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A warm introduction
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Syntactic monoid

Definition
Given an alphabet Σ and a language L ⊆ Σ∗, we define

1 syntactic congruence:

x ∼L y iff (∀u, v ∈ Σ∗)(uxv ∈ L⇔ uyv ∈ L) ,

2 syntactic monoid: M(L) = Σ∗/∼L.

Theorem

1 ∼L is the largest congruence such that L =
⋃

w∈L w/∼L.
2 M(L) is finite iff L is regular (Myhill-Nerode Theorem).
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Remarks

Syntactic monoids were mainly applied in the realm of regular
languages.

Eilenberg variety theorem – there is a bijection between varieties of
regular languages and varieties of finite monoids.
Beyond regular languages – they do not contain sufficiently enough
information to distinguish very different languages, e.g.

L1 = {wwR | w ∈ {0, 1}∗} ,
L2 = {w ∈ {0, 1}∗ | w is prime} .

The syntactic congruence is known in AAL as Leibniz congruence
which is used in the construction of Lindenbaum-Tarski algebra for a
given theory.
Can other constructions/ideas from (substructural) logics be used in
the language theory?
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Residuated lattices

Definition
Let M = 〈M, ·, 1〉 be a monoid. A quasi-order ≤ on M is called
compatible if for all x , y , u, v ∈ M:

x ≤ y =⇒ uxv ≤ uyv .

Definition
A residuated lattice A = 〈A,∧,∨, ·, \, /, 1〉 is a monoid such that 〈A,∧,∨〉
is a lattice and for all a, b, c ∈ A:

a · b ≤ c iff b ≤ a \ c iff a ≤ c/b .
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Powerset monoid

Example
Let M = 〈M, ·, 1〉 be a monoid. Then

P(M) = 〈P(M),∩,∪, ·, \, /, {1}〉

is a residuated lattice, where

X · Y = {xy ∈ M | x ∈ X , y ∈ Y } ,
X \Z = {y ∈ M | X · {y} ⊆ Z} ,
Z/Y = {x ∈ M | {x} · Y ⊆ Z} .

Other examples can be obtained by introducing a suitable closure operator
on P(M).
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Closure operators

A B
N
/A frame W = 〈A,B,N〉:

P(A) P(B)

B

C

XB = {b ∈ B | (∀a ∈ X )(a N b)} ,
Y C = {a ∈ A | (∀b ∈ Y )(a N b)} .

γ(X ) = XBC is a closure operator on P(A).
{{b}C | b ∈ B} is its basis.
The collection of closed sets forms a complete lattice
W+ = 〈γ[P(A)],∩,∪γ〉, where

X ∪γ Y = γ(X ∪ Y ) .
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Residuated frames

Given a monoid A and an frame W = 〈A,B,N〉, define an extended
frame Ŵ = 〈A,A2 × B, N̂〉, where

x N̂ 〈u, v , b〉 iff uxv N b .

The closure operator γ induced by N̂ is a nucleus (i.e.,
γ(X )γ(Y ) ⊆ γ(XY )).

Then Ŵ+ = 〈P(A)γ ,∩,∪γ , ◦γ , \γ , /γ , γ{1}〉 forms a complete
residuated lattice, where X •γ Y = γ(X • Y ) for • ∈ {◦, \, /,∪}.

The binary relation on A defined by

x v y iff γ{x} ⊆ γ{y}

is a compatible quasi-order on A.
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Syntactic residuated lattice

Definition
Let L ⊆ Σ∗ be a language. Define frame W = 〈Σ∗, {?},N〉, where
N ⊆ Σ∗ × {?} is defined by

x N ? iff x ∈ L .

Then R(L) = Ŵ+ is called the syntactic residuated lattice of L.

Theorem

1 The nucleus γ is the point-wise largest nucleus making L a closed set.
2 {γ{x} | x ∈ Σ∗} forms a submonoid isomorphic to M(L).
3 R(L) is finite iff L is regular.
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Generalized Myhill Theorem

The following theorem is the core of most decidability proofs we have for
substructural logics.

Theorem
Let A be a monoid and W = 〈A,B,N〉 a frame where B is finite. Then
Ŵ+ is finite iff there is a compatible dual well quasi-order ≤ on A such
that

x ≤ y , y N b =⇒ x N b .

Corollary (Generalized Myhill Theorem – Ehrenfeucht, Rozenberg)
A language L ⊆ Σ∗ is regular iff L is downward closed w.r.t. a compatible
dual well quasi-order on Σ∗.
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Application
Our decidability proof for the universal theory of residuated lattices
satisfying x2 ≤ x can be translated into the language theory.

The variety of residuated lattices satisfying x2 ≤ x can be
equivalently axiomatized by

uxv ≤ z & uyv ≤ z =⇒ uxyv ≤ z .

Theorem
Every language L ⊆ Σ∗ closed under the following rule is regular:

uxv , uyv ∈ L =⇒ uxyv ∈ L . (r)

Example
The language a+(b(a + b + c)∗b + b)c+ is closed under (r).
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Application (cont.)

Consider a closure operator γ : P(Σ∗)→ P(Σ∗) s.t. its closed sets
are closed under the rule:

uxv , uyv ∈ L =⇒ uxyv ∈ L .

Then γ is nucleus on P(Σ∗) and the following relation is a compatible
quasi-order on Σ∗:

x v y iff γ{x} ⊆ γ{y} .

In order to show that L has to be regular, it suffices to show that v is
a dual well quasi-order using the generalized Myhill theorem.
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Higman’s lemma
Definition
Let 〈Q,≤〉 be a quasi-ordered set. Define a binary relation ≤∗ on Q∗ by

a1 . . . an ≤∗ b1 . . . bm iff there is a strictly increasing map
f : [1, n]→ [1,m] s.t. ai ≤ bf (i) for all i ∈ [1, n].

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5

b2 b3 b5 b7 b11

Lemma (Higman’s lemma)
If 〈Q,≤〉 is a well quasi-ordered set then so is 〈Q∗,≤∗〉.
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b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

a1 a2 a3 a4 a5a1 a2 a3 a4 a5

b2 b3 b5 b7 b11

Lemma (Higman’s lemma)
If 〈Q,≤〉 is a well quasi-ordered set then so is 〈Q∗,≤∗〉.
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Modified Higman’s lemma

Definition
Let 〈Q,≤〉 be a quasi-ordered set. Define a binary relation ≤+ on Q+ by

a1 . . . an ≤+ b1 . . . bm iff there is a strictly increasing map
f : [1, n + 1]→ [1,m + 1] such that

f (1) = 1 and f (n + 1) = m + 1,
ai ≤ bf (i) and ai ≤ bf (i+1)−1 for all i ∈ [1, n].

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5

b1 b4 b5 b9 b10b3 b8 b11b4 b9
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Modified Higman’s lemma (cont.)

Lemma
If 〈Q,≤〉 is a well quasi-ordered set then 〈Q+,≤+〉 forms a well
quasi-ordered set as well.

Lemma
Let w ∈ Σ∗ and Alph(w) = Γ. Then wuw v w for every u ∈ Γ∗.
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Beyond regular languages?
Let Σ = {0, 1}.

L1 = {wwR | w ∈ Σ∗} ,
L2 = {w ∈ Σ∗ | w is prime} .

Consider the following rule:

uxv , ux2v ∈ L =⇒ uv ∈ L . (r)

Then L1 is closed under (r) and L2 not.

The rule (r) is equivalent to

1 ≤ x ∨ x2 ∨ x \ y .

Thus the languages L1, L2 can be separated by a variety of residuated
lattices.
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Thank you!
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