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Abstract

We systematically identify a large class of substructural logics that satisfy the disjunc-
tion property (DP), and show that every consistent substructural logic with the DP is
PSPACE-hard. Our results are obtained by using algebraic techniques. PSPACE-completeness
for many of these logics is furthermore established by proof theoretic arguments.
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1. Introduction

Logics that may lack some of the structural rules (exchange, weakening and contrac-
tion) are generally called substructural logics [17, 7]. Such logics have been systematically
studied, and the field has been rapidly growing since it was recognized as a common basis
for various nonclassical logics (such as relevance, superintuitionistic and fuzzy logics). See
[7] for the current state of art. In the meantime, some particular substructural logics have
found applications in theoretical computer science. Not mentioning linear logic, the logic
BI of bunched implications [15] and separation logic [18] can be thought of as extensions
of substructural logics.

These two lines of research, however, have developed almost independently. Typically,
the above-mentioned logic BI has been introduced and studied in the context of substruc-
tural logics [9] and in applications to computer science [15] separately. We believe that a
closer interaction between them would turn out very fruitful.

With this long-standing aim in mind, this paper discusses a particular computational
problem: the computational complexity of the decision problem for substructural logics.
It is well known that there are several substructural logics which are PSPACE-complete.
Likely, the best-known results in this area are the PSPACE-completeness of intuitionistic
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Terui)

Preprint submitted to Theoretical Computer Science September 22, 2010



logic [20] and of the multiplicative, additive fragment of linear logic MALL [14]. The same
holds for full Lambek calculus FL (the multiplicative-additive fragment of intuitionistic
noncommutative linear logic) [12]. See [13, 10] for surveys.

Such studies often rely on proof theoretic methods, and presuppose that the logic under
consideration possesses a good sequent calculus for which the cut elimination theorem
holds. In contrast, our approach is more general and deals with arbitrary extensions of
the base logic FL by axioms and inference rules. In particular, we do not presuppose the
existence of cut-free sequent calculi. Another distinctive feature of our approach lies in the
extensive use of algebraic techniques, that compensate for the lack of good sequent calculi.

More specifically, we focus on the disjunction property (DP), which provides a sufficient
condition for PSPACE-hardness. We define the class of `-monoidal inference rules, which
basically consists of rules in the language of lattice conjunction, disjunction and monoid
multiplication. We also define the class of M2 axioms, which naturally correspond to the
`-monoidal inference rules. These classes are sufficiently large and contain many rules and
axioms that often appear in the literature (see Figure 4). We then prove:

(i) Every extension of FL by `-monoidal inference rules andM2 axioms satisfies the DP
(Section 3).

(ii) Every consistent extension of FL with the DP is PSPACE-hard (Section 4).

These two results together show that a wide range of substructural logics are PSPACE-hard.
In proving (i), we develop a way of constructing suitable well-connected algebras, which

substantially generalizes the construction of [19]. Our algebraic methodology turns out to
be far more applicable than the usual proof theoretic one based on cut-free proof analysis.
In proving (ii), we generalize the result from [3, Theorem 18.30], saying that every consis-
tent superintuitionistic logic with the DP is PSPACE-hard, to the realm of substructural
logics. As usual, our proof consists in a suitable translation of a quantified Boolean formula
to an FL-formula that preserves validity. In passing, we also note that every consistent
substructural logic is coNP-hard.

Finally in Section 5, we turn to the problem of membership in PSPACE. By a stan-
dard proof theoretic argument, we show that substructural logics defined by analytic and
shrinking structural rules are PSPACE-complete.

2. Preliminaries

2.1. Substructural logics

Given a set S, we denote by S∗ a set of all finite sequences of elements from S.
Our base logic is the Full-Lambek calculus FL (see [7]). The language of FL consists

of propositional variables, constants 0, 1 and binary connectives ∧,∨, ·, \, /. Constant 0 is
primarily used to define negations:

∼α = α\0 , −α = 0/α.
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FL 1 0 > ⊥ · \ (→) / ∧ ∨
Linear Logic 1 ⊥ > 0 ⊗ −◦ ◦− & ⊕

Figure 1: Correspondence with linear logic connectives

When the distinction between α\β and β/α (resp. ∼α and −α) is irrelevant, we denote
either of them by α→ β (resp. ¬α). The set of all formulas in this language (FL-formulas)
is denoted by Fm.

Two constants > and ⊥ are often added to the language of FL. While we do not
officially include them, we stress that all the results of this paper hold in their presence.

There is a quite unfortunate conflict of notation between substructural logics and linear
logic. Most problematically, 0 in FL corresponds to ⊥ in linear logic and vice versa. Figure
1 clarifies the notational correspondence.

The provability relation is defined by a sequent calculus. A sequent is an expression of
the form Γ ⇒ ϕ where Γ ∈ Fm∗ and ϕ is a formula or the empty sequence. The sequent
calculus consists of the following initial sequents and rules:

Initial sequents:

α⇒ α ⇒ 1 0⇒

Rules:
Γ⇒ α Σ, α,Π⇒ ϕ

(cut)
Σ,Γ,Π⇒ ϕ

Γ⇒ α Γ⇒ β
(⇒∧)

Γ⇒ α ∧ β
Γ, α,Σ⇒ ϕ

(∧⇒)
Γ, α ∧ β,Σ⇒ ϕ

Γ, β,Σ⇒ ϕ
(∧⇒)

Γ, α ∧ β,Σ⇒ ϕ

Γ, α,Σ⇒ ϕ Γ, β,Σ⇒ ϕ
(∨⇒)

Γ, α ∨ β,Σ⇒ ϕ
Γ⇒ α (⇒∨)

Γ⇒ α ∨ β
Γ⇒ β

(⇒∨)
Γ⇒ α ∨ β

Γ, α, β,Σ⇒ ϕ
(·⇒)

Γ, α · β,Σ⇒ ϕ

Γ⇒ α Σ⇒ β
(⇒·)

Γ,Σ⇒ α · β

Γ⇒ α Π, β,Σ⇒ ϕ
(\⇒)

Π,Γ, α\β,Σ⇒ ϕ

α,Γ⇒ β
(⇒\)

Γ⇒ α\β

Γ⇒ α Π, β,Σ⇒ ϕ
(/⇒)

Π, β/α,Γ,Σ⇒ ϕ

Γ, α⇒ β
(⇒/)

Γ⇒ β/α

Γ,Σ⇒ ϕ
(1⇒)

Γ, 1,Σ⇒ ϕ
Γ⇒ (⇒0)
Γ⇒ 0

We say that a sequent Γ⇒ ϕ is provable in FL if Γ⇒ ϕ can be obtained from the initial
sequents by repeated applications of the rules of FL. Further, we say that a formula ϕ
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is provable if the sequent ⇒ ϕ is provable. We denote this fact by `FL ϕ. In fact `FL

is a relation between sets of formulas and formulas. Given a set of formulas Ψ, we write
Ψ `FL ϕ if the sequent ⇒ ϕ is provable in the sequent calculus for FL extended by initial
sequents ⇒ ψ for each ψ ∈ Ψ. Given a sequent Γ ⇒ ϕ, we will abuse our notation and
use the symbol `FL Γ⇒ ϕ to express the fact that Γ⇒ ϕ is provable in FL. It is easy to
see that `FL α1, . . . , αn ⇒ β is equivalent to `FL (α1 · · ·αn)\β. Notice also that `FL α\β
iff `FL β/α, so we write `FL α→ β in such a case.

Usually substructural logics are defined to be axiomatic extensions of FL. Let Φ be
a set of formulas closed under substitutions. The axiomatic extension of FL by Φ is the
calculus obtained from FL by adding new initial sequents ⇒ ϕ for all formulas ϕ ∈ Φ.

For the purpose of this paper, it is more convenient to consider substructural logics to
be defined by inference rules. An inference rule is an expression of the form:

Γ1 ⇒ ϕ1 · · · Γn ⇒ ϕn
Γ0 ⇒ ϕ0

The rule extension of FL is obtained from FL by adding a set Φ of inference rules closed
under substitutions. In this paper, a substructural logic refers to a rule extension of FL.

The most prominent extensions of FL are extensions by combinations of the structural
rules of exchange (e), contraction (c), left and right weakening (i), (o):

Σ1,Γ,∆,Σ2 ⇒ ϕ
(e)

Σ1,∆,Γ,Σ2 ⇒ ϕ
Σ1,Γ,Γ,Σ2 ⇒ ϕ

(c)
Σ1,Γ,Σ2 ⇒ ϕ

Σ1,Σ2 ⇒ ϕ
(i)

Σ1,Γ,Σ2 ⇒ ϕ
Γ⇒ (o)

Γ⇒ ϕ

Let S be a subset of {e, c, i, o}. Then FLS denotes the extension of FL by adding the
structural rules from S. The combination of (i) and (o) is abbreviated by (w); for instance
FLew is the extension of FL by (e), (i), and (o). Given S ⊆ {e, c, i, o}, it is a well-known
fact that FLS can be viewed as an axiomatic extension of FL. The following axiomatic
schemata correspond respectively to (e),(c), (i) and (o):

α · β → β · α , α→ α · α , α→ 1 , 0→ α . (1)

We have:

• `FLe α\β → β/α, `FLe β/α→ α\β,

• `FLw α · β → α ∧ β,

• `FLc α ∧ β → α · β,

Hence FLewc is nothing but intuitionistic logic.
Another important class of substructural logics is given by the law of double-negation

elimination:
∼−α→ α , −∼α→ α.

4



In presence of (e), these two just amount to ¬¬α→ α. The extension of any substructural
logic L by the law of double-negation elimination is denoted by InL. In terms of proof
theory, this amounts to extending the sequent calculus to a multi-conclusion one. In
particular, InFLe is the multiplicative additive fragment of linear logic, MALL.

Let L be a substructural logic. As before, the symbol `L denotes the provability relation
in L and we will use it in all its forms like in FL. It is known that `L is a substitution
invariant consequence relation, i.e., it satisfies the following properties for every Φ,Ψ ⊆ Fm
and formulas ϕ, ψ:

• if ϕ ∈ Φ, then Φ `L ϕ,

• if Φ `L Ψ and Ψ `L ψ, then Φ `L ψ and

• if Φ `L ϕ, then σ[Φ] `L σ(ϕ) for every substitution σ,

where Φ `L Ψ stands for Φ `L ψ for all ψ ∈ Ψ.
A substructural logic L is consistent if there is a formula ϕ such that 6`L ϕ.
It is important to observe the distinction between the two symbols ` and ⇒ for en-

tailment. Thanks to the (cut) rule, Φ `L Γ, ψ,∆ ⇒ ϕ implies Φ ∪ {ψ} `L Γ,∆ ⇒ ϕ
for arbitrary Φ,Γ,∆, ψ, ϕ, whereas the converse direction, i.e., the deduction theorem,
does not necessarily hold. Indeed, Φ ∪ {ψ} `L Γ,∆ ⇒ ϕ implies Φ `L Γ, ψ,∆ ⇒ ϕ if
and only if L validates the structural rules (e), (i), (c). If L further validates (o), (the
(∧,∨, \, 0)-fragment of) L becomes a superintuitionistic logic.

2.2. FL-algebras

Now we are going to define an algebraic semantics for substructural logics.
An FL-algebra is an algebraic structure A = 〈A,∧,∨, ·, \, /, 1, 0〉 where 〈A,∧,∨〉 is a

lattice, 〈A, ·, 1〉 is a monoid, and for all x, y, z ∈ A we have the residuation property :

x · y ≤ z iff y ≤ x\z iff x ≤ z/y.

The residuation property is equivalent to the existence of maximum solutions of the in-
equality x · y ≤ z for x and y. These maximum solutions are z/y for x and x\z for
y.

The element 0 can be arbitrary chosen in A. It is used to define negations: ∼α = α\0,
−α = 0/α. The operations \ and / are called respectively left and right division. As
before, x → y (resp. ¬x) denotes either of x\y and y/x (resp. ∼x and −x) when the
distinction is irrelevant. In the absence of parentheses we assume that · is performed first
followed by \, / and then by ∧,∨. We often write xy for x · y.

Terms in the language of FL-algebras are just formulas of FL. For naturality we often
write s, t, u, . . . for elements of Fm in algebraic contexts. Let E ∪ {t = u} be a set of
identities (equations) in the language of FL-algebras. Given an evaluation v into A, we
write E |=A,v t = u if v(s1) = v(s2) for all s1 = s2 ∈ E implies v(t) = v(u). We write
E |=A t = u if E |=A,v t = u holds for every evaluation v into A. Let K be a class of
FL-algebras. Then we write E |=K t = u if E |=A t = u holds for every A ∈ K. When
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E is empty, we simply write |=A t = u and |=K t = u. Since FL-algebras have a lattice
reduct, we can express each inequality t ≤ u as the identity t ∨ u = u. Thus we shortly
write |=K t ≤ u instead of |=K t ∨ u = u.

In addition to identities that correspond to axioms, we are also interested in quasi-identities
that correspond to inference rules. A quasi-identity is an expression of the form

t1 = u1 and . . . and tn = un =⇒ t0 = u0. (q)

We write |=A (q) if {t1 = u1, . . . , tn = un} |=A t0 = u0. Note that identities are special
cases of quasi-identities.

We say that a set Q of quasi-identities defines a class K of FL-algebras if A ∈ K⇐⇒|=A

(q) for every (q) ∈ Q.
The most fundamental in universal algebra is Birkhoff’s theorem: for any class K of

algebras in the same language,

• K is defined by a set of identities if and only if K is a variety, that is a class of algebras
closed under homomorphic images, subalgebras, and products.

Its analogue for algebras defined by quasi-identities is also well known (see [2]):

• K is defined by a set of quasi-identities if and only if K is a quasivariety, that is a class
of algebras closed under isomorphic images, subalgebras, products and ultraproducts
containing a trivial algebra.

It is known that the class FL of all FL-algebras is a variety (see [7]). By Birkhoff’s theorem
and its analogue for quasivarieties, any subclass of FL defined by equations is a variety,
and any subclass defined by quasi-identities is a quasivariety.

The axiomatic schemata (1) correspond respectively to the following identities:

(e) xy ≤ yx , (c) x ≤ x2 , (i) x ≤ 1 , (o) 0 ≤ x . (2)

The corresponding FL-algebras and varieties of FL-algebras are denoted in the same way
as logics, i.e., given S ⊆ {e, c, i, o}, the subvariety of FL defined by S is denoted by FLS
and its members are called FLS-algebras. FLe-algebras and FLi-algebras are respectively
called commutative and integral. FL-algebras satisfying ∼−x ≤ x and −∼x ≤ x (algebraic
counterpart of the law of double-negation elimination) are called involutive.

2.3. Correspondence between logic and algebra

It is known that the logic FL is algebraizable and its equivalent algebraic semantics is
the variety FL [8]. In more detail, extending FL by an axiomatic schema ϕ is equivalent
to restricting FL to the subvariety defined by 1 ≤ ϕ. This induces a dual-isomorphism V
from the lattice of axiomatic extensions of FL to the subvariety lattice of FL. Further, we
have the following completeness theorem.
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Theorem 2.1 ([8]) Let L be an axiomatic extension of FL and V(L) the corresponding
variety of FL-algebras. Then there are translations τ, ρ such that for any Φ∪{ϕ, ψ} ⊆ Fm
and any set E ∪ {t = u} of identities we have:

Φ `L ϕ iff τ(Φ) |=V(L) τ(ϕ) .

E |=V(L) t = u iff ρ(E) `L ρ(t = u) .

The translations τ, ρ are defined as follows: τ(ϕ) is 1 ≤ ϕ for ϕ ∈ Fm and ρ(t = u) is
(u\t) ∧ (t\u) for an identity t = u.

This algebraization result can be generalized to a correspondence between rule exten-
sions of FL and subquasivarieties of FL as follows.

To each sequent Γ⇒ ϕ we associate an identity Γ· ≤ ϕ·, where Γ· denotes the product
of formulas in Γ (Γ· = 1 if Γ is the empty sequence), and ϕ· denotes ϕ itself if ϕ is a formula
(ϕ· = 0 if ϕ is the empty sequence). Given an inference rule

Γ1 ⇒ ϕ1 · · · Γn ⇒ ϕn
Γ0 ⇒ ϕ0

(r)

we associate to it the quasi-identity

Γ·1 ≤ ϕ·1 and . . . and Γ·n ≤ ϕ·n =⇒ Γ·0 ≤ ϕ·0. (r·)

This induces a dual-isomorphism Q from the lattice of rule extensions of FL (substructural
logics in our sense) to the lattice of quasivarieties of FL-algebras. We again have:

Theorem 2.2 Let L be a substructural logic and Q(L) the corresponding quasivariety of
FL-algebras. Then for any Φ ∪ {ϕ, ψ} ⊆ Fm and any set E ∪ {t = u} of identities we
have:

Φ `L ϕ iff τ(Φ) |=Q(L) τ(ϕ) ,

E |=Q(L) t = u iff ρ(E) `L ρ(t = u) ,

where the translations τ, ρ are defined as in Theorem 2.1.

In view of this theorem, it is easy to see that a substructural logic L is consistent if and
only if Q(L) is nontrivial, in the sense that it contains an algebra other than the trivial
one-element FL-algebra {1}.

Let L be a substructural logic and α1, . . . , αn, ϕ ∈ Fm. Note that according to Theo-
rem 2.2 and the residuation property we have the following chain of equivalent statements:

`L α1, . . . , αn ⇒ ϕ iff `L (α1 · · ·αn)\ϕ iff |=Q(L) 1 ≤ (α1 · · ·αn)\ϕ iff |=Q(L) α1 · · ·αn ≤ ϕ.

We summarize the correspondence between logical and algebraic concepts in Figure 2.
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Logic Algebra
logic FL variety FL
axiom ϕ identity 1 ≤ ϕ

inference rule (r) quasi-identity (r·)
axiomatic extension L of FL subvariety V(L) of FL

rule extension L of FL subquasivariety Q(L) of FL
consistent nontrivial

Figure 2: Correspondence between logical and algebraic concepts

3. Disjunction property

3.1. Disjunction property and its algebraic form

In this subsection we recall the definition of the disjunction property and introduce its
algebraic counterpart.

Definition 3.1 (Disjunction Property) Let L be a substructural logic. L satisfies the
Disjunction Property (DP) if for all formulas ϕ, ψ we have `L ϕ∨ψ implies `L ϕ or `L ψ.

Substructural logics satisfying the DP have the following property, which will be crucial
to show the correctness of our coding of quantified Boolean formulas in Section 4.

Lemma 3.2 Let L be a substructural logic satisfying the DP, ϕ, ψ formulas and V a set
of propositional variables. Then V `L ϕ ∨ ψ implies V `L ϕ or V `L ψ.

Proof: Let σ be the substitution such that σ(x) = x ∨ 1 if x ∈ V and σ(x) = x otherwise.
By Theorem 2.2 and noting that 1 ≤ x means that x = x ∨ 1, we have:

V `L ϕ iff {1 ≤ x | x ∈ V } |=Q(L) 1 ≤ ϕ iff |=Q(L) 1 ≤ σ(ϕ) iff `L σ(ϕ)

for every formula ϕ. Hence the lemma reduces to the DP.
In more detail, the second statement implies the third because for any evaluation v we

can define a new evaluation v′ by v′(x) = v(σ(x)). We then have 1 ≤ v′(x) for every x ∈ V ,
so 1 ≤ v′(ϕ). We also have v′(ϕ) = v(σ(ϕ)), so 1 ≤ v(σ(ϕ)). On the other hand, the third
implies the second because for any evaluation v such that 1 ≤ v(x) for every x ∈ V , we
have v(x) = v(σ(x)), and so v(ϕ) = v(σ(ϕ)) ≥ 1. 2

From the proof theoretic perspective, substructural logics with a single-conclusion
cut-free sequent calculus usually have the DP. This class includes FLS for any S ⊆
{e, c, i, o}. Other examples of substructural logics in this class are extensions of FL by
¬(α∧¬α) and/or axiomatic schemata αn → αm for n,m ≥ 0 denoted by (knotnm). Further-
more, some substructural logics with a multi-conclusion cut-free sequent calculus without
the right contraction also have the DP. This class includes involutive substructural logics
InFLS for any S ⊆ {e,w} (rules (i) and (o) are derivable from each other in InFL).
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There is also an algebraic way to prove the DP for a substructural logic. It involves
the following algebraic characterization of the DP. Recall that an FL-algebra A is called
well-connected if for all x, y ∈ A, x ∨ y ≥ 1 implies x ≥ 1 or y ≥ 1.

Theorem 3.3 ([7]) Let L be an axiomatic extension of FL. Then the following are equiv-
alent:

1. L has the DP.

2. For all A1,A2 ∈ V(L) there is a well-connected FL-algebra C ∈ V(L) such that
A1 ×A2 is a homomorphic image of C.

Let L be any of the logics FL, FLe, FL + (knotnm) and FLe + (knotnm). Using Theo-
rem 3.3 it is proved in [19] that the extension of L by the lattice distributivity axiom (dis)
enjoys the DP. Further, [19] proves that InFL, InFLe, InFL+(dis) and InFLe+(dis) en-
joy the DP. Thus the relevance logic RW satisfies the DP as well because RW is equivalent
to the constant-free fragment of InFLe + (dis) expanded by negation.

For the purpose of this paper, we need a slight variation of the direction 2 ⇒ 1 above.

Theorem 3.4 Let L be a substructural logic. Then L has the DP if the following condition
holds:

(*) for every A ∈ Q(L) there is a well-connected FL-algebra C ∈ Q(L) such that A is a
homomorphic image of C.

Proof: In view of Theorem 2.2, it is sufficient to prove the following: let K be a quasivariety
of FL-algebras. If there are A1,A2 ∈ K such that 6|=A1 1 ≤ t1 and 6|=A2 1 ≤ t2, there is
C ∈ K such that 6|=C 1 ≤ t1 ∨ t2.

Let A = A1 ×A2. It belongs to K since K is a quasivariety. Hence condition (*) gives
us a well-connected algebra C ∈ K together with a surjective homomorphism f : C −→ A.
Given evaluations vi into Ai (i = 1, 2) such that 1 6≤ vi(ti), we choose an evaluation v into
C in such a way that f(v(x)) = 〈v1(x), v2(x)〉 holds for every variable x.

We claim that 1 6≤ v(t1 ∨ t2). Otherwise, the well-connectedness implies 1 ≤ v(t1) or
1 ≤ v(t2), say 1 ≤ v(t1). But then 〈1, 1〉 = f(1) ≤ f(v(t1)) = 〈v1(t1), v2(t1)〉. Hence we
have 1 ≤ v1(t1), contradicting the assumption. 2

Thus we say that a class K of FL-algebras has the DP if the condition (*) holds for K.

3.2. Lattice-monoidal quasi-identities

We will now generalize the construction from [19] and prove the DP also for other
substructural logics. More specifically, we will prove that any quasivariety K of FL-algebras
defined by the following type of quasi-identities satisfies the DP.

Definition 3.5 (`-monoidal quasi-identity) A quasi-identity

t1 ≤ u1 and . . . and tn ≤ un =⇒ t0 ≤ u0 (q)
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is said to be `-monoidal if for every 0 ≤ i ≤ n, ti is in the language {·,∧,∨, 1} and ui is
either 0 or in the language {·,∧,∨, 1}.

Accordingly, an inference rule schema

Γ1 ⇒ ϕ1 · · · Γn ⇒ ϕn
Γ0 ⇒ ϕ0

(r)

is said to be `-monoidal if for every 0 ≤ i ≤ n, Γi is a sequence of formulas in the language
{·,∧,∨, 1} and ϕi is either the empty sequence or a formula in the language {·,∧,∨, 1}.

In our construction, the key role will be played by FLi-algebras B with a unique subcover
of 1, that is an element s such that x < 1 iff x ≤ s for every x ∈ B. Such an algebra B is
well-connected, since x 6= 1 and y 6= 1 imply x, y ≤ s, so x ∨ y ≤ s < 1.

Thus the first step is to find in the given quasivariety K an FLi-algebra B with a unique
subcover of 1. In doing so, two types of FL-algebras have to be distinguished depending
on the position of 0.We say that an FL-algebra A is of type 1 ≤ 0 if |=A 1 ≤ 0 holds; A is
of type 1 6≤ 0 otherwise.

Lemma 3.6 Let B be a nontrivial FL-algebra. There is an element a ∈ B such that a < 1.

Proof: Since B is nontrivial, there is an element b ∈ B such that b 6= 1. If 1 6≤ b then
a = b ∧ 1 < 1. If 1 < b then we take a = b\1. Clearly we have a ≤ 1\1 = 1. Moreover,
a < 1; otherwise b = b · a = b · (b\1) ≤ 1. 2

Lemma 3.7 Let K be a quasivariety of FL-algebras defined by `-monoidal quasi-identities.
Then for any nontrivial algebra A ∈ K, there is an FLei-algebra B ∈ K which is of the
same type as A and has a unique subcover of 1.

Proof: Let A be a nontrivial algebra from K. We distinguish two cases depending on the
type of A.

First suppose that A is of type 1 ≤ 0. By Lemma 3.6 there is a ∈ A such that a < 1.
Consider the submonoid B of A generated by a, namely B = {an : n ≥ 0}. This submonoid
inherits join, meet and product operations from A, and is commutative and dually well
ordered:

· · · a4 ≤ a3 ≤ a2 ≤ a < 1.

Hence B gives rise to an FLei-algebra B of type 1 ≤ 0 by setting

x→ y = sup{z ∈ B : xz ≤ y}
0B = 1.

It is clear that a is the unique subcover of 1.
It remains to show that B ∈ K. Let v be an evaluation of variables into B, which can

also be considered an evaluation into A. We claim that

(*) |=A,v t ≤ u if and only if |=B,v t ≤ u for every `-monoidal identity t ≤ u.
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When both t and u are in the language {·,∧,∨, 1}, the claim is obvious since B is a
subalgebra of A with respect to this language. When u = 0, the claim amounts to

|=A,v t ≤ 0 if and only if |=B,v t ≤ 1

by our definition of 0B. But both sides trivially hold because v(t) ≤ 1 and 1 ≤ 0A. Since
quasi-identities are just Horn implications over identities, it immediately follows that any
`-monoidal quasi-identity valid in A is also valid in B. This ensures B ∈ K.

Next suppose that A is of type 1 6≤ 0. Then by the proof of Lemma 3.6, we may take
a = 0∧ 1 < 1, and define an FLei-algebra B as above, except that we set 0B = 0A ∧ 1 = a.
B is an FLei-algebra of type 1 6≤ 0 with a unique subcover a of 1. We again claim (*), for
which the only nontrivial case is when u = 0. Let v be an evaluation into B. If v(t) ≤ 0A,
then v(t) 6= 1 and so v(t) ≤ a = 0B since a is the unique subcover of 1. Conversely, if
v(t) ≤ 0B, then v(t) ≤ 0A by our definition of 0B. As before, this ensures B ∈ K. 2

For the next step of our construction, we will need the notion of conucleus (see [7]).
Recall that an interior operator σ on an FL-algebra A is a map σ : A → A which is
contracting (σ(x) ≤ x), idempotent (σ(σ(x)) = σ(x)) and monotone (x ≤ y implies σ(x) ≤
σ(y)). If σ(1) = 1 and σ(x)σ(y) ≤ σ(xy) for all x, y ∈ A, then σ is called a conucleus. Given
an FL-algebra A and a conucleus σ on A, the algebra σ[A] = 〈σ[A],∧σ,∨, ·, \σ, /σ, σ(0), 1〉
is an FL-algebra, where x∧σ y = σ(x∧y), x\σy = σ(x\y) and x/σy = σ(x/y). The algebra
σ[A] is called a conuclear contraction of A.

Given an FL-algebra A, we denote by A+ its positive cone, i.e., A+ = {a ∈ A | 1 ≤ a}.
Note that A+ forms a sub-`-monoid of A, namely it forms a subalgebra of A with respect
to the language {·,∧,∨, 1}.

Let B be an FLi-algebra of the same type as A with a unique subcover s of 1. We
define an operator σ on A×B as follows:

σ(a, b) =

{
〈a, s〉 if a 6∈ A+ and b = 1,

〈a, b〉 otherwise.

It yields:
σ[A×B] = A+ × {1} ∪ A× (B \ {1})

Figure 3 visualizes the construction of σ[A×B].

Lemma 3.8 The operator σ is a conucleus on A×B such that σ[A×B] forms a subalgebra
of A×B with respect to the language {·,∧,∨, 1, 0}. Moreover, σ[A×B] is well-connected
and A is a homomorphic image of σ[A×B].

Proof: It is straightforward to verify that σ is an interior operator and σ(1, 1) = 〈1, 1〉.
Further, we have to check that σ(a, x)σ(b, y) ≤ σ(ab, xy). Clearly σ(a, x)σ(b, y) ≤ 〈ab, xy〉
since σ is contracting. The only nontrivial case is ab 6∈ A+ and xy = 1 because σ(ab, xy) =
〈ab, s〉 in this case. Since A+ is closed under the multiplication, we get a 6∈ A+ or b 6∈ A+,

11



1A

A

s

1B

B

=⇒

〈1A, 1B〉

〈1A, s〉

A×B

=⇒

〈1A, 1B〉

〈1A, s〉

σ[A×B]

Figure 3: The structure of σ[A×B].

say a 6∈ A+. Further, we have x = y = 1 since B is integral. Thus σ(a, x)σ(b, y) =
〈a, s〉 · σ(b, y) ≤ 〈ab, s〉 = σ(ab, xy). Thus σ is a conucleus.

Next we verify that σ[A ×B] is a subalgebra of A ×B with respect to the language
{·,∧,∨, 1, 0}. The image of any conucleus is closed under the multiplication and join.
Also, σ[A × B] = A+ × {1} ∪ A × (B \ {1}) is clearly closed under the meet. Finally,
0A×B = 〈0A, 0B〉 belongs to σ[A×B] since A and B are of the same type.

Now we check that σ[A×B] is well-connected. Let 〈a, x〉, 〈b, y〉 ∈ σ[A× B] such that
〈a, x〉∨〈b, y〉 ≥ 〈1, 1〉, i.e., a∨ b ≥ 1 and x∨y = 1. Since B is well-connected, we get x = 1
or y = 1 (say x = 1). Then a ∈ A+. Consequently, 〈1, 1〉 ≤ 〈a, x〉.

Let f : σ[A × B] → A be a mapping defined f(a, x) = a. Then f is clearly a surjec-
tive homomorphism since σ keeps the first component unchanged. Indeed, for example f
preserves \σ since

f(〈a, x〉\σ〈b, y〉) = f(σ(a\b, x\y)) = a\b = f(a, x)\f(b, y) .

2

We are now ready to prove the main result of this subsection:

Theorem 3.9 Let K be a quasivariety of FL-algebras defined by `-monoidal quasi-identities.
Then K has the DP.

Proof: Let A ∈ K. By Lemma 3.7, K contains an FLei-algebra B of the same type as A
with a unique subcover of 1. Thus by Lemma 3.8, σ[A×B] is well-connected and A is a
homomorphic image of σ[A×B]. Moreover, since σ[A×B] is a subalgebra of A×B ∈ K
with respect to the language {·,∧,∨, 1, 0} and quasi-identities defining K are in the same
language, it follows that σ[A×B] ∈ K. 2

Hence by Theorem 3.4 we obtain:

12



Corollary 3.10 Let L be an extension of FL by `-monoidal inference rules. Then L has
the DP.

Typical examples of inference rules, where Corollary 3.10 is applicable, are the struc-
tural rules (e), (c), (i), (o). Thus every extension FLS for S ⊆ {e, c, i, o} enjoys the DP.
Another example of `-monoidal inference rule, where Corollary 3.10 can be used, is for
instance the rule

⇒ ϕ · ψ
⇒ ϕ (r)

Unlike the structural rules (e), (c), (i), (o), the rule (r) does not define an axiomatic
extension of FL because its corresponding quasi-identity

1 ≤ xy =⇒ 1 ≤ x (r·)

defines a proper subquasivariety of FL.

3.3. M2 axioms

Theorem 3.9 deals with quasivarieties of FL-algebras axiomatized in the language
{·,∧,∨, 1, 0}. However, sometimes an identity in a richer language can be expressed as
a quasi-identity in a smaller language. An example is 1 ≤ ¬(x ∧ ¬x) which involves
divisions but is equivalent to xx ≤ 0 =⇒ x ≤ 0. For another example, the identities
xy/y = x = y\yx axiomatizing cancellative FL-algebras (i.e., FL-algebras whose monoidal
reduct is cancellative) are equivalent to the quasi-identities xz = yz =⇒ x = y and
zx = zy =⇒ x = y. More generally, the following class of identities corresponds to
`-monoidal quasi-identities. The definition below is inspired by the class N2 in the sub-
structural hierarchy, which well corresponds to structural inference rules [4, 5].

Definition 3.11 (Class M2) Fix an infinite set V of variables. Given a set T of terms, let
T ◦ be the least set of terms that includes T and is closed under the operations {·,∧,∨, 1}.
In particular, V◦ is the set of terms in the language {·,∧,∨, 1}. Likewise, let T • be the
least set of terms that satisfies the following closure properties:

• 0 ∈ T •, V◦ ⊆ T •;

• if t, u ∈ T • then t ∧ u ∈ T •;

• if t ∈ T ◦ and u ∈ T •, then t\u, u/t ∈ T •.

We define M1 = V• and M2 = M•
1. We say that an identity t ≤ u belongs to M2 if

t ∈ M◦
1 and u ∈ M2, namely t\u ∈ M2. An axiom belongs to M2 just in case it does as

a term of FL-algebras.

To get an intuition how M2 terms and identities look like, let us observe:

• every term inM1 is equivalent to a finite meet of terms of the form t1\(u/t2), where
u is either 0 or in the language {·,∧,∨, 1}, and t1, t2 are in the language {·,∧,∨, 1}.

13



Axiom Name
αβ → βα exchange (e)
α→ 1 integrality, left weakening (i)
0→ α right weakening (o)
α→ αα contraction (c)
αn → αm knotted axioms (n,m ≥ 0)
¬(α ∧ ¬α) no-contradiction

(αβ/β)→ α, (α\αβ)→ β cancellativity
α ∧ (β ∨ γ)→ (α ∧ β) ∨ (α ∧ γ) distributivity

((α ∧ β) ∨ γ) ∧ β → (α ∧ β) ∨ (γ ∧ β) modularity
α(β ∧ γ)→ αβ ∧ αγ (·,∧)-distributivity

α ∧ (βγ)→ (α ∧ β)(α ∧ γ) (∧, ·)-distributivity

Figure 4: Some M2 axioms

• every term inM2 is equivalent to a finite meet of terms of the form t1\(u/t2), where
u is either 0 or in the language {·,∧,∨, 1}, and t1, t2 ∈M◦

1;

• every identity inM2 is equivalent to a finite set of identities of the form t ≤ u, where
u is either 0 or in the language {·,∧,∨, 1}, and t ∈M◦

1.

For instance, xy/y ∈ M1, so (xy/y) ≤ x is an M2 identity. Therefore cancellativity
can be expressed by M2 identities. See Figure 4 for some typical M2 axioms. On the
other hand, the following axioms do not fall into the class M2:

α ∨ ¬α excluded middle
(α→ β) ∨ (β → α) prelinearity
α(α\1) `-group
α ∧ β → α(α\α ∧ β), α ∧ β → (α ∧ β/α)α divisibility

In fact, extensions of FL by the first three axioms do not satisfy the DP. On the other
hand, FLi with the divisibility axiom satisfies the DP.

Remark 3.12 There is another way to look at the class M2. Every t ∈ M2 is a substi-
tution instance of a term t0 in the class N2 [5], where terms in the language {·,∧,∨, 1} are
substituted for variables in t0.

Although M2 identities involve divisions, they can be removed by unfolding identities
into quasi-identities. More precisely, we have:

Theorem 3.13 Every identity inM2 is equivalent in FL to a set of `-monoidal quasi-identities.

Proof: Consider the following transformation rules defined on identities of the form t ≤ u:

t ≤ u1 ∧ u2 7→ t ≤ u1, t ≤ u2
t ≤ u1\u2 7→ u1t ≤ u2
t ≤ u2/u1 7→ tu1 ≤ u2

14



Recall that an M2 term is built by suitably applying \, / and ∧ to either 0 or a term in
the language {·,∧,∨, 1}. Hence if we successively apply the above rules to an identity in
M2, we obtain an equivalent set of identities of the form t ≤ u0, where t ∈ M◦

1 and u0
is either 0 or in the language {·,∧,∨, 1}. So there is a term t0 = t0(x1, . . . , xn) in the
language {·,∧,∨, 1} and u1, . . . , un ∈ M1 such that x1, . . . , xn are distinct fresh variables
and t = t0(u1, . . . , un). Observe that t ≤ u0 is equivalent to the quasi-identity:

x1 ≤ u1 and . . . and xn ≤ un =⇒ t0 ≤ u0. (q)

Indeed, (q) implies t ≤ u0 by substitution of ui for xi (1 ≤ i ≤ n). Conversely, assump-
tions x1 ≤ u1 and . . . and xn ≤ un imply t0(x1, . . . , xn) ≤ t0(u1, . . . , un) = t. Hence in
conjunction with t ≤ u0 we obtain the conclusion t0 ≤ u0.

Finally by applying the above transformation rules to the assumptions x1 ≤ u1, . . . ,
xn ≤ un, we obtain a set of `-monoidal quasi-identities. 2

Corollary 3.14 Every extension of FL by M2-axioms has the DP.

In particular, axioms in Figure 4 preserve the DP when added to FL.

3.4. Involutive logics

In the previous sections we have proved the DP for extensions of FL by `-monoidal
quasi-identities andM2 axioms. We can also prove the DP for rule extensions of InFL and
InFLe if the extending quasi-identities use only the language L = {∧,∨, 1}. The removal
of · is necessary, since InFLc, whose corresponding variety is defined by (c) x ≤ x ·x, does
not have the DP. On the other hand, notice that (w) x ≤ 1 is in the language L, and
InFLw indeed satisfies the DP.

Let K be a nontrivial subquasivariety of Q(InFL) or Q(InFLe) relatively axiomatized
by a set Q of quasi-identities in the language L. Given an algebra A ∈ K, we will show
that there is a well-connected algebra C such that A is a homomorphic image of C.
Recall that the 3-element MV-chain is the algebra L3 = 〈L3,min,max, ·,→, 0, 1〉, where
L3 = {0, 1/2, 1}, x · y = max(x+ y − 1, 0) and x→ y = min(1− x+ y, 1).

Lemma 3.15 The 3-element MV-chain L3 belongs to the quasivariety K.

Proof: First, recall that L3 is an InFLew-algebra. Thus it suffices to show that L3 satisfies
all the quasi-identities from Q. Let B be a nontrivial algebra from K. Then by Lemma 3.6
there is an element a ∈ B such that a < 1. Since K is closed under direct products, the
algebra B ×B belongs to K as well. The 3-element chain C = {〈a, a〉 < 〈a, 1〉 < 〈1, 1〉}
forms a subalgebra of B × B with respect to the language L, i.e., the chain C satisfies
all the quasi-identities from Q. Consequently, L3 ∈ K since the {∧,∨, 1}-reduct of L3 is
isomorphic to the 3-element chain C. 2

Lemma 3.16 Let A ∈ K. There is a well-connected algebra C ∈ K such that A is a
homomorphic image of C.
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〈1A, 1〉

〈0A, 1/2〉

〈1A, 1/2〉

〈0A, 0〉

Figure 5: The structure of C.

Proof: To construct the well-connected algebra C, we will use the same construction as
in [19]. C is constructed from the algebra A × L3 which belongs to K by Lemma 3.15.
The universe of C is defined as follows (see Figure 5):

C = A+ × {1} ∪ A× {1/2} ∪ {a ∈ A | a ≤ 0A} × {0} .

The operations are defined as follows:

〈a, b〉 · 〈c, d〉 =

{
〈ac, 1/2〉 if bd = 0 and a 6≤ 0A,

〈ac, bd〉 otherwise,

〈a, b〉\〈c, d〉 =

{
〈a\c, 1/2〉 if b→ d = 1 and a 6≥ 1A,

〈a\c, b→ d〉 otherwise.

The right division / is defined analogously. It is proved in [19] that C is a well-connected
InFL-algebra such that A is its homomorphic image. It is also easy to see that C is an
InFLe-algebra if A is. Further, observe that C is a subalgebra of A× L3 with respect to
the language L. Thus C belongs to K as well. 2

Remark 3.17 The algebra C from the previous lemma can be constructed similarly as
the well-connected algebra from Lemma 3.8 in two steps. First, consider the algebra
B = σ[A × L3], where σ is the conucleus as in Lemma 3.8. Then C can be seen as a
nuclear retraction of B, namely C = γ[B] for the nucleus

γ(a, b) =

{
〈a, 1/2〉 if a 6≤ 0A and b = 0,

〈a, b〉 otherwise.

Now using Lemma 3.16 and Theorem 3.4 we will get the following corollary.

Corollary 3.18 Every extension of InFL and InFLe by inference rules in the language
{∧,∨, 1} has the DP.
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4. PSPACE-hardness

It is well known that the satisfiability of closed quantified Boolean formulas in the
conjunctive normal form (CNF) is a PSPACE-complete problem (see [16]). The same is
true also for closed quantified Boolean formulas in the disjunctive normal form (DNF) since
PSPACE = coPSPACE.

Now we introduce a precise definition of quantified Boolean formula which is suit-
able for our purposes. A quantified Boolean formula (QBF) A built up from variables
x1, . . . , xn is a formula of the form Qkxk · · ·Q1x1(D1 ∨ · · · ∨ Dm), where Qi ∈ {∃,∀},
0 ≤ k ≤ n (k = 0 means that A is quantifier-free), and Di’s are conjunctions of literals
x1, . . . , xn,¬x1, . . . ,¬xn such that no variable repeats in Di. Thus each Di can be viewed
as a set of literals. Given a {0, 1}-valued evaluation e, the value e(A) depends only on the
evaluation of free variables xk+1, . . . , xn. If A is closed (i.e., k = n), then A is either true
or false no matter what e is.

Let L be a consistent substructural logic satisfying the DP. Given a QBF A and a
{0, 1}-valued evaluation e, we will define a sequent e′ ⇒ A′ such that e(A) = 1 iff `L e′ ⇒
A′. We use the same translation of the propositional part of A as in [10]. Our coding of
quantifiers was inspired by [21].

First, for each variable xj we introduce a new variable x̄j which will play the role of
the literal ¬xj. The translation of e is the sequence of variables e′ = zk+1, . . . , zn, where
for each k + 1 ≤ j ≤ n we have

zj =

{
xj if e(xj) = 1,

x̄j if e(xj) = 0.

Next we define the translation A′ of a QBF A. We proceed inductively on the number
of quantifiers in A. Assume that A is quantifier-free, i.e., A = D1 ∨ · · · ∨ Dm. Then
A′ = D′1 ∨ · · · ∨D′m, where D′i = y1 · · · yn and

yj =


xj if xj ∈ Di,

x̄j if ¬xj ∈ Di,

xj ∨ x̄j otherwise.

Finally, we describe the coding of quantifiers. Assume that A = ∀xk B. Then

A′ = (xk ∨ x̄k)\B′ .

If A = ∃xk B, then
A′ = (xk\qk ∨ x̄k\qk)/(B′\qk) ,

where qk is a fresh variable.
Now we are going to prove that the coding defined above works correctly. We start

with the quantifier-free part.
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Lemma 4.1 Let L be a consistent substructural logic, A a quantifier-free Boolean formula
and e a {0, 1}-valued evaluation. Then the following are equivalent:

1. e(A) = 1.

2. `L e′ ⇒ A′.

3. e′ `L A′ (where e′ is considered to be a set).

Proof: (1⇒2): Suppose that e(A) = 1. Then there is Di such that e(Di) = 1. Then it
is easy to see that yj = zj = xj if xj ∈ Di, yj = zj = x̄j if ¬xj ∈ Di, and yj = xj ∨ x̄j
otherwise. In all cases we have `L zj ⇒ yj. Consequently, we will obtain that `L e′ ⇒ D′i
by the rule (⇒·). Then `L e′ ⇒ A′ follows by the rule (⇒∨).

(2⇒3): By applying the (cut) rule to e′ ⇒ A′ with the axioms ⇒ zi (zi ∈ e′).
(3⇒1): Assume that e(A) = 0. We have to show that e′ 6`L A′. Let C be any

nontrivial algebra from Q(L). We will define an evaluation v into C such that v(A′) < 1
and v(z1) = · · · = v(zn) = 1. By Lemma 3.6 there is a ∈ C such that a < 1. Let
f : {0, 1} → {a, 1} be a mapping such that f(0) = a and f(1) = 1. Then the evaluation v
is defined by v(xj) = f(e(xj)) and v(x̄j) = f(e(¬xj)). Observe that v(zj) = 1. Consider
D′i = y1 · · · yn. Then for each yj we have v(yj) = f(e(xj)) if xj ∈ Di, v(yj) = f(e(¬xj))
if ¬xj ∈ Di, and v(yj) = v(xj ∨ x̄j) = 1 otherwise. From e(A) = 0, it follows that for all
Di’s we have e(Di) = 0. By the observation above there is yj such that v(yj) = a. Thus
v(D′i) = v(y1) · · · v(yn) ≤ a. Since v(D′i) ≤ a for all Di’s, we get v(A′) ≤ a < 1. 2

Lemma 4.2 Let L be a consistent substructural logic having the DP, 0 ≤ k ≤ n, A a QBF
with free variables xk+1, . . . , xn and e be a {0, 1}-valued evaluation. Then the following are
equivalent:

1. e(A) = 1.

2. `L e′ ⇒ A′.

3. e′ `L A′.

Proof: We proceed by induction on k. If k = 0 then the lemma follows from Lemma 4.1.
Assume that k > 0, i.e., A = Qxk B for Q ∈ {∀,∃} and a QBF B with free variables
xk, . . . , xn. Let e0 be the {0, 1}-valued evaluation such that e0(xj) = e(xj) for j 6= k and
e0(xk) = 0. Analogously e1 is the {0, 1}-valued evaluation such that e1(xj) = e(xj) for
j 6= k and e1(xk) = 1.

(1⇒2): Assume that Q = ∀. Then e(A) = 1 implies e0(B) = e1(B) = 1. Thus by
induction hypothesis we have `L x̄k, e

′ ⇒ B′ and `L xk, e
′ ⇒ B′. By (∨⇒) we obtain

`L x̄k ∨ xk, e′ ⇒ B′. Consequently, `L e′ ⇒ A′ by (⇒\).
Now suppose that Q = ∃. Then at least one of e0(B), e1(B) equals 1, say e0(B). Thus

by induction hypothesis we have `L x̄k, e′ ⇒ B′. Applying (⇒\), we get `L e′ ⇒ x̄k\B′.
Since x̄k\B′, B′\qk ⇒ x̄k\qk is a provable sequent in L, we get `L e′, B′\qk ⇒ x̄k\qk by the
cut rule. Then `L e′, B′\qk ⇒ (x̄k\qk) ∨ (xk\qk) by (⇒∨). Consequently, `L e′ ⇒ A′ by
(⇒/).

(2⇒3): Similarly as before.
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(3⇒1): Assume that Q = ∀. Then e′ `L (x̄k ∨ xk)\B′ implies e′ `L x̄k ⇒ B′ and
e′ `L xk ⇒ B′ because (⇒\) and (∨⇒) are invertible rules, and so e′0 `L B′ and e′1 `L B′.
Thus e0(B) = e1(B) = 1 by induction hypothesis which shows that e(A) = 1.

Now suppose that Q = ∃. Then e′ `L A′ implies e′ `L (xk\B′) ∨ (x̄k\B′) because we
can substitute B′ for qk. It follows from Lemma 3.2 that e′ `L xk\B′ or e′ `L x̄k\B′.
Without any loss of generality assume e′ `L xk\B′. Then e′ `L xk ⇒ B′ as well since (⇒\)
is invertible, and so e′1 `L B′. Consequently, e1(B) = 1 by induction hypothesis. Thus
e(A) = 1. 2

The latter lemma shows that given a closed QBF A, we have A is true iff `L A′ since
e′ is the empty sequence in this case. We have thus established the PSPACE-hardness of
substructural logics with the DP.

In addition, observe that the DP is used only to show that the coding of existential
quantifier works. We can therefore translate any universally quantified Boolean formula
A into an FL-formula A′ such that A is true iff `L A′ without assuming the DP. By
noting that deciding universally quantified Boolean formulas is coNP-hard, we obtain the
following theorem:

Theorem 4.3 Let L be a consistent substructural logic. The decision problem for L is
coNP-hard. If L further satisfies the DP, then it is PSPACE-hard.

Corollary 4.4 Let L be a consistent extension of FL by `-monoidal inference rules and/or
M2 axioms. Then the decision problem for L is PSPACE-hard.

The same is true also for every consistent extension of InFL or InFLe by inference
rules in the language {∧,∨, 1}.

In particular, extensions of FL by axioms in Figure 4 are all PSPACE-hard.
While the DP is a sufficient condition for PSPACE-hardness, it is not a necessary one.

A counterexample is the logic LQ obtained by extending intuitionistic logic with the law of
weak excluded middle ¬α∨¬¬α. LQ does not satisfy the DP but still is PSPACE-complete
(see e.g. [3]).

5. Membership in PSPACE

In this section, we briefly discuss the problem of membership in PSPACE. In contrast to
PSPACE-hardness, there does not seem to be an established algebraic method for proving
membership in PSPACE that works for substructural logics. So let us argue in proof
theory.

It is obvious that FL is in PSPACE. To show this, it is sufficient to observe:

1. The sequent calculus enjoys cut elimination.

2. For every inference rule other than (cut), each of the premises contains strictly less
symbols than the conclusion.
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Hence given a sequent Γ ⇒ ϕ, the cut-free bottom-up proof search yields a proof search
tree of height bounded by the size of Γ⇒ ϕ. Therefore by an obvious alternating algorithm
one can decide whether Γ⇒ ϕ is provable in APTIME = PSPACE.

The same argument works for FLS and InFLS for every S ⊆ {e, i, o}. More generally,
let L be a rule extension of FL by finitely many rules. To prove that L is in PSPACE, it
is sufficient to show that L satisfies the properties 1 and 2 above.

As to property 1, the paper [5] extensively studies under which condition adding a
structural rule to FL preserves cut elimination. So let us recall the relevant part of [5] (see
also [4]).

For the current purpose, a structural rule is an inference rule of the form

Υ1 ⇒ Ξ1 · · · Υn ⇒ Ξn

Υ0 ⇒ Ξ0

where each Υi is a sequence of symbols from {Γ,∆,Σ, . . . }, and each Ξi is either empty or
consists of a symbol from {ϕ, ϕ′ . . . }. Here we stress that Γ,∆, . . . and ϕ, ϕ′, . . . are con-
sidered to be formal symbols in this context, not notations standing for concrete sequences
of formulas. Each Υi ⇒ Ξi (1 ≤ i ≤ n) is called a premise, and Υ0 ⇒ Ξ0 the conclusion of
the structural rule. We denote by Symb(Υi) the set of symbols occurring in Υi.

Examples of structural rules are the mingle rule (m), the weak contraction rule (wc)
and the knotted rules (knotnm):

Σ1,Γ,Σ2 ⇒ ϕ Σ1,∆,Σ2 ⇒ ϕ
Σ1,Γ,∆,Σ2 ⇒ ϕ

(m)
Γ,Γ⇒
Γ⇒ (wc)

{Σ1,Γi1 , . . . ,Γim ,Σ2 ⇒ ϕ}i1,...,im∈{1,...,n}
Σ1,Γ1, . . . ,Γn,Σ2 ⇒ ϕ

(knotnm)

Note that (knot12) = (c), (knot10) = (i) and (knot21) = (m). Just as (e), (c), (i) and (o) are
expressed by axiomatic schemata, most of structural rules can be expressed by axiomatic
schemata of special form. For instance, (m) is equivalent to an axiomatic schema α ·α→ α
in FL, (wc) is to ¬(α∧¬α), and (knotnm) is to αn → αm. These axiomatic schemata belong
to the class N2 in the substructural hierarchy of [4, 5]. It is shown that every N2-axiom is
equivalent to a structural rule, though the converse does not hold.

Now consider a structural rule in one of the following forms, where 0 ≤ m ≤ n and
symbols Σ1 and Σ2 are distinct:

Σ1,Υ1,Σ2 ⇒ ϕ · · · Σ1,Υm,Σ2 ⇒ ϕ Υm+1 ⇒ · · · Υn ⇒
Σ1,Υ0,Σ2 ⇒ ϕ

Υ1 ⇒ · · · Υn ⇒
Υ0 ⇒

Such a rule is said to be analytic if the following conditions are further satisfied:

Linearity Each Γ ∈ Symb(Υ0) occurs exactly once in Υ0 and is different from Σ1,Σ2.

Inclusion Symb(Υ1) ∪ · · · ∪ Symb(Υn) ⊆ Symb(Υ0).
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Observe that (e), (c), (i), (o), (m) and (knotnm) are analytic rules of the first type, while
(wc) is of the second type.

We have the following general result.

Theorem 5.1 ([5]) Let L be an extension of FL by analytic structural rules. Then L
enjoys cut elimination, i.e., if a sequent Γ⇒ ϕ is provable in L, then Γ⇒ ϕ can be proved
in L without (cut).

We now move on to the property 2 above. A structural rule

Υ1 ⇒ Ξ1 · · · Υn ⇒ Ξn

Υ0 ⇒ Ξ0
(r)

is said to be shrinking if the following condition is satisfied:

• Let S = {Γ1, . . . ,Γn, ϕ1, . . . , ϕm} be an arbitrary set of symbols. Remove from (r) all
the occurrences of symbols in S. Then either a premise identical with the conclusion
arises, or each of the premises contains strictly less symbols than the conclusion.
This holds for any choice of S.

For instance, (e), (c), (wc) and (knotnm) with m ≥ n are not shrinking, since if we take
S = ∅, the number of symbols in each of the premises is no less than the number of symbols
in the conclusion. For another example, the structural rule

∆1,Γ⇒ ∆2,Γ⇒
Γ,∆1,∆2 ⇒

is not shrinking either, since by taking S = {∆2}, it becomes

∆1,Γ⇒ Γ⇒
Γ,∆1 ⇒

and the left premise violates the condition. On the other hand, (i), (o), (m) and (knotnm)
with m < n are shrinking.

Now, let (r) be a shrinking structural rule. When (r) is used in bottom-up proof search,
each symbol Γ is instantiated with a concrete (possibly empty) sequence of formulas. If
(after instantiation) a premise identical with the conclusion arises, then (r) is redundant; it
does not reduce the task of proving the conclusion at all. Otherwise, each of the premises
has strictly less symbols than the conclusion. Hence adding (r) to FL or FLe preserves
the property 2 above.

Finally, notice that structural rules are `-monoidal, so adding them to FL or FLe

preserves the DP. Altogether, we obtain the following result.

Theorem 5.2 Let L be an extension of FL or FLe with a finite set of analytic, shrinking
structural rules. Then the decision problem for L is PSPACE-complete.
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For example, any extension of FL or FLe by rules (i), (o), (m) and (knotnm) with m < n
is PSPACE-complete.

Of course the condition is far from a necessary one. An immediate counterexample is
intuitionistic logic, which involves the contraction rule (c) that is not shrinking, but is in
PSPACE [20].

The paper [6] studies cut elimination for rule extensions of InFLe in one sided (hy-
per)sequent calculus. With analytic rule defined as in [6] (where an analytic rule is instead
called a completed rule), we have essentially the same theorem for extensions of InFLe

with analytic, shrinking rules. We strongly believe that we will be able to prove the same
for extensions of InFL, once effects of adding structural rules to InFL have been studied
along the line of [4, 5, 6].

6. Conclusion

We have shown that a wide class of substructural logics satisfies the disjunction prop-
erty, and thus the decision problems for them are PSPACE-hard. Our methodology is
mainly algebraic, in contrast to the existing works that are largely proof theoretic. We
hope that our algebraic method will bring new insight into the complexity issue of sub-
structural logics.

We have also shown that some of the PSPACE-hard logics are indeed PSPACE-complete.
While the current argument is a standard proof theoretic one, it would be interesting to
find an algebraic method that works for membership in PSPACE.

Concerning future research directions, recall that the DP is not a necessary condition
for PSPACE-hardness, a counterexample being LQ, intuitionistic logic with weak excluded
middle. Hence it is natural to look for a weaker form of the DP which is sufficient for
PSPACE-hardness and captures a wider class of substructural logics, including LQ.

Refining our result in this direction is of particular interest because of the apparent
dichotomy phenomenon. By the result of this paper, we now know that a great number of
substructural logics are PSPACE-hard. We also know that many others are coNP-complete
(recall that all consistent substructural logics are at least coNP-hard). This class includes
classical logic and most of major many-valued logics such as (finite- or infinite-valued)
Gödel logics,  Lukasiewicz logics, product logic and Hájek’s basic logic [1]; see [3] for some
coNP-complete superintuitionistic logics. On the other hand, we do not know any substruc-
tural logic that is neither coNP-complete nor PSPACE-hard.1 Hence a natural question
arises:

Dichotomy problem: Is there a substructural logic which is neither coNP-complete nor
PSPACE-hard?

This is a fundamentally important problem, which is reminiscent of the dichotomy conjec-
ture in constraint satisfaction problems. For this problem, even a partial solution would

1Here we exclude fragments of substructural logics without ·, \ or ∨; for instance we know that the
multiplicative fragment of linear logic is NP-complete [11].
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be very interesting.
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