Residuated Lattices, Regular Languages, and Burnside Problem

Rostislav Horčík

Institute of Computer Science
Academy of Sciences of the Czech Republic

Topology, Algebra, and Categories in Logic
July 28 – August 1, 2013
Outline

1. Residuated lattices
Outline

1. Residuated lattices

2. Analogy between languages and logics
Outline

1. Residuated lattices
2. Analogy between languages and logics
3. FEP and regularity
Outline

1. Residuated lattices
2. Analogy between languages and logics
3. FEP and regularity
4. Applications
Residuated lattices

Definition

Let $M = \langle M, \cdot, 1 \rangle$ be a monoid. A quasi-order \leq on M is called compatible if for all $x, y, u, v \in M$:

$$x \leq y \implies uxv \leq uyv.$$
Residuated lattices

Definition
Let $M = \langle M, \cdot, 1 \rangle$ be a monoid. A quasi-order \leq on M is called compatible if for all $x, y, u, v \in M$:

$$x \leq y \implies uxv \leq uvy.$$

Definition
A residuated lattice $A = \langle A, \wedge, \vee, \cdot, \setminus, /, 1 \rangle$ is a monoid such that $\langle A, \wedge, \vee \rangle$ is a lattice and for all $a, b, c \in A$:

$$a \cdot b \leq c \iff b \leq a \setminus c \iff a \leq c / b.$$
Residuated lattices

Definition

Let \(M = \langle M, \cdot, 1 \rangle \) be a monoid. A quasi-order \(\leq \) on \(M \) is called compatible if for all \(x, y, u, v \in M \):

\[
x \leq y \implies uxv \leq uyv.
\]

Definition

A residuated lattice \(A = \langle A, \land, \lor, \cdot, \backslash, /, 1 \rangle \) is a monoid such that \(\langle A, \land, \lor \rangle \) is a lattice and for all \(a, b, c \in A \):

\[
a \cdot b \leq c \quad \text{iff} \quad b \leq a \backslash c \quad \text{iff} \quad a \leq c / b.
\]

Logic = a substructural logic, i.e., an axiomatic extension of FL.
Powerset monoid

Example
Let $M = \langle M, \cdot, 1 \rangle$ be a monoid. Then

$$\mathcal{P}(M) = \langle \mathcal{P}(M), \cap, \cup, \cdot, \setminus, \cup, \{1\} \rangle$$

is a residuated lattice, where

- $X \cdot Y = \{ xy \in M \mid x \in X, y \in Y \}$,
- $X \setminus Z = \{ y \in M \mid X \cdot \{y\} \subseteq Z \}$,
- $Z / Y = \{ x \in M \mid \{x\} \cdot Y \subseteq Z \}$.
Powerset monoid

Example

Let $M = \langle M, \cdot, 1 \rangle$ be a monoid. Then

$$\mathcal{P}(M) = \langle \mathcal{P}(M), \cap, \cup, \cdot, \setminus, /, \{1\} \rangle$$

is a residuated lattice, where

$$X \cdot Y = \{xy \in M \mid x \in X, y \in Y\},$$

$$X \setminus Z = \{y \in M \mid X \cdot \{y\} \subseteq Z\},$$

$$Z / Y = \{x \in M \mid \{x\} \cdot Y \subseteq Z\}.$$

Other examples can be obtained by introducing a suitable closure operator on $\mathcal{P}(M)$.
Nuclei

Definition

Let \(M \) be a monoid and \(\gamma \) a closure operator on \(\mathcal{P}(M) \). The collection of \(\gamma \)-closed sets is denoted \(\mathcal{P}(M)_\gamma \). Then \(\gamma \) is called a nucleus if for every \(u, v \in M \) we have

\[
X \in \mathcal{P}(M)_\gamma \implies \{u\} \setminus X/\{v\} \in \mathcal{P}(M)_\gamma.
\]
Nuclei

Definition
Let M be a monoid and γ a closure operator on $\mathcal{P}(M)$. The collection of γ-closed sets is denoted $\mathcal{P}(M)_{\gamma}$. Then γ is called a nucleus if for every $u, v \in M$ we have

$$X \in \mathcal{P}(M)_{\gamma} \implies \{u\} \setminus X/\{v\} \in \mathcal{P}(M)_{\gamma}.$$

Example
Let M be a monoid and γ a nucleus on $\mathcal{P}(M)$. Then $\mathcal{P}(M)_{\gamma} = \langle \mathcal{P}(M)_{\gamma}, \cap, \cup, \cdot, \setminus, \cup, \gamma \{1\} \rangle$ is a residuated lattice, where

$$X \cup_{\gamma} Y = \gamma(X \cup Y),$$

$$X \cdot_{\gamma} Y = \gamma(X \cdot Y).$$
Regular languages

Definition

A language $L \subseteq \Sigma^*$ is called **regular** iff it is accepted by a finite automaton.
Regular languages

Definition

A language $L \subseteq \Sigma^*$ is called regular iff it is accepted by a finite automaton.
Syntactic monoid

Definition
Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

1. **syntactic congruence:** $x \sim_L y$ iff $(\forall u, v \in \Sigma^*) (uxv \in L \iff uyv \in L)$,
2. **syntactic monoid:** $M(L) = \Sigma^*/\sim_L$.

Theorem
1. The syntactic congruence \sim_L is the largest congruence saturating L, i.e., $L = \bigcup_{w \in L} w/\sim_L$.
2. $M(L)$ is finite iff L is regular (Myhill-Nerode Theorem).

Rostislav Horčík (ICS)
Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

1. syntactic congruence:

 \[x \sim_L y \quad \text{iff} \quad (\forall u, v \in \Sigma^*) (uxv \in L \iff uyv \in L), \]

2. syntactic monoid:

 \[M(L) = \Sigma^*/\sim_L. \]

Theorem

1. The syntactic congruence \sim_L is the largest congruence saturating L, i.e., $L = \bigcup_{w \in L} w/\sim_L$.

2. $M(L)$ is finite iff L is regular (Myhill-Nerode Theorem).
Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

1. syntactic congruence:

 $$x \sim_L y \text{ iff } (\forall u, v \in \Sigma^*)(uxv \in L \Leftrightarrow uyv \in L),$$

2. syntactic monoid: $M(L) = \Sigma^*/\sim_L$.

Syntactic monoid

Definition

Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

1. syntactic congruence:

$$x \sim_L y \text{ iff } (\forall u, v \in \Sigma^*)(uxv \in L \iff uyv \in L),$$

2. syntactic monoid: $M(L) = \Sigma^*/\sim_L$.

Theorem

1. The syntactic congruence \sim_L is the largest congruence saturating L, i.e., $L = \bigcup_{w \in L} w/\sim_L$.

2. $M(L)$ is finite iff L is regular (Myhill-Nerode Theorem).
Syntactic monoid

Definition

Given an alphabet \(\Sigma \) and a language \(L \subseteq \Sigma^* \), we define

1. syntactic congruence:
\[
x \sim_L y \text{ iff } (\forall u, v \in \Sigma^*)(uxv \in L \iff uyv \in L),
\]

2. syntactic monoid: \(M(L) = \Sigma^*/\sim_L \).

Theorem

1. The syntactic congruence \(\sim_L \) is the largest congruence saturating \(L \), i.e., \(L = \bigcup_{w \in L} w/\sim_L \).
Syntactic monoid

Definition
Given an alphabet Σ and a language $L \subseteq \Sigma^*$, we define

1. **syntactic congruence:**

 $x \sim_L y \iff (\forall u, v \in \Sigma^*)(uxv \in L \iff uyv \in L),$

2. **syntactic monoid:** $M(L) = \Sigma^* / \sim_L.$

Theorem

1. The syntactic congruence \sim_L is the largest congruence saturating L, i.e., $L = \bigcup_{w \in L} w / \sim_L.$

2. $M(L)$ is finite iff L is regular (Myhill-Nerode Theorem).
Definition
Given a logic L, we define
Lindenbaum–Tarski algebra

Definition

Given a logic L, we define

1. Leibniz congruence:

 $\alpha \sim_L \beta \iff (\forall \varphi \in Fm)(\vdash_L \varphi(\alpha) \iff \vdash_L \varphi(\beta))$,

Theorem

Leibniz congruence \sim_L is the largest congruence saturating the set of theorems of L.

Rostislav Horčík (ICS)
Given a logic L, we define

1. **Leibniz congruence:**

 \[\alpha \sim_L \beta \quad \text{iff} \quad (\forall \varphi \in Fm)(\vdash_L \varphi(\alpha) \iff \vdash_L \varphi(\beta)), \]

2. **Lindenbaum-Tarski algebra:** Fm/\sim_L.

Theorem

Leibniz congruence \sim_L is the largest congruence saturating the set of theorems of L.

Rostislav Horčík (ICS)
Lindenbaum-Tarski algebra

Definition

Given a logic \(L \), we define

1. Leibniz congruence:

\[\alpha \sim_L \beta \text{ iff } (\forall \varphi \in Fm)(\vdash_L \varphi(\alpha) \iff \vdash_L \varphi(\beta)) , \]

2. Lindenbaum-Tarski algebra: \(Fm/\sim_L \).

Theorem

Leibniz congruence \(\sim_L \) is the largest congruence saturating the set of theorems of \(L \).
Eilenberg variety theorem

The assignment $L \mapsto M(L)$ induces a correspondence between varieties of regular languages and pseudovarieties of finite monoids.

- $\mathcal{L} \mapsto$ the pseudovariety generated by $\{M(L) \mid L \in \mathcal{L}\}$.
- $\mathcal{V} \mapsto$ the variety \mathcal{L} of regular languages L s.t. $M(L) \in \mathcal{V}$.

Theorem (Eilenberg 1976)

The above maps are mutually inverse, order-preserving bijections.

Theorem

Let L be a logic. The map $L \mapsto Fm/\sim_L$ induces a dual-isomorphism between the lattice of axiomatic extensions of L and the subvariety lattice of the variety generated by Fm/\sim_L.

Rostislav Horčík (ICS)
Eilenberg variety theorem

The assignment $L \mapsto \mathbf{M}(L)$ induces a correspondence between varieties of regular languages and pseudovarieties of finite monoids.

\[
\mathcal{L} \mapsto \text{the pseudovariety generated by } \{\mathbf{M}(L) \mid L \in \mathcal{L}\}.
\]

\[
\mathcal{V} \mapsto \text{the variety } \mathcal{L} \text{ of regular languages } L \text{ s.t. } \mathbf{M}(L) \in \mathcal{V}.
\]

Theorem (Eilenberg 1976)

The above maps are mutually inverse, order-preserving bijections.
Eilenberg variety theorem

The assignment \(L \mapsto M(L) \) induces a correspondence between varieties of regular languages and pseudovarieties of finite monoids.

\[\mathcal{L} \mapsto \text{the pseudovariety generated by} \{ M(L) \mid L \in \mathcal{L} \} \]

\[\mathcal{V} \mapsto \text{the variety} \mathcal{L} \text{ of regular languages } L \text{ s.t. } M(L) \in \mathcal{V} \]

Theorem (Eilenberg 1976)

The above maps are mutually inverse, order-preserving bijections.

Theorem

Let \(L \) be a logic. The map \(L \mapsto Fm/\sim_L \) induces a dual-isomorphism between the lattice of axiomatic extensions of \(L \) and the subvariety lattice of the variety generated by \(Fm/\sim_L \).
Analogy table

<table>
<thead>
<tr>
<th>Language theory</th>
<th>Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>language</td>
<td>theorems</td>
</tr>
<tr>
<td>syntactic congruence</td>
<td>Leibniz congruence</td>
</tr>
<tr>
<td>syntactic monoid</td>
<td>Lindenbaum-Tarski algebra</td>
</tr>
<tr>
<td>Eilenberg variety theorem</td>
<td>axiomatic extensions ↔ subvarieties</td>
</tr>
</tbody>
</table>
Analogy table

<table>
<thead>
<tr>
<th>Language theory</th>
<th>Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>language</td>
<td>theorems</td>
</tr>
<tr>
<td>syntactic congruence</td>
<td>Leibniz congruence</td>
</tr>
<tr>
<td>syntactic monoid</td>
<td>Lindenbaum-Tarski algebra</td>
</tr>
<tr>
<td>Eilenberg variety theorem</td>
<td>axiomatic extensions ↔ subvarieties</td>
</tr>
</tbody>
</table>

- Lindenbaum-Tarski algebra is used to prove the completeness theorem for a logic L.
- Nevertheless, there is also another construction used in order to prove it.
- Does it have its analogy on the language side?
Another way of proving completeness

- Let L be a logic presented by a single-conclusion sequent calculus.
Another way of proving completeness

- Let L be a logic presented by a single-conclusion sequent calculus.
- Consider the free monoid generated by formulas Fm^*.
Another way of proving completeness

- Let L be a logic presented by a single-conclusion sequent calculus.
- Consider the free monoid generated by formulas Fm^*.
- Look for the pointwise largest nucleus γ on $\mathcal{P}(Fm^*)$ making the following set γ-closed for every $\varphi \in Fm$:

$$S_\varphi = \{ \Gamma \in Fm^* \mid \vdash_L \Gamma \Rightarrow \varphi \}.$$
Another way of proving completeness

- Let L be a logic presented by a single-conclusion sequent calculus.

- Consider the free monoid generated by formulas Fm^*.

- Look for the pointwise largest nucleus γ on $\mathcal{P}(Fm^*)$ making the following set γ-closed for every $\varphi \in Fm$:

 $$S_\varphi = \{ \Gamma \in Fm^* \mid \vdash_L \Gamma \Rightarrow \varphi \}.$$

- Then $\mathcal{P}(Fm^*)_\gamma$ is the algebra used to prove the completeness theorem.
Another way of proving completeness

- Let L be a logic presented by a single-conclusion sequent calculus.

- Consider the free monoid generated by formulas Fm^*.

- Look for the pointwise largest nucleus γ on $\mathcal{P}(Fm^*)$ making the following set γ-closed for every $\varphi \in Fm$:

 $S_\varphi = \{ \Gamma \in Fm^* \mid \vdash_L \Gamma \Rightarrow \varphi \}$.

- Then $\mathcal{P}(Fm^*)_\gamma$ is the algebra used to prove the completeness theorem.

- If δ is a nucleus on $\mathcal{P}(Fm^*)$ making all S_φ’s δ-closed then $\delta(X) \subseteq \gamma(X)$ for all $X \subseteq Fm^*$.
Definition

Let \(L \subseteq \Sigma^* \) be a language. The pointwise largest nucleus \(\gamma_L \) making \(L \) a closed set is called syntactic nucleus. Then \(R(L) = \mathcal{P}(\Sigma^*)_{\gamma_L} \) is called a syntactic residuated lattice.
Syntactic residuated lattice

Definition

Let $L \subseteq \Sigma^*$ be a language. The pointwise largest nucleus γ_L making L a closed set is called syntactic nucleus. Then $R(L) = \mathcal{P}(\Sigma^*)_{\gamma_L}$ is called a syntactic residuated lattice.

Theorem

Theorem 1: $\{\gamma_{\{x\}} | x \in \Sigma^*\}$ forms a submonoid isomorphic to the syntactic monoid $M(L)$.

Theorem 2: $R(L)$ is finite iff L is regular.
Syntactic residuated lattice

Definition
Let \(L \subseteq \Sigma^* \) be a language. The pointwise largest nucleus \(\gamma_L \) making \(L \) a closed set is called syntactic nucleus. Then \(R(L) = \mathcal{P}(\Sigma^*)\gamma_L \) is called a syntactic residuated lattice.

Theorem
1. \(\{\gamma\{x\} \mid x \in \Sigma^*\} \) forms a submonoid isomorphic to the syntactic monoid \(M(L) \).
Definition

Let $L \subseteq \Sigma^*$ be a language. The pointwise largest nucleus γ_L making L a closed set is called **syntactic nucleus**. Then $R(L) = \mathcal{P}(\Sigma^*)_\gamma_L$ is called a **syntactic residuated lattice**.

Theorem

1. $\{\gamma\{x\} \mid x \in \Sigma^*\}$ forms a submonoid isomorphic to the syntactic monoid $M(L)$.

2. $R(L)$ is **finite** iff L is **regular**.
Is it good for something?

Syntactic monoids were mainly applied in the realm of regular languages.

Beyond regular languages – they do not contain sufficiently enough information to distinguish very different languages.

Example (Sakarovitch)

Consider the following languages over \(\Sigma = \{0, 1\} \):

\[
L_1 = \{ww^R \mid w \in \Sigma^* \},
\]

\[
L_2 = \{w \in \Sigma^* \mid w \text{ is prime} \}.
\]

Then \(M(L_1) = M(L_2) = \Sigma^* \).
Is it good for something?

Syntactic monoids were mainly applied in the realm of regular languages.

Beyond regular languages – they do not contain sufficiently enough information to distinguish very different languages.

Example (Sakarovitch)
Consider the following languages over $\Sigma = \{0, 1\}$:

$$L_1 = \{ ww^R \mid w \in \Sigma^* \},$$
$$L_2 = \{ w \in \Sigma^* \mid w \text{ is prime} \}.$$

Then $M(L_1) = M(L_2) = \Sigma^*$.
Beyond regular languages

Consider the following rule over:

\[u x v, u x^2 v \in L \implies u v \in L. \quad (r) \]

Then \(L_1 \) is closed under \((r)\) and \(L_2 \) not.
Beyond regular languages

Consider the following rule over:

\[uxv, ux^2v \in L \implies uv \in L. \] \hspace{1cm} (r)

Then \(L_1 \) is closed under (r) and \(L_2 \) not.

Theorem

A language \(L \) is closed under (r) iff \(R(L) \) satisfies

\[1 \leq x \lor x^2 \lor x \setminus y. \]

Thus the languages \(L_1, L_2 \) can be separated by a variety of residuated lattices.
How to construct the largest nucleus?

Let M be a monoid and $B = \{ S_i \subseteq M \mid i \in I \}$.

Use residuated frames (Galatos, Jipsen).
How to construct the largest nucleus?

- Let M be a monoid and $B = \{S_i \subseteq M \mid i \in I\}$.
- How to find the largest nucleus on $\mathcal{P}(M)$ making all sets in B closed?
How to construct the largest nucleus?

Let M be a monoid and $B = \{S_i \subseteq M \mid i \in I\}$.

How to find the largest nucleus on $P(M)$ making all sets in B closed?

Use residuated frames (Galatos, Jipsen).
Frames

A frame $\mathbf{W} = \langle M, B, N \rangle$:

\[M \quad \frac{N}{\ } \quad B \]
A frame $\mathbf{W} = \langle M, B, N \rangle$:

$$\begin{array}{ccc}
M & \text{N} & B \\
\uparrow & & \uparrow \\
\mathcal{P}(M) & \bowtie & \mathcal{P}(B)
\end{array}$$

$$X^\triangleright = \{ b \in B \mid (\forall a \in X)(a N b) \},$$

$$Y^\triangleleft = \{ a \in M \mid (\forall b \in Y)(a N b) \}.$$
Frames

A frame $\mathbf{W} = \langle M, B, N \rangle$:

$M \xrightarrow{N} B$

$\mathcal{P}(M) \xrightarrow{\triangle} \mathcal{P}(B)$

$X^{\triangleright} = \{ b \in B \mid (\forall a \in X)(a N b) \}$,

$Y^{\triangleleft} = \{ a \in M \mid (\forall b \in Y)(a N b) \}$.

$\gamma(X) = X^{\triangleright\triangleleft}$ is a closure operator on $\mathcal{P}(M)$.

Rostislav Horčík (ICS)
Frames

A frame $\mathbf{W} = \langle M, B, N \rangle$:

$$\begin{array}{c}
\text{frames} \\
\mathbf{W} = \langle M, B, N \rangle:
\end{array}$$

$$\begin{array}{c}
\begin{array}{c}
M \\
\xrightarrow{\text{N}} \\
B
\end{array}
\end{array}$$

$$\begin{array}{c}
\begin{array}{c}
\mathcal{P}(M) \\
\xrightarrow{\gamma} \\
\mathcal{P}(B)
\end{array}
\end{array}$$

- $X^\triangledown = \{ b \in B \mid (\forall a \in X)(a \mathcal{N} b) \}$,
- $Y^\triangleleft = \{ a \in M \mid (\forall b \in Y)(a \mathcal{N} b) \}$.

- $\gamma(X) = X^{\triangledown\triangleleft}$ is a closure operator on $\mathcal{P}(M)$.
- It is the pointwise largest closure operator making all sets in its basis $\{ \{ b \}^\triangleleft \mid b \in B \}$ γ-closed.
A frame $\mathbf{W} = \langle M, B, N \rangle$:

$$\begin{align*}
\mathcal{P}(M) & \xymatrix{ & N \ar[dl] \ar[dr] & \\
M & & B}
\end{align*}$$

$X^\triangledown = \{ b \in B \mid (\forall a \in X)(a N b) \}$,

$Y^\triangledown = \{ a \in M \mid (\forall b \in Y)(a N b) \}$.

- $\gamma(X) = X^\triangledown^\triangledown$ is a closure operator on $\mathcal{P}(M)$.
- It is the pointwise largest closure operator making all sets in its basis $\{ \{ b \}^\triangledown \mid b \in B \}$ γ-closed.
- The collection of closed sets forms a complete lattice $\mathbf{W}^+ = \langle \mathcal{P}(M)_\gamma, \cap, \cup_\gamma \rangle$, where

$$X \cup_\gamma Y = \gamma(X \cup Y).$$
Residuated frames

- Given a monoid M and an frame $W = \langle M, B, N \rangle$, the corresponding induced closure operator γ need not be a nucleus.

\[
\hat{W} = \langle M, M^2 \times B, \hat{N} \rangle,
\]
where $x \hat{N} \langle u, v, b \rangle$ iff $uxv N b$.

The closure operator γ induced by \hat{N} is a nucleus.

Then \hat{W}^+ forms a complete residuated lattice.

Moreover, γ is the pointwise largest nucleus making all $\{1, 1, b\} \triangleleft \gamma$'s.
Residuated frames

- Given a monoid M and an frame $W = \langle M, B, N \rangle$, the corresponding induced closure operator γ need not be a nucleus.

- Define an extended (residuated) frame $\hat{W} = \langle M, M^2 \times B, \hat{N} \rangle$, where $x \hat{N} \langle u, v, b \rangle$ iff $uxv \subseteq b$.

The closure operator γ induced by \hat{N} is a nucleus. Then \hat{W}^+ forms a complete residuated lattice. Moreover, γ is the pointwise largest nucleus making all $\{1, 1, b\} \triangleleft \gamma$-closed.
Residuated frames

- Given a monoid M and an frame $W = \langle M, B, N \rangle$, the corresponding induced closure operator γ need not be a nucleus.

- Define an extended (residuated) frame $\widehat{W} = \langle M, M^2 \times B, \widehat{N} \rangle$, where
 \[x \cdot \widehat{N} \langle u, v, b \rangle \text{ iff } u x v \, N \, b. \]

- The closure operator γ induced by \widehat{N} is a nucleus.
Residuated frames

- Given a monoid M and an frame $W = \langle M, B, N \rangle$, the corresponding induced closure operator γ need not be a nucleus.

- Define an extended (residuated) frame $\widehat{W} = \langle M, M^2 \times B, \widehat{N} \rangle$, where

$$x \widehat{N} \langle u, v, b \rangle \text{ iff } uxv N b.$$

- The closure operator γ induced by \widehat{N} is a nucleus.

- Then $\widehat{W}^+ = \mathcal{P}(M)_\gamma$ forms a complete residuated lattice.
Residuated frames

- Given a monoid M and an frame $\mathcal{W} = \langle M, B, N \rangle$, the corresponding induced closure operator γ need not be a nucleus.

- Define an extended (residuated) frame $\hat{\mathcal{W}} = \langle M, M^2 \times B, \hat{N} \rangle$, where

 $$x \hat{N} \langle u, v, b \rangle \iff uxv \leq N b.$$

- The closure operator γ induced by \hat{N} is a nucleus.

- Then $\hat{\mathcal{W}}^+ = \mathcal{P}(M)_\gamma$ forms a complete residuated lattice.

- Moreover, γ is the pointwise largest nucleus making all $\{1, 1, b\}^\downarrow$’s γ-closed.
Construction of $R(L)$

- Let L be a logic and consider the frame $W = \langle Fm^*, Fm, N \rangle$ where

$$\Gamma N \varphi \iff \Gamma \in S\varphi \iff \vdash_L \Gamma \Rightarrow \varphi.$$

Then \hat{W}^+ is the algebra used to prove the completeness.
Construction of $R(L)$

- Let L be a logic and consider the frame $\mathcal{W} = \langle Fm^*, Fm, N \rangle$ where
 \[\Gamma \vdash N \varphi \text{ iff } \Gamma \in S_\varphi \text{ iff } \vdash_L \Gamma \Rightarrow \varphi. \]
 Then $\hat{\mathcal{W}}^+$ is the algebra used to prove the completeness.

- Let $L \subseteq \Sigma^*$ be a language. Define frame $\mathcal{W} = \langle \Sigma^*, \{L\}, N \rangle$, where $N \subseteq \Sigma^* \times \{L\}$ is defined by
 \[x \in N L \text{ iff } x \in L. \]
 Then $R(L) = \hat{\mathcal{W}}^+$ is the syntactic residuated lattice of L.
A class of algebras \mathcal{K} of the same type has the **finite embeddability property** (FEP) if every finite partial subalgebra \mathbf{B} of any algebra $\mathbf{A} \in \mathcal{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathcal{K}$.
FEP

Definition (Evans)

A class of algebras \mathcal{K} of the same type has the finite embeddability property (FEP) if every finite partial subalgebra B of any algebra $A \in \mathcal{K}$ is embeddable into a finite algebra $D \in \mathcal{K}$.

- Let \mathcal{K} be a variety of residuated lattices.
FEP

Definition (Evans)
A class of algebras \mathcal{K} of the same type has the **finite embeddability property** (FEP) if every finite partial subalgebra B of any algebra $A \in \mathcal{K}$ is embeddable into a finite algebra $D \in \mathcal{K}$.

- Let \mathcal{K} be a variety of residuated lattices.
- Start with $A \in \mathcal{K}$ and a finite $B \subseteq A$.
FEP

Definition (Evans)

A class of algebras \mathcal{K} of the same type has the finite embeddability property (FEP) if every finite partial subalgebra B of any algebra $A \in \mathcal{K}$ is embeddable into a finite algebra $D \in \mathcal{K}$.

- Let \mathcal{K} be a variety of residuated lattices.
- Start with $A \in \mathcal{K}$ and a finite $B \subseteq A$.
- Let M be the sub(po)monoid of A generated by B.

Rostislav Horčík (ICS)
Definition (Evans)

A class of algebras \mathcal{K} of the same type has the **finite embeddability property** (FEP) if every finite partial subalgebra B of any algebra $A \in \mathcal{K}$ is embeddable into a finite algebra $D \in \mathcal{K}$.

- Let \mathcal{K} be a variety of residuated lattices.
- Start with $A \in \mathcal{K}$ and a finite $B \subseteq A$.
- Let M be the sub(po)monoid of A generated by B.
- Consider the frame $\mathcal{W} = \langle M, B, N \rangle$ where
 \[x \leq N b \iff x \leq^A b. \]
FEP

Definition (Evans)
A class of algebras \mathcal{K} of the same type has the **finite embeddability property** (FEP) if every finite partial subalgebra B of any algebra $A \in \mathcal{K}$ is embeddable into a finite algebra $D \in \mathcal{K}$.

- Let \mathcal{K} be a variety of residuated lattices.
- Start with $A \in \mathcal{K}$ and a finite $B \subseteq A$.
- Let M be the sub(po)monoid of A generated by B.
- Consider the frame $W = \langle M, B, N \rangle$ where
 \[x \ N \ b \ \text{iff} \ x \leq^A b. \]
- Then \hat{W}^+ is a residuated lattice and B embeds to it.
Definition (Evans)

A class of algebras \mathcal{K} of the same type has the **finite embeddability property** (FEP) if every finite partial subalgebra B of any algebra $A \in \mathcal{K}$ is embeddable into a finite algebra $D \in \mathcal{K}$.

- Let \mathcal{K} be a variety of residuated lattices.
- Start with $A \in \mathcal{K}$ and a finite $B \subseteq A$.
- Let M be the sub(po)monoid of A generated by B.
- Consider the frame $\mathcal{W} = \langle M, B, N \rangle$ where

 \[x N b \quad \text{iff} \quad x \leq^A b. \]

- Then $\hat{\mathcal{W}}^+$ is a residuated lattice and B embeds to it.
- Is $\hat{\mathcal{W}}^+$ finite? Does $\hat{\mathcal{W}}^+$ belong to \mathcal{K}?
Generalized Myhill Theorem

Theorem

Let \mathbf{M} be a monoid and $\mathbf{W} = \langle \mathbf{M}, B, N \rangle$ a frame where B is finite. Then $\hat{\mathbf{W}}^+$ is finite iff there is a compatible dual well quasi-order \sqsubseteq on \mathbf{M} such that

$$x \sqsubseteq y, \ y \vdash_N b \implies x \vdash_N b.$$
Generalized Myhill Theorem

Theorem

Let \mathbf{M} be a monoid and $\mathbf{W} = \langle M, B, N \rangle$ a frame where B is finite. Then $\hat{\mathbf{W}}^+$ is finite iff there is a compatible dual well quasi-order \sqsubseteq on \mathbf{M} such that

$$x \sqsubseteq y, \ y \vdash b \implies x \vdash b.$$~

Corollary (Generalized Myhill Theorem – Ehrenfeucht, Rozenberg)

A language $L \subseteq \Sigma^*$ is regular iff L is downward closed w.r.t. a compatible dual well quasi-order on Σ^*.
Generalized Myhill Theorem

Theorem

Let \mathbf{M} be a monoid and $\mathbf{W} = \langle \mathbf{M}, B, N \rangle$ a frame where B is finite. Then $\widehat{\mathbf{W}^+}$ is finite iff there is a compatible dual well quasi-order \sqsubseteq on \mathbf{M} such that

$$x \sqsubseteq y, \ y \not\sqsubseteq b \implies x \not\sqsubseteq b.$$

Corollary (Generalized Myhill Theorem – Ehrenfeucht, Rozenberg)

A language $L \subseteq \Sigma^*$ is regular iff L is downward closed w.r.t. a compatible dual well quasi-order on Σ^*.

$\mathcal{V} = \text{finitely gen. subpomonoids of members from } \mathcal{K}$

Find a compatible dual well quasi-order \sqsubseteq on Σ^* s.t. all pomonoids from \mathcal{V} are homomorphic images of Σ^*/\sqsubseteq.
Weakening rule

Theorem (Blok, van Alten)

The variety of integral residuated lattices \((x \leq 1)\) has the FEP.

Proof.
Consider the least compatible quasi-order \(\sqsubseteq\) on \(\Sigma^*\) such that \(\Sigma^*/\sqsubseteq\) satisfies \(x \leq 1\). Show by Higman's lemma that \(\sqsubseteq\) is dually well.

Theorem
Every language \(L\) closed under the following rule is regular:

\[
uv \in L \quad \text{and} \quad uxv \in L.
\]
Weakening rule

Theorem (Blok, van Alten)

The variety of integral residuated lattices (*x* ≤ 1) *has the FEP.*

Proof.

Consider the least compatible quasi-order ⊑ on Σ* such that Σ*/⊑ satisfies *x* ≤ 1. Show by Higman’s lemma that ⊑ is dually well.

□
Weakening rule

Theorem (Blok, van Alten)

The variety of integral residuated lattices \((x \leq 1)\) has the FEP.

Proof.

Consider the least compatible quasi-order \(\sqsubseteq\) on \(\Sigma^*\) such that \(\Sigma^*/\sqsubseteq\) satisfies \(x \leq 1\). Show by Higman’s lemma that \(\sqsubseteq\) is dually well. \(\square\)

Theorem

Every language \(L\) closed under the following rule is regular:

\[
\frac{uv \in L}{uxv \in L}.
\]
Exchange and knotted rules

Let $m \geq 1$, $n \geq 0$ and $m \neq n$.

Theorem (van Alten)

The variety of commutative $(xy = yx)$ residuated lattices satisfying $x^m \leq x^n$ has the FEP.
Exchange and knotted rules

Let $m \geq 1$, $n \geq 0$ and $m \neq n$.

Theorem (van Alten)

The variety of commutative ($xy = yx$) residuated lattices satisfying $x^m \leq x^n$ has the FEP.

Theorem

Every language closed under the following rules is regular:

- $uxyv \in L$
- $ux^n v \in L$
- $uyxv \in L$
- $ux^m v \in L$.
Inspired by language theory

Theorem (de Luca, Varricchio)

Language \(L \) is regular iff \(L \) is permutable and quasi-periodic or co-quasi-periodic.

Let \(\sigma \in S_k \setminus \{id\} \) for \(k \geq 2 \) and \(m, n \in \mathbb{N} \) such that \(m > n \geq 1 \).

In particular, they prove that the least compatible quasi-order \(\sqsubseteq \) on \(\Sigma^+ \) such that \(\Sigma^+ / \sqsubseteq \) satisfies \(x_1 \cdots x_k = x_{\sigma(1)} \cdots x_{\sigma(k)} \) and \(x^m \leq x^n \) is dually well.
Inspired by language theory

Theorem (de Luca, Varricchio)

Language L is regular iff L is permutable and quasi-periodic or co-quasi-periodic.

Let $\sigma \in S_k \setminus \{id\}$ for $k \geq 2$ and $m, n \in \mathbb{N}$ such that $m > n \geq 1$.

In particular, they prove that the least compatible quasi-order \sqsubseteq on Σ^+ such that Σ^+ / \sqsubseteq satisfies $x_1 \cdots x_k = x_{\sigma(1)} \cdots x_{\sigma(k)}$ and $x^m \leq x^n$ is dually well.

Theorem

Let $\sigma \in S_k \setminus \{id\}$ for $k \geq 2$ and $m, n \in \mathbb{N}$ such that $m > n \geq 1$. Then the variety of resideduated lattice-ordered semigroups axiomatized by $x_1 \cdots x_k = x_{\sigma(1)} \cdots x_{\sigma(k)}$ and $x^m \leq x^n$ has the FEP.
Knotted axioms

Let $m, n \geq 1$ and $m \neq n$. The variety of res. lattices defined by $x^m \leq x^n$ is denoted RL^n_m.

Theorem

The word problem for RL^n_m is undecidable for $1 \leq m < n$ and $2 \leq n < m$.

Thus RL^n_m does not have the FEP.

Theorem

There is an undecidable language L closed under the following rule:

$ux^2v \in L \quad uxv \in L,$

$\{u^{\alpha\beta}v \in L\}$

$\alpha, \beta \in \{x, y, z\}$

$uxyzv \in L$.

The only remaining cases are

$x^m \leq x$ for $m \geq 2$.

Rostislav Horčík (ICS)
Knotted axioms

Let $m, n \geq 1$ and $m \neq n$. The variety of res. lattices defined by $x^m \leq x^n$ is denoted \mathcal{RL}^n_m.

Theorem

The word problem for \mathcal{RL}^n_m is undecidable for $1 \leq m < n$ and $2 \leq n < m$. Thus \mathcal{RL}^n_m does not have the FEP.
Knotted axioms

Let $m, n \geq 1$ and $m \neq n$. The variety of res. lattices defined by $x^m \leq x^n$ is denoted RL^n_m.

Theorem

The word problem for RL^n_m is undecidable for $1 \leq m < n$ and $2 \leq n < m$. Thus RL^n_m does not have the FEP.

Theorem

There is an undecidable language L closed under the following rule:

\[
\begin{align*}
ux^2v \in L & \quad \Rightarrow \quad \exists \alpha, \beta \in \{x, y, z\} \quad \{u\alpha\beta v \in L\}
\end{align*}
\]

\[
\begin{align*}
uxv \in L \quad & \quad \Rightarrow \quad \{u\alpha\beta v \in L\}_{\alpha, \beta \in \{x, y, z\}}
\end{align*}
\]

\[
\begin{align*}
uxyzv \in L & \quad \Rightarrow \quad \exists \alpha, \beta \in \{x, y, z\} \quad \{u\alpha\beta v \in L\}
\end{align*}
\]
Knotted axioms

Let $m, n \geq 1$ and $m \neq n$. The variety of res. lattices defined by $x^m \leq x^n$ is denoted \mathcal{RL}_m^n.

Theorem

The word problem for \mathcal{RL}_m^n is undecidable for $1 \leq m < n$ and $2 \leq n < m$. Thus \mathcal{RL}_m^n does not have the FEP.

Theorem

There is an undecidable language L closed under the following rule:

\[
\begin{align*}
ux^2v & \in L \\
uxv & \in L,
\end{align*}
\]

\[
\begin{align*}
\{u\alpha\beta v \in L\}_{\alpha,\beta \in \{x,y,z\}} \\
uxyzv & \in L
\end{align*}
\]

The only remaining cases are $x^m \leq x$ for $m \geq 2$.

Partial order

Let $m \geq 2$. The variety RL^1_m can be axiomatized by

$$ux_1v \leq z \; \& \; \ldots \; \& \; ux_mv \leq z \implies ux_1 \cdots x_mv \leq z. \quad (q_m)$$
Partial order

Let $m \geq 2$. The variety \mathcal{RL}_m^1 can be axiomatized by

\[
ux_1 v \leq z \land \ldots \land ux_m v \leq z \quad \implies \quad ux_1 \cdots x_m v \leq z.
\]

(q_m)

Consider subsets of Σ^* closed under the following rule:

\[
\frac{ux_1 v \in L \land \ldots \land ux_m v \in L}{ux_1 \cdots x_m v \in L}.
\]

(r_m)
Partial order

Let \(m \geq 2 \). The variety \(\mathcal{RL}^1_m \) can be axiomatized by

\[
ux_1 v \leq z \land \ldots \land ux_m v \leq z \implies ux_1 \cdots x_m v \leq z. \quad (q_m)
\]

Consider subsets of \(\Sigma^* \) closed under the following rule:

\[
\frac{ux_1 v \in L \ldots ux_m v \in L}{ux_1 \cdots x_m v \in L}. \quad (r_m)
\]

This rule induces a nucleus \(\gamma_m \) on \(\mathcal{P}(\Sigma^*) \). Define the following binary relation on \(\Sigma^* \):

\[
x \leq_m y \quad \text{iff} \quad \gamma_m \{x\} \subseteq \gamma_m \{y\}.
\]
Partial order

Let $m \geq 2$. The variety \mathcal{RL}_m^1 can be axiomatized by

$$ux_1 v \leq z \& \ldots \& ux_m v \leq z \implies ux_1 \cdots x_m v \leq z. \quad (q_m)$$

Consider subsets of Σ^* closed under the following rule:

$$\frac{ux_1 v \in L \ldots ux_m v \in L}{ux_1 \cdots x_m v \in L}. \quad (r_m)$$

This rule induces a nucleus γ_m on $\mathcal{P}(\Sigma^*)$. Define the following binary relation on Σ^*:

$$x \leq_m y \text{ iff } \gamma_m \{x\} \subseteq \gamma_m \{y\}.$$

Lemma

The relation \leq_m is the least compatible quasi-order on Σ^* such that Σ^*/\leq_m satisfies (q_m).
Burnside problem

Let G_m be the variety of groups satisfying $x^m = 1$.
Burnside problem

Let G_m be the variety of groups satisfying $x^m = 1$.

Problem (Burnside)

Given $m \in \mathbb{N}$, is G_m locally finite?
Burnside problem

Let \mathcal{G}_m be the variety of groups satisfying $x^m = 1$.

Problem (Burnside)

Given $m \in \mathbb{N}$, is \mathcal{G}_m locally finite?

Theorem (Burnside, Sanov, Hall)

The answer is affirmative for $m = 1, 2, 3, 4, 6$.

Theorem (Adian)

The answer is negative for odd $m \geq 665$.

Theorem (Ivanov)

The answer is negative for $m \geq 248$.

Rostislav Horčík (ICS)
Burnside problem

Let G_m be the variety of groups satisfying $x^m = 1$.

Problem (Burnside)

Given $m \in \mathbb{N}$, is G_m locally finite?

Theorem (Burnside, Sanov, Hall)

The answer is affirmative for $m = 1, 2, 3, 4, 6$.

Theorem (Adian)

*The answer is negative for odd $m \geq 665$.***
Burnside problem

Let G_m be the variety of groups satisfying $x^m = 1$.

Problem (Burnside)

Given $m \in \mathbb{N}$, is G_m locally finite?

Theorem (Burnside, Sanov, Hall)

The answer is affirmative for $m = 1, 2, 3, 4, 6$.

Theorem (Adian)

The answer is negative for odd $m \geq 665$.

Theorem (Ivanov)

*The answer is negative for $m \geq 2^{48}$.***
Three implications

Theorem

Let $m > 1$. Suppose that \leq_m is dual well partial order. Then

Corollary

The partial order \leq_m is not dual well for even $m \geq 666$ and $m \geq 248$.

Rostislav Horčík (ICS)
Three implications

Theorem

Let $m > 1$. Suppose that \leq_m is dual well partial order. Then

1. Burnside problem for $m - 1$ has an affirmative answer.

Corollary

The partial order \leq_m is not dual well for even $m \geq 666$ and $m \geq 248$.
Three implications

Theorem

Let $m > 1$. Suppose that \leq_m is dual well partial order. Then

1. Burnside problem for $m - 1$ has an affirmative answer.
2. The variety \mathcal{RL}_m^n has the FEP.
Three implications

Theorem

Let $m > 1$. Suppose that \leq_m is dual well partial order. Then

1. Burnside problem for $m - 1$ has an affirmative answer.
2. The variety \mathcal{RL}_m^n has the FEP.
3. Every language closed under the following rule is regular:

$$
ux_1v \in L \cdots ux_mv \in L \\
\frac{u \cdot x_1 \cdots \cdot x_m v \in L}{u x_1 \cdots x_m v \in L}.
$$
Three implications

Theorem

Let $m > 1$. Suppose that \leq_m is dual well partial order. Then

1. Burnside problem for $m - 1$ has an affirmative answer.
2. The variety \mathcal{RL}_m^n has the FEP.
3. Every language closed under the following rule is regular:

$$ux_1v \in L \quad \ldots \quad ux_mv \in L \quad \Rightarrow \quad ux_1 \cdots x_mv \in L.$$

Corollary

The partial order \leq_m is not dual well for even $m \geq 666$ and $m \geq 2^{48}$.

Mingle rule

Theorem

The variety RL^1_2 has the FEP.
Mingle rule

Theorem

The variety \mathcal{RL}_2^1 has the FEP.

Theorem

Every language $L \subseteq \Sigma^*$ closed under the following rule is regular:

$$
\frac{uxv \in L \quad uyv \in L}{uxyv \in L}.
$$

(r_2)

Example

The language $a + (b(a + b + c))^* b + b c$ is closed under (r_2).

Lemma

Let $w \in \Sigma^*$ and $\text{Alph}(w) = \Gamma$. Then $ww \leq 2^w$ for every $u \in \Gamma^*$.

Rostislav Horčík (ICS)
Mingle rule

Theorem

The variety $R\mathcal{L}_2^1$ has the FEP.

Theorem

Every language $L \subseteq \Sigma^*$ closed under the following rule is regular:

\[
\frac{uxv \in L \quad uyv \in L \quad uxyv \in L}{uxyv \in L}.
\]

(r2)

Example

The language $a^+(b(a + b + c)^*b + b)c^+$ is closed under (r2).
Mingle rule

Theorem
The variety RL_2^1 has the FEP.

Theorem
Every language $L \subseteq \Sigma^*$ closed under the following rule is regular:

$$uxv \in L \quad uyv \in L \quad \frac{uxyv \in L}{u \in \Gamma}.$$

Example
The language $a^+(b(a + b + c)^*b + b)c^+$ is closed under (r_2).

Lemma
Let $w \in \Sigma^*$ and $\text{Alph}(w) = \Gamma$. Then $wuw \leq_2 w$ for every $u \in \Gamma^*$.
Higman’s lemma

Definition

Let \(\langle Q, \leq \rangle \) be a quasi-ordered set. Define a binary relation \(\leq^* \) on \(Q^* \) by

\[
\begin{align*}
\quad a_1 \ldots a_n \leq^* b_1 \ldots b_m \text{ iff there is a strictly increasing map } \\
f : [1, n] \to [1, m] \text{ s.t. } a_i \leq b_{f(i)} \text{ for all } i \in [1, n].
\end{align*}
\]
Higman’s lemma

Definition

Let \(\langle Q, \leq \rangle \) be a quasi-ordered set. Define a binary relation \(\leq^* \) on \(Q^* \) by

\[
a_1 \ldots a_n \leq^* b_1 \ldots b_m \text{ iff there is a strictly increasing map } f : [1, n] \rightarrow [1, m] \text{ s.t. } a_i \leq b_{f(i)} \text{ for all } i \in [1, n].
\]
Higman’s lemma

Definition
Let $\langle Q, \leq \rangle$ be a quasi-ordered set. Define a binary relation \leq^* on Q^* by

$a_1 \ldots a_n \leq^* b_1 \ldots b_m$ iff there is a strictly increasing map $f : [1, n] \to [1, m]$ s.t. $a_i \leq b_{f(i)}$ for all $i \in [1, n]$.

Lemma (Higman’s lemma)
If $\langle Q, \leq \rangle$ is a well quasi-ordered set then so is $\langle Q^*, \leq^* \rangle$.

Rostislav Horčík (ICS)
Higman’s lemma

Definition

Let \(\langle Q, \leq \rangle \) be a quasi-ordered set. Define a binary relation \(\leq^* \) on \(Q^* \) by

\[
a_1 \ldots a_n \leq^* b_1 \ldots b_m \quad \text{iff there is a strictly increasing map} \quad f : [1, n] \to [1, m] \quad \text{s.t.} \quad a_i \leq b_{f(i)} \quad \text{for all} \quad i \in [1, n].
\]
Higman’s lemma

Definition

Let \(\langle Q, \leq \rangle \) be a quasi-ordered set. Define a binary relation \(\leq^* \) on \(Q^* \) by

\[
a_1 \ldots a_n \leq^* b_1 \ldots b_m \text{ iff there is a strictly increasing map } f : [1, n] \to [1, m] \text{ s.t. } a_i \leq b_{f(i)} \text{ for all } i \in [1, n].
\]

Lemma (Higman’s lemma)

If \(\langle Q, \leq \rangle \) is a well quasi-ordered set then so is \(\langle Q^*, \leq^* \rangle \).
Modified Higman’s lemma

Definition

Let $\langle Q, \leq \rangle$ be a quasi-ordered set. Define a binary relation \leq^+ on Q^+ by

\[
a_1 \ldots a_n \leq^+ b_1 \ldots b_m \text{ iff there is a strictly increasing map } f : [1, n + 1] \to [1, m + 1] \text{ such that }
\]

- $f(1) = 1$ and $f(n + 1) = m + 1$,
- $a_i \leq b_{f(i)}$ and $a_i \leq b_{f(i+1)} - 1$ for all $i \in [1, n]$.

Definition

Let \(\langle Q, \leq \rangle \) be a quasi-ordered set. Define a binary relation \(\leq^+ \) on \(Q^+ \) by

\[
a_1 \ldots a_n \leq^+ b_1 \ldots b_m \iff \text{there is a strictly increasing map } f : [1, n + 1] \rightarrow [1, m + 1] \text{ such that}
\]

- \(f(1) = 1 \) and \(f(n + 1) = m + 1 \),
- \(a_i \leq b_{f(i)} \) and \(a_i \leq b_{f(i+1)−1} \) for all \(i \in [1, n] \).
Modified Higman’s lemma

Definition

Let \(\langle Q, \leq \rangle \) be a quasi-ordered set. Define a binary relation \(\leq^+ \) on \(Q^+ \) by

\[
a_1 \ldots a_n \leq^+ b_1 \ldots b_m \text{ iff there is a strictly increasing map } f : [1, n + 1] \rightarrow [1, m + 1] \text{ such that}
\]

- \(f(1) = 1 \) and \(f(n + 1) = m + 1 \),
- \(a_i \leq b_{f(i)} \) and \(a_i \leq b_{f(i+1)−1} \) for all \(i \in [1, n] \).
Modified Higman’s lemma

Definition

Let \(\langle Q, \leq \rangle \) be a quasi-ordered set. Define a binary relation \(\leq^+ \) on \(Q^+ \) by

\[
a_1 \ldots a_n \leq^+ b_1 \ldots b_m \text{ iff there is a strictly increasing map } \]
\[
f : [1, n + 1] \rightarrow [1, m + 1] \text{ such that }
\]
\[
\begin{align*}
& f(1) = 1 \text{ and } f(n + 1) = m + 1, \\
& a_i \leq b_{f(i)} \text{ and } a_i \leq b_{f(i+1)-1} \text{ for all } i \in [1, n].
\end{align*}
\]
Modified Higman’s lemma (cont.)

Lemma

If \(\langle Q, \leq \rangle \) is a well quasi-ordered set then \(\langle Q^+, \leq^+ \rangle \) forms a well quasi-ordered set as well.
Conclusion

- Is it interesting for people working in substructural logics?
Conclusion

- Is it interesting for people working in substructural logics?
- Could it be interesting for people working in language theory?
Conclusion

- Is it interesting for people working in substructural logics?

- Could it be interesting for people working in language theory?

- Is the compatible quasi-order \leq_m on Σ^* dually well for $m = 3, 4, 5, \ldots, 665, 667, 669, \ldots, 2^{48} - 1$?
Thank you!