 ).
Moreover, let S = {ψ | ψ is a subformula of τ ∈ T ∪ {ϕ}}. Then e(S) ⊆ X ∪ {0} where 0 is the
bottom element in M(X)→0 (see Lemma 2.11).

Corollary 3.5 The class of all M(X)→0 for each finite subset X ⊆ N(Rn
lex) generates (as a

quasivariety) the variety of ΠMTL-algebras.

Corollary 3.6 The class of all M(X)→ for each finite subset X ⊆ N(Rn
lex) generates (as a

quasivariety) the variety of commutative integral cancellative representable residuated lattices.

4 A generating class for ΠMTL-algebras arising from lexi-
cographic products of integers

In this section we will further reduce the generating set for ΠMTL-algebras. We in fact show that
instead of lexicographic products of reals, we can consider lexicographic products of integers. Let
Zn

lex denote the lexicographic product of n-copies of the additive group of integers (Z,+,−,≤, 0).
By N(Zn

lex) we will denote the negative cone of Zn
lex. Again N(Zn

lex) forms an integral cancellative
residuated chain.

We will start with a crucial lemma which enables us to approximate reals by integers. If B ⊆ V
is a basis of a vector space V and x ∈ V then we write x = 〈q1, . . . , qn〉B for expressing the fact
that the vector x has coordinates q1, . . . , qn in the basis B. By R− we will denote the set of
non-positive reals.

Lemma 4.1 Let X be a finite subset of R− and a ∈ M(X). Then there is a monoid homomor-
phism h : M(X)→ Z such that h is one-to-one and order-preserving for all x, y ∈ [a, 0] ∩M(X).

proof: Let us assume that X 6= {0}. For X = {0} the statement is trivial. Firstly, observe that
the set [a, 0] ∩M(X) is finite. Indeed, since the addition in R− is Archimedean (i.e., for each
x, y ∈ R− such that y < x < 0 there is k ∈ N such that kx < y), there is ki ∈ N for each xi ∈ X
such that kixi < a. Since each element y ∈M(X) can be expressed as y =

∑
lixi for some li ∈ N

and xi ∈ X, we get that only finitely many elements from M(X) can be greater or equal to a.
Now recall that R forms a vector space over the field of rational numbers Q. Thus there is

a maximal linearly independent subset B ⊆ X which is a basis of the subspace generated by X.
Let d be its dimension, i.e. d = |B|. Then any element x ∈ M(X) can be uniquely expressed as

x =
∑d

i=1 qibi where bi ∈ B, qi ∈ Q. Let C = {〈q1, . . . , qd〉 | x = 〈q1, . . . , qd〉B , x ∈ X} and s ∈ N
be the smallest natural number such that sC ⊆ Zd. There is such s since C is finite.

Let m = min{|x−y| | x 6= y, x, y ∈ [a, 0]∩M(X)}. Such a minimum exists since [a, 0]∩M(X)
is finite. Let ε = m/(2u) where

u = max

{
d∑

i=1

|qi|
∣∣∣ x = 〈q1, . . . , qd〉B , x ∈ [a, 0] ∩M(X)

}
.

8



Let x ∈ R. Let [x] denote a function such that [x] is some of the nearest integers to x for every
x. Clearly [x] = x+ δ for some |δ| < 1. Then for every n ∈ N we have∣∣[nx]/n− x

∣∣ =
∣∣δ/n∣∣ < 1/n .

Let us choose n0 ∈ N such that one has
∣∣[n0x]/n0 − x

∣∣ < 1/n0 ≤ ε for all x ∈ B.
Now we define the mapping h : M(X) → Z. If b ∈ B then h(b) = s[n0b]. If x ∈ M(X) then

x can be uniquely expressed as x =
∑
qibi where bi ∈ B and qi ∈ Q. Thus we can extend h to a

monoid homomorphism by h(x) =
∑
qih(bi) for every x ∈ M(X). We will show that h(x) ∈ Z.

Since x ∈ M(X), we have x =
∑n

i=1 kixi for some ki ∈ N and xi ∈ X. For each xi ∈ X, we have
xi = 〈qi1, . . . , qid〉B . By the choice of s, the numbers sqij are integers for every xi ∈ X. Hence,
h(xi) ∈ Z for every xi ∈ X and, consequently also for every x ∈M(X).

We have to show that h is one-to-one and order-preserving on [a, 0] ∩M(X). Suppose that
x, y ∈ [a, 0] ∩M(X) such that x < y. Then x =

∑
qibi and y =

∑
tibi for some qi, ti ∈ Q. We

need to prove that h(x) < h(y) which is equivalent to h(x)/sn0 < h(y)/sn0. For every i we have∣∣h(bi)/sn0 − bi
∣∣ < 1/n0 ≤ ε .

Hence, ∣∣h(x)/sn0 − x
∣∣ =

∣∣∣∑ qi
(
h(bi)/sn0 − bi

)∣∣∣ < ∣∣∣∑ qi

∣∣∣ε ≤ uε .
Similarly,

∣∣h(y)/sn0 − y
∣∣ < uε. Consequently,

h(y)/sn0 − h(x)/sn0 > y − x− 2uε = y − x−m ≥ 0 .

�

Lemma 4.2 Let X be a finite subset of R− and h : M(X) → Z be the monoid homomorphism
from Lemma 4.1 such that h is one-to-one and order-preserving for all x, y ∈ [2m, 0] ∩M(X),
where m = min(X). If x, y ∈M(X) such that x < y and y ≥ m, then h(x) < h(y).

proof: Let us assume that m < 0 otherwise it is trivial. Firstly, if x ≥ 2m then h(x) < h(y)
since h is one-to-one and order-preserving on [2m, 0] ∩M(X). Thus assume that x < 2m. Since
x ∈M(X), we have x =

∑n
i=1 kixi for some ki ∈ N and xi ∈ X. Let

S = {z < 2m | z =

n∑
i=1

aixi, ai ∈ N, ai ≤ ki} .

Since M(X) is i.w.o., S has a maximum. Let max S =
∑
lixi. We can assume w.l.o.g. that

l1 ≥ 1 and x1 < 0. Let u = (l1 − 1)x1 +
∑n

i=2 lixi. As u > max S, we get u ≥ 2m. Further, since
x1 ≥ m, we obtain u < m. Indeed, suppose that u ≥ m. Then max S = u + x1 ≥ m + x1 ≥ 2m
(a contradiction). Moreover, we get h(x) ≤ h(u) since

h(x) =

n∑
i=1

kih(xi) ≤
n∑

i=1

lih(xi) ≤ (l1 − 1)h(x1) +

n∑
i=2

lih(xi) = h(u) .

As 2m ≤ u < m ≤ y, we have h(u) < h(y). Thus h(x) ≤ h(u) < h(y). �

Now thanks to Theorem 3.2 we know that if T 6` ϕ for some finite theory T , then there is a finite
subset X of N(Rn

lex) such that T 6|=M(X)→0
ϕ. We want to find a finite subset Y of N(Zn

lex) such that
T 6|=M(Y )→0

ϕ. For this purpose we will use the mapping h from Lemma 4.1. However we cannot
use it directly since it maps only nonpositive reals to integers. More precisely, let Xi = πi(X) be
the set of the i-th components of elements from X and x ∈ X. We denote the i-th component
πi(x) of x by xi. We want to define h(x) = 〈h1(x1), . . . , hn(xn)〉 where hi : M(Xi) → Z are the
mappings from Lemma 4.1. Nevertheless some of xi may be positive even if x is from the negative
cone of Rn

lex. Thus we have to firstly prove that it is possible to consider that all components of
the elements in X are less or equal to 0.
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Lemma 4.3 Let X be a finite subset of N(Rn
lex) and C 6= {0} be an Archimedean class of M(X).

Then there is an order-preserving automorphism g of Rn
lex such that all components of g(x) are

bounded by 0 for all x ∈ C ∩ X. Moreover, let D be an Archimedean class. If D > C then
g(D) = D.

proof: Let x ∈ C and j be the smallest natural number such that xj < 0. Observe that y ∈ C
implies yj < 0 and yi = 0 for all i < j. Let k = min{xi/xj | 〈0, . . . , xj , . . . , xn〉 ∈ C∩X, j < i ≤ n}.
We define the mapping g : Rn

lex → Rn
lex as follows:

g(x1, . . . , xn) = 〈x1, . . . , xj , xj+1 − kxj , xj+2 − kxj , . . . , xn − kxj〉 .

We will show that g is a group homomorphism. Clearly we have g(0) = 0. Let 〈x1, . . . , xn〉, 〈y1, . . . , yn〉 ∈
Rn

lex. Then

g(x1 + y1, . . . , xn + yn) =

= 〈x1 + y1, . . . , xj + yj , xj+1 + yj+1 − k(xj + yj), . . . , xn + yn − k(xj + yj)〉
= 〈x1 + y1, . . . , xj + yj , xj+1 − kxj + yj+1 − kyj , . . . , xn − kxj + yn − kyj〉

= g(x1, . . . , xn) + g(y1, . . . , yn) .

Let x, y ∈ Rn
lex such that x < y. Then there is the smallest i ≤ n such that xi < yi and xs = ys

for all s < i. If i ≤ j then g(x) < g(y) since i-th component is not modified by g. If i > j,
then πi(g(x)) = xi − kxj < yi − kxj = yi − kyj = πi(g(y)). Thus g is an order-preserving group
automorphism.

Now we will show that all components of elements from g(C ∩X) are less or equal to 0. Let
x ∈ C ∩ X. Then xj < 0 and xi = 0 for all i < j. Clearly, πi(g(x)) = xi = 0 for i < j and
πj(g(x)) = xj < 0. Let i > j. Then πi(g(x)) = xi − kxj . Since k ≤ xi/xj and xj < 0, we have
kxj ≥ xi. Thus πi(g(x)) = xi − kxj ≤ 0.

Finally, g(x) = x for any x ∈ D since the j-th component of x equals 0. �

Lemma 4.4 Let X be a finite subset of N(Rn
lex). Then there is a finite subset Y ⊆ N(Rn

lex) such
that M(X)→ ∼= M(Y )→ and all components of any x ∈M(Y ) are bounded by 0.

proof: Let {C1, . . . , Ck} be the chain of Archimedean classes of M(X). Clearly k ≤ n + 1 and
Ck = {0}. We will construct the set Y iteratively. Let Xk−1 = X and Xi−1 = gi(Xi) where
gi : Rn

lex → Rn
lex is the order-preserving automorphism from Lemma 4.3 shifting elements from

Ci ∩ X for 1 ≤ i < k. Let Y = X0 and g = g1 ◦ · · · ◦ gk−1. Clearly g is an order-preserving
automorphism of Rn

lex. Since gi keeps the already modified Archimedean classes the same, we get
that all components of any y ∈ Y are bounded from above by 0. Consequently, also all compo-
nents of x ∈ M(Y ) are less or equal to 0 since x =

∑
kiyi for some ki ∈ N and yi ∈ Y . Finally,

as g is obviously an order-preserving monoid isomorphism between M(X) and M(Y ), we obtain
M(X)→ ∼= M(Y )→ by Lemma 2.1. �

Theorem 4.5 Let X be a finite subset of N(Rn
lex). Then there is a mapping f : X → N(Zn

lex) such
that f is an embedding of a partial subalgebra X of M(X)→ into M(f(X))→, i.e. f is one-to-one,
order-preserving and satisfies the following conditions for all x, y, z ∈ X:

1. if z = x+ y then f(z) = f(x) + f(y),

2. if z = x→R y then f(z) = f(x)→Z f(y),

where →R is the residuum in M(X)→ and →Z is the residuum in M(f(X))→.
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proof: By Lemma 4.4 we can assume that all x ∈ X are bounded by 0. Let Xi = πi(X) be
the set of the i-th components of elements from X. Let mi = min(Xi). By Lemma 4.1 there
are monoid homomorphisms hi : M(Xi)→ Z such that hi are one-to-one and order-preserving on
[2mi, 0] ∩M(Xi).

Let x ∈ M(X) and x = 〈x1, . . . , xn〉. We define h(x) = 〈h1(x1), . . . , hn(xn)〉. Then h :
M(X) → Zn

lex is a monoid homomorphism since hi are monoid homomorphisms. Further, let
x, y ∈ M(X) such that x < y. Then there is the smallest j such that xj < yj and xi = yi for all
i < j. If xj , yj ≥ 2mj then h(x) < h(y) since hj(xj) < hj(yj) and hi(xi) = hi(yi) for all i < j.
Let f = h|X. Since for any x ∈ X we have xi ≥ 2mi, f is order-preserving and one-to-one.

Now we will show that f satisfies the conditions 1, 2. The first condition is obvious since f
is a restriction of h which is a monoid homomorphism. Let x, y, z ∈ X and z = x →R y. Then
x+ z ≤ y. If x+ z = y then we get

f(x) + f(z) = h(x) + h(z) = h(x+ z) = h(y) = f(y) .

Thus f(z) = f(y) − f(x) = f(x) →Z f(y) since f(y) − f(x) is the maximal possible element of
N(Zn

lex) such that f(x) + (f(y)− f(x)) ≤ f(y).
Suppose that x + z < y. Then there is j ≤ n such that xj + zj < yj and xi + zi = yi for all

i < j. Since xj + zj ≥ 2mj , we have

f(y) = h(y) > h(x+ z) = h(x) + h(z) = f(x) + f(z) ,

i.e. f(z) ≤ f(x) →Z f(y). Let w = f(x) →Z f(y) ∈ M(f(X)). Then w =
∑
kif(xi) for some

ki ∈ N and xi ∈ X. We get

h(y) = f(y) ≥ f(x) + w = f(x) +
∑

kif(xi) = h(x+
∑

kixi) . (∗)

Suppose that x+
∑
kixi > y, i.e. there is j such that πj(x+

∑
kixi) > πj(y) and πs(x+

∑
kixi) =

πs(y) for all s < j. Then h(x +
∑
kixi) > h(y) since πj(y) ≥ 2mj which contradicts (∗). Hence

x +
∑
kixi ≤ y. Consequently

∑
kixi ≤ x →R y = z. Finally, applying of h again leads to

w = h(
∑
kixi) ≤ h(z) = f(z) by Lemma 4.2. Indeed, if

∑
kixi = z then it is obvious. If∑

kixi < z then there is the smallest j such that πj(
∑
kixi) < πj(z). Since πj(z) ≥ mj , the

conclusion follows by Lemma 4.2. �

Thanks to Theorem 4.5 we get the following result.

Theorem 4.6 Let T be a finite theory over ΠMTL and ϕ be a formula. Then T ` ϕ iff T |=M(X)→0
ϕ for each finite subset X ⊆ N(Zn

lex) and each n ∈ N.

proof: One implication already follows from Theorem 2.4. Suppose that T 6` ϕ. Then there is
a finite subset X ⊆ N(Rn

lex) and an M(X)→0 -evaluation e such that e(T ) ⊆ {0} and e(ϕ) < 0 by
Theorem 3.2. Moreover, by Remark 3.4 e(ψ) ∈ X ∪ {0} (0 is the bottom element of M(X)→0 ) for
each subformula ψ of any formula from T ∪{ϕ}. Finally, it follows from Theorem 4.5 that there is
a finite subset Y ⊆ N(Zn

lex) such that the partial subalgebra X can be embedded into M(Y )→. By
Lemma 2.12 we can extend this embedding for the case when some of the subformulas of formulas
from T ∪ {ϕ} are evaluated by 0. Thus the proof is done. �

Corollary 4.7 The class of all M(X)→0 for each finite subset X ⊆ N(Zn
lex) generates (as a qua-

sivariety) the variety of ΠMTL-algebras.

Corollary 4.8 The class of all M(X)→ for each finite subset X ⊆ N(Zn
lex) generates (as a qua-

sivariety) the variety of commutative integral cancellative representable residuated lattices.
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5 Decidability

In Theorem 4.6 we have shown that the variety of ΠMTL-algebras is generated as a quasivariety
by the class of ΠMTL-chains arising from finitely generated submonoids of N(Zn

lex). This class is
clearly countable and it is not difficult to find its enumeration. Thus it is possible to construct
a Turing machine which accepts nonprovable formulas. It goes through all algebras from this
class and computes whether a given formula ϕ is valid or not. The only thing which we have to
show is that there is an algorithm which computes the residuum in M(X)→0 for some finite subset
X ⊆ N(Zn

lex). Note that if we are able to compute the residuum in M(X)→ then we are able
to compute it also in M(X)→0 by Lemma 2.11. Thus we will describe an algorithm only for the
residuum in M(X)→.

Algorithm 5.1 The algorithm consists of one function named Residuum which calls recursively
itself. The function is defined as follows:

FUNCTION Residuum(d, r)

1. If 0 ≤ d then Return(0).

2. Find the set H = {b | b =
∑
aixi, ai ∈ N, xi ∈ Cr ∩X, b ∼t(r+1) d}, where the equivalence

∼j was defined at the end of Section 2 and the function t was defined by Equation (1).

3. If H = ∅ then z = max{z′ | z′ =
∑
aixi, ai ∈ N, xi ∈ Cr ∩X, z′ ≤ d} and Return(z).

4. If H = {b1, . . . , bs} then for each bi ∈ H call pi = bi + Residuum(d − bi, r + 1) where the
difference d− bi is computed in Zn

lex.

5. Set z = max{p1, . . . , ps}. Return(z).

Let x, y ∈M(X). The command Residuum(y−x, 1) starts the algorithm computing x→ y, where
y− x is a difference in Zn

lex. The second input r tells the algorithm in which Archimedean class it
starts to search for the residuum.

Now we will prove that Algorithm 5.1 really computes the residuum x→ y. Since z = max{z′ ∈
M(X) | x + z′ ≤ y} = max{z′ ∈ M(X) | z′ ≤ y − x}, it is sufficient if we prove the following
lemma.

Proposition 5.2 Algorithm 5.1 finds the best approximation of d = y−x from below by elements
from M(X).

proof: We will prove it by induction on the number of Archimedean classes of M(X). If M(X)
has only one Archimedean class C1, then M(X) = C1 = {0}. Consequently d = 0 and the first
step of the algorithm returns correctly 0.

Thus assume that Algorithm 5.1 computes a residuum correctly for any M(Y ) consisting of
m Archimedean classes where Y is a finite subset of N(Zn

lex). Let C1 < · · · < Cm+1 = {0} be
the chain of Archimedean classes of M(X). If d ≥ 0 then the algorithm correctly returns 0.
Suppose that d < 0. We will denote by z the desired approximation of d. Since z ∈ M(X), we
have z =

∑
kixi for some ki ∈ N and xi ∈ X. Observe that we can split this sum according to

Archimedean classes, i.e., z = c1+ · · ·+cm, where cj =
∑
kijgij for some kij ∈ N and gij ∈ Cj∩X.

The algorithm finds the possible values of c1, . . . , cm.
At the beginning we search for the possible values of c1. If we want to find the best ap-

proximation of d, we have to try whether there is an element b whose initial segment of the
components corresponding to the first Archimedean class is equal to the same initial segment
of d, i.e., b ∼t(2) d. Then b is a possible value for c1. If there is no such an element then
z = c1 = max{z′ | z′ =

∑
aixi, ai ∈ N, xi ∈ C1 ∩X, z′ ≤ d} and c2 = · · · = cm = 0. This is the

content of the second and the third step of the algorithm. In particular, the second step finds the
set H of all elements b such that b ∼t(2) d and the third step computes z in case that H = ∅. We
should show that the both steps can be computed.
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Lemma 5.3 Steps 2 and 3 can be computed.

proof: Since the elements from H are finite sums of elements from C1 ∩X, we can find for each
xi ∈ C1∩X a natural number ki such that kixi < d. Let k be the maximal ki. Then it is sufficient
to go through all sums whose length is less or equal to k because all longer sums are surely strictly
less then d. Thus there is only finitely many possibilities where we have to search for the elements
of H. Also in case when H = ∅ we can find max{z′ | z′ =

∑
aixi, ai ∈ N, xi ∈ C1 ∩X, z′ ≤ d}

among these finitely many possibilities. �

Now we have to discuss what happens if H is finite, say H = {b1, . . . , bs}. Note that if we
know the value of c1 then we can reformulate the problem as follows: find the maximal element
w in M(X) such that w ≤ d− c1, i.e.,

w = max{z′ ∈M(X) | z′ ≤ d− c1} .

Then the best approximation z = c1 +w. Indeed, we have obviously c1 +w ≤ d. Thus z ≥ c1 +w.
Suppose that z > c1 + w. Recall that z = c1 + c2 + · · · + cm. It follows that w < c2 + · · · + cm.
Since c2 + · · ·+ cm ∈M(X), we get c2 + · · ·+ cm ≤ w (a contradiction).

As we know that c1 is one of the elements in H = {b1, . . . , bs}, we can find for each bi the
element wi = max{z′ ∈ M(X) | z′ ≤ d − bi}. Then it is sufficient to find the maximum among
all bi + wi, 1 ≤ i ≤ s. This is content of the fourth and the fifth step of the algorithm. The
only thing to be proved is the computability of all wi. Since for each bi we have bi ∼t(2) d, we
obtain d − bi ∼t(2) 0. But this means that wi must belong to a greater Archimedean class than
C1. Observe that M(X)−C1 is a submonoid of M(X) which has only m Archimedean classes by
Lemma 2.14. Thus by the induction assumption we can find wi since it belongs to M(X) − C1

and we are done. �

Theorem 5.4 The set of tautologies TAUT of ΠMTL is decidable. The equational theory of
ΠMTL-algebras is decidable as well.

Since Theorem 4.6 works also for finite theories and ΠMTL is an algebraizable logic, we obtain
also the following theorem.

Theorem 5.5 The finite consequence relation of ΠMTL is decidable. The quasi-equational theory
of ΠMTL-algebras is decidable.

The intended semantics for fuzzy logics is usually the real unit interval [0, 1] endowed with
interpretations of logical connectives. Such semantics is called standard. The interpretation of the
conjuction in this case is a t-norm1. Thus we are usually interested in complexity results formulated
for this standard semantics. In [14] we proved that ΠMTL enjoys the standard completeness
theorem. It says that ΠMTL is complete w.r.t. the standard semantics, i.e., the class of ΠMTL-
chains whose lattice reduct is the real interval [0, 1] endowed with the usual order and the monoidal
operation is a cancellative left-continuous t-norm. Let us call a formula ϕ t-tautology if ϕ is valid
in each standard ΠMTL-chain. Then due to Theorem 5.4 and the standard completeness theorem
we obtain the following corollary.

Corollary 5.6 The problem of recognizing t-tautologies is decidable.
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