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Chapter 1

Polynomial rings and affine varieties

1.1 Commutative rings and fields

Definition 1.1.1 An algebra (R, +, ·, 0, 1) is called a commutative ring if the following con-
ditions are satisfied:

1. (a + b) + c = a + (b + c) and (ab)c = a(bc) for all a, b, c ∈ R,

2. a + b = b + a and ab = ba for all a, b ∈ R,

3. a(b + c) = ab + ac for all a, b, c ∈ R,

4. a + 0 = a · 1 = a for all a ∈ R,

5. Given a ∈ R, there is b ∈ R such that a + b = 0.

We will often omit the word commutative since all the considered rings in this course are
commutative.

Typical example is set of integers Z endowed with the usual addition and multiplication.

Definition 1.1.2 A commutative ring R is called a field if for all a ∈ R \ {0} there is b ∈ R
such that ab = 1.

Typical examples are real numbers R, rational numbers Q and complex numbers C.

Definition 1.1.3 Let R be a ring. The group of units R× is the set

R× = {a ∈ R | (∃b ∈ R)(ab = 1)} .

Proposition 1.1.4 The set R× forms an Abelian group under the multiplication from R.

proof: Let a, c ∈ R×. Then there are b, d ∈ R such that ab = 1 and cd = 1. Thus
(ac)(bd) = (ab)(cd) = 1 · 1 = 1, i.e. ac ∈ R×. Further, we have trivially 1 ∈ R×. Finally,
if follows from the definition of R× that for each a ∈ R× the corresponding b ∈ R such that
ab = 1 is the inverse of a and clearly b ∈ R× as well. 2

Example 1.1.5 Z× = {1,−1}. Let k be a field then k× = k \ {0}.
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4 CHAPTER 1. POLYNOMIAL RINGS AND AFFINE VARIETIES

Definition 1.1.6 A commutative ring R is an integral domain if whenever a, b ∈ R and
ab = 0, then either a = 0 or b = 0.

Observation 1.1.7 Let R be an integral domain and a, b, c ∈ R, c 6= 0. Then ac = bc implies
a = b.

proof: 0 = ac− bc = (a− b)c implies a− b = 0. 2

Definition 1.1.8 Let R, S be rings. A mapping φ : R → S is a ring homomorphism if
φ(1) = 1, φ(a + b) = φ(a) + φ(b) and φ(a · b) = φ(a) · φ(b) for all a, b ∈ R. If in addition φ is
one-to-one and onto, then φ is called a ring isomorphism.

Definition 1.1.9 Let R be an integral domain. The field of fractions k of R is the collection
of fractions a/b with a, b ∈ R, b 6= 0, and with the usual rules for addition and multiplication,
i.e.

a

b
· c

d
=

ac

bd
,

a

b
+

c

d
=

ad + bc

bd
.

Note that since R is an integral domain and b, d 6= 0, we have bd 6= 0. In addition, two of
these fractions a/b and a′/b′ represent the same element in k if ab′ = a′b.

Moreover, the subset {a/1 | a ∈ R} forms an integral domain which is isomorphic to R.

1.2 Ideals

Definition 1.2.1 Let R be a commutative ring. A subset I ⊆ R is said to be an ideal if it
satisfies:

1. 0 ∈ I,

2. if a, b ∈ I, then a + b ∈ I,

3. if a ∈ I and b ∈ R, then b · a ∈ I.

If I 6= R then I is called a proper ideal.

Lemma 1.2.2 Ideals are closed under arbitrary intersections. If I0 ⊆ I1 ⊆ · · · is an ascend-
ing chain of ideals, then

⋃
i∈N Ii is an ideal.

proof: Let {Iλ | λ ∈ Λ} be a family of ideals indexed by the elements of Λ. Then clearly⋂
λ∈Λ Iλ is an ideal. Let I0 ⊆ I1 ⊆ · · · be an ascending chain of ideals and let I =

⋃
i∈N Ii.

Then clearly 0 ∈ I. If a, b ∈ I then there is i ∈ N such that a, b ∈ Ii. Thus a + b ∈ Ii ⊆ I.
Similarly, if a ∈ I then a ∈ Ii for some i. Hence b · a ∈ Ii ⊆ I for any b ∈ R. 2

Definition 1.2.3 Let R be a commutative ring and S ⊆ R. The smallest ideal containing S
is called the ideal generated by S (it is just the intersection of all ideals containing S). We
denote it by 〈S〉.
Let a1, . . . , an ∈ R. We write 〈a1, . . . , an〉 instead of 〈{a1, . . . , an}〉.
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Lemma 1.2.4 Let R be a commutative ring and {a1, . . . , an} ⊆ R. Then

〈a1, . . . , an〉 =

{
n∑

i=1

bi · ai | b1, . . . , bn ∈ R

}
.

In particular, if a ∈ R, then

〈a〉 = {b · a | b ∈ R} .

proof: First, we check that I = {∑n
i=1 bi · ai | b1, . . . , bn ∈ R} is an ideal. Since

∑n
i=1 0 ·ai =

0, we have 0 ∈ I. If b =
∑n

i=1 bi · ai ∈ I and c =
∑n

i=1 ci · ai ∈ I for some bi, ci ∈ R. Then
b + c =

∑n
i=1(bi + ci)ai ∈ I. Let d ∈ R. Then db =

∑n
i=1(dbi) · ai ∈ I. Thus I is an ideal.

Since I contains all the generators ai, we have 〈a1, . . . , an〉 ⊆ I. On the other hand,
all elements of the form

∑n
i=1 bi · ai, where b1, . . . , bn ∈ R, belong to 〈a1, . . . , an〉. Thus

I = 〈a1, . . . , an〉. 2

Definition 1.2.5 The ideal generated by a single element is called principal. A proper ideal
I is called prime if ab ∈ I implies a ∈ I or b ∈ I.

Proposition 1.2.6 The following conditions on a ring R are equivalent:

1. every ideal in R is finitely generated;

2. every ascending chain of ideals I0 ⊆ I1 ⊆ · · · becomes constant, i.e. for some m,
Im = Im+1 = · · · ;

3. every non-empty set of ideals in R has a maximal element (i.e. an element not properly
contained in any other ideal in the set).

proof: (1 ⇒ 2): If I0 ⊆ I1 ⊆ · · · is an ascending chain, then I =
⋃

i∈N Ii is again an
ideal, and hence has a finite set {a1, . . . , an} of generators. For some m, all ai ∈ Im. Thus
Im = Im+1 = · · · = I.

(2 ⇒ 3): If (3) is false, then there is a non-empty set S of ideals with no maximal element.
Thus there must be a strictly increasing sequence I0 ⊆ I1 ⊆ · · · that never becomes constant.

(3 ⇒ 1): Let I be an ideal, and let S be the set of ideals J ⊆ I that are finitely generated.
Let J ′ = 〈a1, . . . , ar〉 be the maximal element of S. If J ′ 6= I, then there is a ∈ I and a 6∈ J ′.
But J ′ ( 〈a1, . . . , ar, a〉 ⊆ I (a contradiction). 2

Definition 1.2.7 A ring R is Noetherian if it satisfies the conditions of the proposition.

1.3 Principal ideal domains and unique factorization

Definition 1.3.1 An integral domain R is called principal ideal domain (PID) if each its
ideal is principal.

Theorem 1.3.2 Let R be a PID. Then R is Noetherian.
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proof: Trivial, since each ideal is finitely generated. 2

Definition 1.3.3 Let R be an integral domain.

1. An elements a, b ∈ R are said to be associates if there is a unit u ∈ R× such that a = ub.
We denote this fact a ∼ b.

2. An element a ∈ R divides b ∈ R (denoted a|b) if b = ac for some c ∈ R.

3. A non-zero non-unit element a ∈ R is irreducible if it does not factor, i.e. a = bc implies
b or c is a unit.

4. A non-zero non-unit element a ∈ R is prime if it generates a prime ideal, i.e. a|bc
implies a|b or a|c.

5. Let a, b ∈ R. We say that c ∈ R is a greatest common divisor (gcd) of a and b if c|a,
c|b, and if any element d ∈ R which divides both a and b also divides c.

Lemma 1.3.4 1. If a is prime then a is irreducible.

2. If a is prime and a|c1c2 · · · cn, then a|ci for some i. If each cj is irreducible, then a and
ci are associates for some i.

3. If a ∼ b, then a is irreducible (prime) iff b is irreducible (prime). In other words, if a
is irreducible (prime) and u is a unit, then au is irreducible (prime).

4. A greatest common divisor is unique up to a unit.

proof:

1. Suppose a = bc. Then a|bc, i.e. a|b or a|c since a is prime. Assume that a|b. Then
b = ad. Consequently, a = adc which implies dc = 1. Thus c is a unit.

2. By induction on n. For n = 1, 2 it holds. For n > 2 we have a|(c1 · · · cn−1)cn. Thus
a|cn or a|c1 · · · cn−1. Assume that each cj is irreducible. We have a|ci for some i, i.e.
ci = ad. Since ci is irreducible, we get that d is a unit (a is not unit).

3. Let a be irreducible and u a unit. If au = cd then a = u−1cd. Thus either u−1c or d is
a unit. If d is a unit, we are done. If u−1c is a unit, then vu−1c = 1 for some v. Thus c
is a unit.

Let a be prime. If au|cd then cd = auq, i.e. a|cd. Thus a|c or a|d, say a|c. Then
c = ax = (au)(u−1x), i.e. au|c.

4. Let c and c′ be two gcd of a and b. Then c|c′ and c′|c, i.e. c′ = cx and c = c′y for some
x, y. Thus c = c′y = cxy which implies 1 = xy. Consequently, x is a unit and c ∼ c′.

2
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Definition 1.3.5 An integral domain R is called a unique factorization domain (UFD) if
every non-zero non-unit element has unique factorization into irreducible elements, i.e. if
a = p1 · · · pn = q1 · · · qm, then n = m and there is a permutation σ such that pi and qσ(i) are
associates. In other words, we can reorder the factors qi in such a way that pi ∼ qi for all i.

Observe that if R is a UFD and a = p1 · · · pm is a factorization into irreducible elements, then
some of the irreducible factors pi can be associates. We can group them together and write
a = ups1

1 · · · psn
n where u ∈ R× and s1, . . . , sn ∈ N.

Example 1.3.6 The set Z is a UFD since each integer can be uniquely expressed as a product
of primes.

Lemma 1.3.7 Let R be a PID and a, b ∈ R. Let 〈a, b〉 = 〈c〉. Then c = gcd(a, b).

proof: Since a ∈ 〈c〉, we have c|a. Similarly c|b. Let d|a and d|b, i.e. a = dy and b = dz with
y, z ∈ R. Since c ∈ 〈a, b〉, we get c = wa+ tb with w, t ∈ R. Then c = wdy+ tdz = d(wy+ tz),
i.e. d|c. 2

Lemma 1.3.8 Let R be a PID. Then a is irreducible iff a is prime.

proof: (⇐) Follows from Lemma 1.3.4.
(⇒) Suppose that a is irreducible and a|bc. If a does not divide b then gcd(a, b) = 1.

Since 〈1〉 = 〈a, b〉, we can write 1 = xa + yb with some x, y ∈ R. Then c = xac + ybc. Since
a|bc, we get a|c. 2

Theorem 1.3.9 Every PID R is a UFD.

proof: First, we prove that a finite factorization into irreducible elements exists. Consider
all principal ideals 〈d〉 where d does not factor into a finite product of irreducibles. Since R
is Noetherian, there is a maximal such ideal 〈c〉. The element c must be reducible otherwise
it would have a factorization. Thus c = ab where neither a nor b is a unit. Since each 〈a〉 and
〈b〉 contains 〈c〉 properly (if e.g. 〈a〉 = 〈c〉, then a ∼ c and b ∼ 1), each a and b factors into
finite product of irreducibles. This gives a finite factorization of c (a contradiction).

Secondly, we deal with the uniqueness. Let p1 · · · pn = q1 · · · qm be two factorization into
irreducibles. We will show by induction on n that m = n and after a suitable reordering
of factors pi and qi are associates. Let n = 1. Then p1 = q1 · · · qm. Since p1 is prime and
p1|q1 · · · qm, there is i such that p1 and qi are associates, i.e. qi = up1 for some unit u. W.l.o.g.
we can assume that i = 1. Thus p1 = up1q2 · · · qm. Consequently, 1 = uq2 · · · qm. Hence qj ,
j > 1 are units and cannot be irreducibles.

Now assume that the claim is valid for n − 1. Since p1|q1 · · · qm, there is i such that
qi = up1 for a unit u. Again w.l.o.g. we can assume that i = 1. Thus we have

p2 · · · pn−1 = uq2 · · · qm .

By induction assumption n− 1 = m− 1 and after a suitable reordering p2 ∼ uq2 and pj ∼ qj

for j > 2. Thus n = m. Since p2 = vuq2 for a unit v, we get that p2 ∼ q2. Consequently, pi

and qi are associates for all i and the proof is done. 2
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1.4 Polynomials in one variable

Definition 1.4.1 Let R be a ring. Then the polynomial ring R[X] is the collection of all
formal sums of the form a0+a1X+a2X

2+· · ·+anXn where ai ∈ R. R[X] forms a commutative
ring under the usual addition and multiplication of polynomials.

The degree of a non-zero polynomial f is the largest n such that an 6= 0, and is denoted
by deg(f).

Proposition 1.4.2 If R is an integral domain, then R[X] is an integral domain.

proof: Suppose that f(X) = a0 + · · ·+ anXn, an 6= 0 and g(X) = b0 + · · ·+ bmXm, bm 6= 0
are non-zero polynomials. Then the (n + m)-th coefficient of fg is an · bm. Since R is an
integral domain, we have an · bm 6= 0, i.e. fg is not the zero polynomial. 2

Observe that in this case we have deg(fg) = deg(f) + deg(g) for non-zero polynomials
f, g.

Proposition 1.4.3 Let R be an integral domain. Then R[X]× = R× (if we identify the
elements of R with the constant polynomials in R[X]).

proof: Clearly R× ⊆ R[X]×. Let f ∈ R[X] be a non-constant polynomial (i.e. deg(f) ≥ 1).
Consider fg for g ∈ R[X]. If g = 0 then fg = 0. If g 6= 0 then deg(fg) = deg(f) + deg(g) ≥
deg(f) ≥ 1. Thus in both cases fg 6= 1, i.e. f 6∈ R[X]×. 2

Proposition 1.4.4 Let k be a field and f, g ∈ k[X], g 6= 0. Then there exists unique polyno-
mials q, r ∈ k[X] such that f = gq + r and deg(r) < deg(g).

Theorem 1.4.5 Let k be a field. Then k[X] is a PID.

proof: Let I be an ideal in k[X]. The case I = {0} is trivial. Assume that I 6= {0}. Let
g ∈ I be an element of the smallest degree ≥ 0. Consider any f ∈ I. Then f = gq + r and
deg(r) < deg(g). But r = gq − f ∈ I. Since g has the smallest degree, it follows that r = 0.
Thus f = gq, i.e. I = 〈g〉. 2

Corollary 1.4.6 Let k be a field. Then k[X] is a UFD.

1.5 Polynomials in more variables

Let X1, . . . , Xn be variables. A monomial in X1, . . . , Xn is an expression Xα1
1 ·Xα2

2 · · ·Xαn
n ,

where α1, . . . , αn ∈ N. Let α = (α1, . . . , αn) then we simply write Xα instead of Xα1
1 ·

Xα2
2 · · ·Xαn

n .

Definition 1.5.1 Let R be a ring. A polynomial f in X1, . . . , Xn with coefficients in R is a
finite linear combination of monomials, i.e.

f =
∑
α

aαXα , aα ∈ R ,
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where the sum is over a finite number of n-tuples α = (α1, . . . , αn) ∈ Nn. The set of all
polynomials in X1, . . . , Xn is denoted R[X1, . . . , Xn].

An example of polynomial from Z[X1, X2, X3] is for instance

f = 2X3
1X3 + 5X1X2X3 −X6

2X2
3 + 13 .

Observe that

f = (2X3
1 )X3 +(5X1X2)X3 +(−X6

2 )X2
3 +(13)X0

3 = (2X3
1 +5X1X2)X3 +(−X6

2 )X2
3 +(13)X0

3 ,

and 2X3
1 + 5X1X2, −X6

2 , 13 are polynomials in Z[X1, X2].

Observation 1.5.2 Let R be a ring. Then R[X1, . . . , Xn] = R[X1, . . . , Xn−1][Xn], i.e. each
element f ∈ R[X1, . . . , Xn] can be expressed as follows:

f =
d∑

j=0

fj(X1, . . . , Xn−1)Xj
n , fj ∈ R[X1, . . . , Xn−1] , d ∈ N .

Corollary 1.5.3 Let R be a ring. Then R[X1, . . . , Xn] is a ring as well. In addition, if R is
an integral domain, then R[X1, . . . , Xn] is an integral domain.

proof: By induction on the number of variables. 2

Let k be a field. Then k[X1, . . . , Xn] is an integral domain whence it has the field of
fractions. We denote it by k(X1, . . . , Xn).

Proposition 1.5.4 R[X1, . . . , Xn]× = R×.

proof: By induction and Proposition 1.4.3. 2

1.6 Unique factorization domain

In this we are going to prove that also k[X1, . . . , Xn] is a UFD for a field k. Observe that
k[X1, . . . , Xn] is no more a PID. To see this, consider the polynomial ring k[X, Y ] and the ideal
〈X, Y 〉. Assume that there is f(X, Y ) such that 〈f〉 = 〈X,Y 〉. Then X = g(X, Y ) · f(X, Y )
and Y = h(X,Y ) · f(X, Y ) for some g, h ∈ k[X,Y ]. Let us see f, g as elements from k[X][Y ].
Then

0 = deg(X) = deg(g · f) = deg(g) + deg(f) .

Thus deg f = 0 which implies that f is a constant polynomial, i.e. a member of k[X].
Similarly, deg(f) = 0 for f seen as an element of k[Y ][X], i.e. f ∈ k[Y ]. Consequently, f ∈ k.
Thus 〈f〉 = k[X, Y ]. However, 〈X,Y 〉 6= k[X, Y ]. If they would be the same ideals, then
1 = f(X, Y ) ·X + g(X, Y ) · Y for some f, g ∈ k[X, Y ] which is a contradiction.

Proposition 1.6.1 Let R be a UFD and a, b ∈ R. Then gcd(a, b) exists.
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proof: Let a = upr1
1 · · · prn

n and b = vps1
1 · · · psn

n , u, v ∈ R× (allow the exponents to be 0, to
use a common set of irreducibles to express both a and b). We claim that gcd(a, b) is

g = p
min(r1,s1)
1 · · · pmin(rn,sn)

n .

Clearly g|a and g|b. Let d|a and d|b. Enlarge the collection of inequivalent irreducibles pi if
necessary such that d can be expressed as

d = wph1
1 · · · phn

n , w ∈ R× .

From d|a we have a = dD for some D ∈ R. Let

D = WpH1
1 · · · pHn

n , W ∈ R× .

Then
wWph1+H1

1 · · · phn+Hn
n = dD = a = upr1

1 · · · prn
n .

Unique factorization and non-associateness of the pi implies that the exponents are the same,
i.e. for all i we have hi + Hi = ri. Thus hi ≤ ri. Similarly hi ≤ si. Hence hi ≤ min(ri, si),
i.e. d|g. 2

Observe that if any pair elements in a ring has a gcd, then each n-tuple of elements has
it. In fact, we have

gcd(a1, a2, a3, . . . , an) = gcd(gcd(a1, a2), a3, . . . , an) .

Proposition 1.6.2 Let R be a UFD and a ∈ R. Then a is irreducible iff a is prime.

proof: The right-to-left direction follows from Lemma 1.3.4. Suppose that a is irreducible
and a|bc. If b or c is a unit, then a divides the other one. If b or c is 0, then a|0. Thus assume
that b, c are non-unit non-zero elements. There is d such that ad = bc. Since R is a UFD, b
and c have unique factorizations into irreducibles, i.e. b = b1 · · · bn and c = c1 · · · cm. Then
b1 · · · bnc1 · · · cm is a factorization of bc. As a is irreducible, a ∼ bi or a ∼ cj . Thus either a|b
or a|c. 2

Proposition 1.6.3 Let R be a UFD with field of fractions F . If f(X) ∈ R[X] factors into
the product of two non-constant polynomials in F [X], then it factors into the product of two
non-constant polynomials in R[X].

proof: Let f = gh in F [X]. For suitable c, d ∈ R, g1 = cg and h1 = dh have coefficients
in R. Thus cdf = g1 · h1 in R[X]. Since R is a UFD, cd factors into the finite product of
irreducibles. Let p ∈ R be a irreducible element such that p|cd. Then p|g1h1. Since p is prime
by Lemma 1.6.2, p|g1 or p|h1 (say p|g1). Thus p divides all the coefficients of g1 and g1 = pg2.
Now we have a factorization (cd/p)f = g2 · h1. Continuing in this fashion, we can remove all
the irreducible factors of cd. 2

It follows from the construction of the proof of the latter proposition that if f = gh = g′h′

with g, h ∈ F [X] and g′, h′ ∈ R[X], then g′ = ug and h′ = vh for some u, v ∈ F×, i.e. g′ ∼ g
and h′ ∼ h in F [X], i.e. deg(g) = deg(g′) and deg(h) = deg(h′).
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Corollary 1.6.4 Let R be a UFD with fraction field F and f ∈ R[X]. If f = f1f2 · · · fn

for fi ∈ F [X] non-constant polynomials, then f = f ′1f
′
2 · · · f ′n with non-constant polynomials

f ′i ∈ R[X] and fi ∼ f ′i in F [X].

proof: By induction on n. For n = 2 the claim follows from Proposition 1.6.3 and the above
discussion. Assume that the claim is valid for n − 1 and f = f1 · · · fn. Then by Proposi-
tion 1.6.3 f = f ′1g with f ′1, g ∈ R[X], f1 ∼ f ′1 and g ∼ f2 · · · fn in F [X]. Thus there is u ∈ F×

such that g = uf2 · · · fn. By induction assumption g = f ′2 · · · f ′n with f ′i ∈ R[X] non-constant,
f ′2 ∼ uf2 ∼ f2, and f ′i ∼ fi for i > 2. Thus f = f ′1f

′
2 · · · f ′n and fi ∼ f ′i in F [X]. 2

Note that if fi is irreducible in F [X] then f ′i is irreducible in F [X] by Lemma 1.3.4.

Definition 1.6.5 Let R be a UFD and f ∈ R[X]. The content of f (denoted c(f)) is the
gcd of all coefficients of f , i.e. c(f) = gcd(a0, . . . , an) for f = a0 + · · ·+ anXn. A polynomial
f is said to be primitive if c(f) = 1.

Lemma 1.6.6 Let R be a UFD and f ∈ R[X]. Then f = c(f) · f1 with f1 primitive and this
decomposition is unique up to units in R.

proof: Clearly f = c(f) · f1 for a primitive polynomial f1. Suppose that f = c(f) · f1 = d · g
where g ∈ R[X] is a primitive polynomial and d ∈ R. Then d|f (i.e. f = dh and
deg(h) = deg(f)). Hence d|c(f), i.e. c(f) = du for some u ∈ R. Consequently, uf1 = g. Since
u|g and g is primitive, we get u ∼ 1. Thus c(f) ∼ d and f1 ∼ g. 2

Lemma 1.6.7 (Gauss’s Lemma) The product of two primitive polynomials is primitive.

proof: Let
f = a0 + · · ·+ amXm , g = b0 + · · ·+ bnXn ,

be primitive polynomials, and let p be an irreducible element of R. Let ai be the first
coefficient of f not divisible by p and bj the first coefficient of g not divisible by p. Then
(i + j)-th coefficient ci+j of fg equals:

ci+j = (a0bi+j + a1bi+j−1 + · · ·+ ai−1bj+1) + aibj + (ai+1bj−1 + · · ·+ ai+jb0) .

All the terms of ci+j are divisible by p except aibj . Therefore p does not divide the (i + j)-th
coefficient of fg. We have shown that no irreducible element divides all the coefficients of fg.
Thus fg must be primitive. 2

Lemma 1.6.8 Let R be a UFD and f, g ∈ R[X]. Then c(fg) = c(f) · c(g).

proof: Let f = c(f) · f1 and g = c(g) · g1 with f1 and g1 primitive. Then fg = c(f)c(g)f1g1

with f1g1 primitive by Gauss’s lemma. Since the decomposition fg = c(f)c(g)f1g1 is unique,
we have c(fg) = c(f)c(g) (up to a unit). 2

Lemma 1.6.9 Let R be a UFD with field of fraction F . Then irreducible elements of R[X]
are exactly
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1. the constant polynomials f = c with c an irreducible element of R and

2. the primitive polynomials f ∈ R[X] that are irreducible in F [X].

proof: Each constant polynomial f = c with c an irreducible element of R is clearly irre-
ducible in R[X] and vice versa. Let f ∈ R[X] such that f is primitive and irreducible in F [X].
Then the only possible factorization in R[X] is f = dg where d ∈ R since f is irreducible in
F [X]. Since f is primitive and d|f , d ∈ R×, i.e. f is irreducible in R[X]. Conversely, let f
be an irreducible non-constant polynomial in R[X]. Then f = c(f)f1. Thus c(f) is a unit
in R[X]× = R×, i.e. f is primitive. Moreover, f is irreducible in F [X] by Proposition 1.6.3. 2

Theorem 1.6.10 Let R be a UFD with field of fractions F . Then R[X] is a UFD.

proof: First, we show that there is a factorization into irreducibles. Let f ∈ R[X]. Then
f = c(f)f1 with f1 primitive. Since R is UFD, c(f) factors into irreducibles of R which
are irreducibles of R[X] as well by Lemma 1.6.9. As f1 ∈ F [X] and F [X] is a UFD, f1

factors into irreducibles in F [X], say f1 = g1 · · · gn. By Corollary 1.6.4 f1 = g′1 · · · g′n where g′i
are non-constant polynomials from R[X] and each g′i is irreducible in F [X]. It follows from
Lemma 1.6.8 that each g′i must be primitive since f1 is primitive. Thus they are irreducible
in R[X] by Lemma 1.6.9.

Now let
f = c1 · · · cmf1 · · · fn = d1 · · · drg1 · · · gs

be two factorizations of f into irreducibles with ci, dj ∈ R and fi, gj primitive polynomials.
By Lemma 1.6.6 we have

c1 · · · cm ∼ d1 · · · dr , f1 · · · fn ∼ g1 · · · gs .

Since R is a UFD, we see that m = r and ci’s differ from di’s only by units and ordering.
Similarly since F [X] is a UFD, we see that n = s and fi’s differ from gi’s only by units in
F and ordering. But if fi = ugj with u ∈ F×, then u ∈ R× because fi and gj are primitive.
Indeed, u = a/b for a, b ∈ R. Then h = bfi = agj . Since fi and gi are primitive, we get
b ∼ c(h) ∼ a in R, i.e. a/b ∈ R×. 2

Corollary 1.6.11 Let k be a field. Then k[X1, . . . , Xn] is a UFD.

Example 1.6.12 Let f, g ∈ k[X] such that gcd(f, g) = 1 in k[X]. Prove that the following
polynomial from k[X, Y ] is irreducible:

h(X,Y ) = f(X) · Y + g(X) .

Clearly h is irreducible in k(X)[Y ] (its degree in k(X)[Y ] is 1). Thus the only possible
factorizations of h as a product pq are such that either p ∈ k(X) or q ∈ k(X), say p ∈ k(X).
Then q = c · Y + d for some c, d ∈ k(X). Since we are interested in factorizations in k[X, Y ],
assume that p, q ∈ k[X, Y ], i.e. c, d ∈ k[X]. We have

h = f · Y + g = pq = p(c · Y + d) = pc · Y + pd .

Thus f = pc and g = pd. As gcd(f, g) = 1 in k[X], we get p ∈ k×, i.e. h is irreducible in
k[X, Y ].

Example 1.6.13 Prove that Y + Xn ∈ k[X, Y ] is irreducible for all n ∈ N.
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1.7 Affine varieties

Definition 1.7.1 Let k be a field. We define an affine n-space to be the set

kn = {(a1, . . . , an) | a1, . . . , an ∈ k} .

Let f ∈ k[X1, . . . , Xn]. Then f defines a function f : kn → k in the obvious way. This
correspondence need not be one-to-one. For instance, if k is a finite field, then there are only
finitely many functions from kn to k but countable many polynomials. However, as long as k
is infinite, this assignment is injective.

Proposition 1.7.2 Let k be an infinite field and f ∈ k[X1, . . . , Xn]. Then f = 0 iff f : kn →
k is the zero function.

proof: The left-to-right direction is obvious. The other one can be proven by induction on
the number of variables. When n = 1, we know that a non-zero polynomial in k[X1] can
have only finitely many roots. Since f(a) = 0 for all a ∈ k (and k is infinite), f must be the
zero polynomial. Now assume that the claim is valid for n − 1, and let f ∈ k[X1, . . . , Xn].
We can write f(X1, . . . , Xn) =

∑d
i=0 gi(X1, . . . , Xn−1)Xi

n. Fix (a1, . . . , an−1) ∈ kn−1. Since
f(a1, . . . , an−1, xn) is the zero function, f(a1, . . . , an−1, Xn) must be the zero polynomial in
k[Xn], i.e. its coefficients gi(a1, . . . , an−1) are zero. As (a1, . . . , an−1) was chosen arbitrarily,
we get by the induction assumption that gi are the zero polynomials. Thus f must be the
zero polynomial. 2

Corollary 1.7.3 Let k be an infinite field and f, g ∈ k[X1, . . . , Xn]. Then f = g iff f : kn →
k and g : kn → k are the same functions.

proof: Assume that f : kn → k and g : kn → k are the same functions. Then f − g is the
zero function, i.e. f − g is the zero polynomial. Thus f = g in k[X1, . . . , Xn]. The other
direction is trivial. 2

Definition 1.7.4 Let S ⊆ k[X1, . . . , Xn]. Then the affine variety defined by S is the set

V(S) = {a ∈ kn | f(a) = 0 for all f ∈ S} .

By abuse of notation, we also write V(f1, . . . , fk) for V(S) if S = {f1, . . . , fn}.

Example 1.7.5 Here are some simple examples of affine varieties:

1. the affine n-space kn = V(0),

2. the empty set ∅ = V(1),

3. any single point {(a1, . . . , an)} = V(X1 − a1, . . . , Xn − an),

4. a circle in R2 centered at the origin is the affine variety V(X2 + Y 2 − r), where r is its
radius,

5. any linear subspace of kn.
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Observation 1.7.6 Let S1, S2 ⊆ k[X1, . . . , Xn]. If S1 ⊆ S2 then V(S2) ⊆ V(S1).

Note, that if f, g ∈ S and h ∈ k[X1, . . . , Xn], then

V(S ∪ {0}) = V(S ∪ {f + g}) = V(S ∪ {f · h}) = V(S) .

Thus V(〈S〉) = V(S). Thus there is no difference whether we consider S to be a subset of
k[X1, . . . , Xn] or an ideal in k[X1, . . . , Xn].

Definition 1.7.7 Let V ⊆ kn. Then the set

I(V ) = {f ∈ k[X1, . . . , Xn] | f(a) = 0 for all a ∈ V }

is called ideal of V .

The set I(V ) is really an ideal. Clearly, the zero polynomial 0 ∈ I(V ). If f, g ∈ I(V ), then
(f + g)(a) = f(a)+ g(a) = 0+0 = 0 for all a ∈ V . Finally, for any h ∈ k[X1, . . . , Xn] we have
(h · f)(a) = h(a) · f(a) = h(a) · 0 = 0 for all a ∈ V .

Observation 1.7.8 Let V1, V2 ⊆ kn. If V1 ⊆ V2 then I(V2) ⊆ I(V1).

Thus we have the following correspondence between affine varieties and ideals:
{

affine varieties
in kn

}
I−→
V←−

{
ideals in

k[X1, . . . , Xn]

}
.

The mappings I,V are not inverses of each other in general. Consider e.g. 〈X2〉 in k[X].
Then V(X2) = {0} and I(V(X2)) = 〈X〉 6= 〈X2〉. However, we have S ⊆ I(V(S)) for S an
ideal.

Lemma 1.7.9 Affine varieties are closed under arbitrary intersections and finite unions, i.e.

1. if {Si} is a family of subsets of k[X1, . . . , Xn], then
⋂

i V(Si) = V(
⋃

i Si),

2. if S1, S2 ⊆ k[X1, . . . , Xn], then V(S1) ∪V(S2) = V(S1S2), where

S1S2 = {f · g | f ∈ S1, g ∈ S2} .

proof: The first part is trivial. For the second consider a ∈ V(S1) ∪ V(S2). Thus either
f(a) = 0 for all f ∈ S1 or g(a) = 0 for all g ∈ S2, say f(a) = 0 for all f ∈ S1. Then
(f · g)(a) = f(a) · g(a) = 0 for all f · g in S1S2. Conversely, assume that a 6∈ V(S1) ∪V(S2),
i.e. a 6∈ V(S1) and a 6∈ V(S2). Thus there f ∈ S1 and g ∈ S2 such that f(a) 6= 0 and
g(a) 6= 0. Hence (f · g)(a) 6= 0, i.e. f · g 6∈ V(S1S2). 2

Remark 1.7.10 Due to the previous lemma, it can be easily seen that affine varieties on kn

forms a topology whose closed sets are exactly affine varieties. This topology on kn is called
Zariski topology. Zariski topology e.g. on Rn is much more coarser than the usual one (closed
set are in some sense “very small”). For instance the only closed proper subsets of k1 w.r.t.
this topology are just finite subsets.
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Example 1.7.11 Let f, g ∈ C[X, Y ]. Show that V(f, g) is finite iff f and g have no common
irreducible factor.

(⇒): First, we prove that V(f) is infinite if f is non-constant. W.l.o.g. we can assume
that f =

∑N
i=0 ai(X)Y i and N > 0 (otherwise interchange the variables). Then aN ∈ C[X] is

the leading coefficient of f . Clearly, aN can vanish only for finitely many values of X. This
means that for infinitely many values of X, the leading coefficient aN is non-zero. If we fix
one of those values x ∈ C, then f(x, Y ) is a polynomial from C[Y ] of degree N . Since C is
algebraically closed, f(x, Y ) has at least one root. Thus for each value of X where aN does
not vanish, we have an element of V(f). Moreover, for different such values, we get different
elements of V(f).

Secondly, it is clear that if f and g have a common irreducible factor d, then V(d) is
infinite and V(d) ⊆ V(f, g) because f = du and g = dv for some u, v ∈ C[X, Y ].

(⇐): This implication holds for any field. So assume that f, g ∈ k[X, Y ]. Recall that
k[X, Y ] = k[X][Y ]. Consider factorizations of f and g into irreducibles:

f = c1 · · · cn · f1 · · · fm , g = d1 · · · dk · g1 · · · gs ,

where ci, dj ∈ k[X] and fi, gj ∈ k[X][Y ] primitive. If f, g have no common irreducible factor
in k[X,Y ], then ci 6∼ dj and fi 6∼ gj . I claim that f, g have no common irreducible factor
also in k(X)[Y ]. Clearly, ci, dj are units of k(X) and fi, gj are irreducibles also in k(X)[Y ].
Assume that there is an irreducible element e ∈ k(X)[Y ] such that e|f and e|g in k(X)[Y ].
Then e ∼ fi for some i and e ∼ gj for some j in k(X)[Y ]. Thus fi = ugj for some u ∈ k(X)×.
Since fi, gj are primitive u ∈ k[X]× = k×, fi ∼ gj in k[X][Y ] (a contradiction). Consequently,
gcd(f, g) = 1 in k(X)[Y ].

Finally, since 〈f, g〉 = 〈1〉 in k(X)[Y ], there are A,B ∈ k(X)[Y ] such that Af + Bg = 1.
If we multiply this equality by all denominators of all coefficients of A, B (which are from
k[X]), we get Ãf + B̃g = C̃ for some Ã, B̃ ∈ k[X, Y ] and C̃ ∈ k[X]. Thus C̃ ∈ 〈f, g〉
in k[X,Y ]. Since C̃ ∈ k[X], it can have only finitely many roots. Let x1, . . . , xk be these
roots. Then (x, y) ∈ V(f, g) only if x = xi for some i. Further, for all i we have that
f(xi, Y ), g(xi, Y ) ∈ k[Y ] can also have only finitely many roots. Thus V(f, g) is finite.

1.8 Quotient rings

Definition 1.8.1 Let R be a ring. An equivalence relation ∼ on R is called a congruence if
a ∼ a′ and b ∼ b′ implies a + b ∼ a′ + b′ and ab ∼ a′b′.

Lemma 1.8.2 Let R be a ring and I its ideal. Then the relation defined by a ∼I b iff a−b ∈ I,
is a congruence.

proof: First, a − a = 0 ∈ I, b − a = −1 · (a − b) ∈ I, and a − b, b − c ∈ I implies
a − c = a − b + b − c ∈ I. Suppose that a ∼ a′ and b ∼ b′, i.e. a − a′, b − b′ ∈ I. Then
a + b − a′ − b′ = (a − a′) + (b − b′) ∈ I. Further, ab − a′b′ = ab − a′b + a′b − a′b′ =
(a− a′)b + a′(b− b′) ∈ I. 2

Definition 1.8.3 Let R be a ring and I its ideal. Then the quotient ring R/I is the set of
equivalence classes {[a] | a ∈ R} where [a] = {b ∈ R | a ∼I b} endowed with operations:
[a] + [b] = [a + b] and [a] · [b] = [a · b]. The additive identity is [0] and multiplicative is [1].
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It is easy to check that the latter algebra is really a ring. One has to only show that the
operations are well-defined (i.e. they are independent of the choice of representatives of
the equivalence classes). Suppose that a ∼I a′ and b ∼I b′. Then by Lemma 1.8.2 we
have a + b ∼I a′ + b′ and ab ∼I a′b′, i.e. [a] + [b] = [a + b] = [a′ + b′] = [a′] + [b′] and
[a] · [b] = [ab] = [a′b′] = [a′] · [b′]. The ring axioms are trivially satisfied e.g.

[a]([b] + [c]) = [a(b + c)] = [ab + ac] = [a][b] + [a][c] , [1] · [a] = [1 · a] = [a] .

Observe that [0] = {f | f − 0 ∈ I} = I.

Lemma 1.8.4 Let R be a ring and I an ideal. Then R/I is an integral domain iff I is prime.

proof: (⇐): Assume that [a][b] = [0]. Then ab = ab− 0 ∈ I. Since I is prime, we get a ∈ I
or b ∈ I. Thus [a] = [0] or [b] = [0].

(⇒): Let ab ∈ I. Then [0] = [ab] = [a][b]. Since R/I is an integral domain either [a] = [0]
or [b] = [0]. Thus either a ∈ I or b ∈ I. 2

Definition 1.8.5 Let R be a ring and I a proper ideal. The ideal I is called maximal if for
all ideals J ⊇ I we have either J = R or J = I.

Observe that each maximal ideal I is prime. Indeed, assume that ab ∈ I. If a 6∈ I and b 6∈ I,
then 〈I ∪ {a}〉 = R, i.e. 1 = fa + g for some f ∈ R and g ∈ I. Thus b = fab + bg ∈ I.

Lemma 1.8.6 Let R be a ring and I a proper ideal. Then I is maximal iff R/I is a field.

proof: (⇒): Since I is prime, R/I is an integral domain. We will prove that all non-zero
elements of R/I have a multiplicative inverse. Let [a] 6= [0], i.e. a 6∈ I. Since I is maximal, we
have 〈I ∪ {a}〉 = R. Thus 1 = fa+g for some f ∈ R and g ∈ I. Consequently, fa−1 = g ∈ I,
i.e. [f ][a] = [fa] = [1].

(⇐): Assume that R/I is a field. Let a 6∈ I. Then there is b ∈ R such that [a][b] = [ab] =
[1]. Thus 1− ab = g ∈ I. Since 1 = g + ab ∈ 〈I ∪ {a}〉, we get 〈I ∪ {a}〉 = R. Hence we see
that whenever we try to extend I by an element a not belonging to I, we obtain the whole
ring R. This means that I is maximal. 2



Chapter 2

Gröbner bases

In this chapter we will develop the theory of Gröbner bases. The following problems can be
considered as our motivation:

• Ideal description: Given an ideal I in k[X1, . . . , Xn]. Is there a finite generating set
for I?

• Ideal membership: Given a polynomial f ∈ k[X1, . . . , Xn] and an ideal I = 〈f1, . . . , fn〉 ⊆
k[X1, . . . , Xn]. Is there an algorithm how to decide whether f ∈ I or not?

• Solution of a system of polynomial equations: Given an ideal I = 〈f1, . . . , fn〉 ⊆
k[X1, . . . , Xn]. Can we describe V(I) (at least if it is finite)?

In the case of polynomials in one variable we can answer all the questions immediately.
Since k[X] is a PID, the answer to the first question is trivially “yes”. Moreover, if I =
〈f1, . . . , fn〉 ⊆ k[X], then I = 〈g〉 where g = gcd(f1, . . . , fn). Thus all polynomials in I are
just multiples of g. Consequently, we have an algorithm for the second problem because f ∈ I
iff g|f which can be easily determine by the division algorithm. The last problem is just the
problem of computing the roots of g since V(I) = V(g).

2.1 Term orders

We have seen that the division algorithm of polynomials in one variable was important for
solving the first two above-mentioned problems. We would like to generalize it to the case of
several variables. Note that the division in k[X] uses the fact that we can order terms of a
given polynomial w.r.t. the powers of X. We need something similar also for polynomials in
k[X1, . . . , Xn].

Definition 2.1.1 A relation ¹ on a set S is a partial order if it is reflexive, transitive and
antisymmetric. In addition, ¹ is a total order if x ¹ y or y ¹ x for all x, y ∈ S. Finally, a
total order on S is called a well-ordering if each non-empty subset of S has a minimum.

Let M ⊆ S. Recall that an element y ∈ M is said to be minimal element of M w.r.t. a
partial order ¹ if x ∈ M together with x ¹ y implies x = y.

Observe that the relation ≤` on Nn defined as follows:

(a1, . . . , an) ≤` (b1, . . . , bn) if ai ≤ bi for all i,

17
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is a partial order.
Let α = (a1, a2, . . . , an) ∈ Nn and β = (b1, b2, . . . , bn) ∈ Nn. Then we define the i-th

projection πi(α) = ai, the sum α + β = (a1 + b1, a2 + b2, . . . , an + bn) and the difference
α− β = (a1 − b1, a2 − b2, . . . , an − bn) ∈ Zn.

Definition 2.1.2 A total order ¹ on Nn is called a term order (or monomial ordering) if

1. α ¹ β implies α + γ ¹ β + γ for all γ ∈ Nn,

2. 0̄ ¹ α for all α ∈ Nn (where 0̄ is the zero n-tuple).

Example 2.1.3 Let α = (a1, . . . , an) ∈ Nn and β = (b1, . . . , bn) ∈ Nn. Then we define the
following term orders:

• Lexicographic Order: α ¹lex β if either α = β or the left-most non-zero component
of β − α is positive.

• Graded Lex Order (grlex): α ¹grlex β if either

|α| =
n∑

i=1

ai < |β| =
n∑

i=1

bi or |α| = |β| and α ¹lex β .

• Graded Reverse Lex Order (grevlex): α ¹grevlex β if either

|α| =
n∑

i=1

ai < |β| =
n∑

i=1

bi or |α| = |β|

and the right-most non-zero component of β − α is negative.

• Weighted Order: Let w ∈ Nn. Then α ¹w β if

α · w < β · w or α · w = β · w and α ¹lex β .

We have e.g.
(0, 3, 4) ¹lex (1, 2, 0) since (1, 2, 0)− (0, 3, 4) = (1,−1,−4),
(3, 2, 1) ¹lex (3, 2, 4) since (3, 2, 4)− (3, 2, 1) = (0, 0, 3),
(0, 0, 1) ¹lex (0, 1, 0) ¹lex (1, 0, 0),

(3, 2, 0) ¹grlex (1, 2, 3) since |(3, 2, 0)| = 5 < 6 = |(1, 2, 3)|,
(1, 1, 5) ¹grlex (1, 2, 4) since |(1, 1, 5)| = 7 = |(1, 2, 4)| and (1, 1, 5) ¹lex (1, 2, 4),
(0, 0, 1) ¹grlex (0, 1, 0) ¹grlex (1, 0, 0),

(4, 2, 3) ¹grevlex (4, 7, 1) since |(4, 2, 3)| = 9 < 12 = |(4, 7, 1)|,
(4, 1, 3) ¹grevlex (1, 5, 2) since |(4, 1, 3)| = 8 = |(1, 5, 2)| and (1, 5, 2)− (4, 1, 3) = (−3, 4,−1),
(0, 0, 1) ¹grevlex (0, 1, 0) ¹grevlex (1, 0, 0),

Lemma 2.1.4 Let ¹ be a term order on Nn. Then ≤` ⊆ ¹, i.e. whenever α ≤` β then
α ¹ β.
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proof: If α ≤` β then πi(α) ≤ πi(β) for all i. Thus β − α ∈ Nn. Consequently, 0̄ ¹ β − α.
Finally,

α = 0̄ + α ¹ β − α + α = β .

2

Theorem 2.1.5 (Dickson’s Lemma) Let ∅ 6= S ⊆ Nn. Then S has finitely many minimal
elements w.r.t. ≤`.

proof: By induction on n. For n = 1 it is trivial since ≤` coincides with the usual order
≤ on N which is a well-ordering. Assume that the claim is valid for n − 1. Let S ⊆ Nn and
α0 ∈ S. Let us define for each i ∈ {1, . . . , n} and each a ∈ {0, 1, . . . , πi(α0)− 1} the following
set:

Si,a = {α ∈ S | πi(α) = a} .

Obviously every Si,a can be identify with a subset of Nn−1. By induction assumption there
is a finite set Mi,a of minimal elements of Si,a. Let

M = {α0} ∪
⋃

i,a

Mi,a .

The set M is obviously finite. I claim that each minimal element of S belongs to M . Let
β ∈ S. We will show that α ≤` β for some α ∈ M . If β is not greater than or equal to α0,
then it has at least one component strictly smaller than the same component in α0, i.e. there
is i such that πi(β) ≤ πi(α0) − 1. Thus β ∈ Si,a for some i and a. Consequently β must be
greater than or equal to some α ∈ Mi,a ⊆ M . 2

Corollary 2.1.6 Each term order ¹ on Nn is a well-ordering.

proof: Let ∅ 6= S ⊆ Nn. Then S has finitely many minimal elements {α1, . . . , αk} w.r.t. ≤`.
Let β ∈ S. Then αi ≤` β for some i which implies αi ¹ β. Since ¹ is a total order, one of
{α1, . . . , αk} must be the minimum of S w.r.t. ¹. 2

Note that since ¹ is a well-ordering, every strictly increasing sequence in Nn eventually
terminates.

2.2 Monomial ideals

Definition 2.2.1 An ideal I ⊆ k[X1, . . . , Xn] is monomial if there is S ⊆ Nn (possibly
infinite) such that I is generated by {Xα | α ∈ S}. We write 〈Xα | α ∈ S〉 for the monomial
ideal generated by S ⊆ Nn.

Theorem 2.2.2 Each monomial ideal in k[X1, . . . , Xn] is finitely generated.

proof: Let I be a monomial ideal, and let A = {α | Xα ∈ I}. By Dickson’s Lemma the set
A has finitely many minimal elements {α1, . . . , αk}. I claim that I = 〈Xα1 , . . . , Xαk〉. Clearly
I ⊇ 〈Xα1 , . . . , Xαk〉. For the second inclusion it suffices to show that each generator of I lies
in 〈Xα1 , . . . , Xαk〉. Let Xα be a generator of I, hence α ∈ A. Then αi ≤` α for some i, i.e.
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α− αi ∈ Nn. Thus Xα = XαiXα−αi ∈ 〈Xα1 , . . . , Xαk〉. 2

Lemma 2.2.3 Let A ⊆ Nn satisfying the following condition:

α ∈ A , β ∈ Nn =⇒ α + β ∈ A . (*)

Then the k-linear subspace J of k[X1, . . . , Xn] generated by {Xα | α ∈ A} is the monomial
ideal 〈Xα | α ∈ A〉.
proof: We have to prove that J is an ideal. Clearly J is closed under addition and 0 ∈ J .
Let f ∈ J and g ∈ k[X1, . . . , Xn]. Then

fg =

(∑

α∈A

cαXα

)
·

 ∑

β∈Nn

dβXβ


 =

∑

α,β

cαdβXα+β ,

where all the sums are finite. Since A satisfies (*), we get Xα+β ∈ J . Thus fg ∈ J .
Clearly, J ⊆ 〈Xα | α ∈ A〉 because every k-linear combination of the monomials Xα must

belong to 〈Xα | α ∈ A〉. On the other hand, since 〈Xα | α ∈ A〉 is the smallest ideal contain-
ing all Xα for α ∈ A, we get J ⊇ 〈Xα | α ∈ A〉. 2

From the previous lemma we obtain the following characterization of monomial ideals.

Theorem 2.2.4 Let I ⊆ k[X1, . . . , Xn] be a monomial ideal and A = {α | Xα ∈ I}. Then A
satisfies (*) and I is generated as a k-linear subspace of k[X1, . . . , Xn] by {Xα | α ∈ A}.

Conversely, let A ⊆ Nn satisfying (*). Then the k-linear subspace of k[X1, . . . , Xn] gen-
erated by {Xα | α ∈ A} is a monomial ideal.

proof: (⇒): Let I be a monomial ideal. First, we will show that A satisfies (*). Let α ∈ A
and β ∈ Nn. Then Xα ∈ I. Consequently, XαXβ = Xα+β ∈ I. Thus α + β ∈ A. The
fact that I is generated as a k-linear subspace by A follows from Lemma 2.2.3. Indeed,
since A satisfies (*), the k-linear subspace generated by {Xα | α ∈ A} is the monomial ideal
〈Xα | α ∈ A〉 which is obviously equal to I.

(⇐): It follows immediately from Lemma 2.2.3. 2

Lemma 2.2.5 Let S ⊆ Nn and I = 〈Xα | α ∈ S〉 be the corresponding monomial ideal. Then
I = 〈Xα | α ∈ A〉 where

A = {β ∈ Nn | (∃α ∈ S)(α ≤` β)} .

Moreover, Xβ ∈ I iff Xα|Xβ for some α ∈ S, i.e. A = {α ∈ Nn | Xα ∈ I}.
proof: Observe that S ⊆ A. Thus I = 〈Xα | α ∈ S〉 ⊆ 〈Xα | α ∈ A〉. On the other hand,
let β ∈ A, i.e. there is α ∈ S such that α ≤` β. Then β − α ∈ Nn and Xβ = Xβ−αXα, i.e.
Xβ ∈ I. Hence 〈Xα | α ∈ A〉 ⊆ I.

The right-to-left direction of the second statement is straightforward. For the other one
assume that Xβ ∈ I. Observe that A satisfies (*). Thus by Lemma 2.2.3 I is generated as a
k-linear space by {Xα | α ∈ A}. Consequently, Xβ =

∑
α∈A cαXα where the sum is finite.

Since two polynomials are equal iff they have the same coefficients, β = α for some α ∈ A.
As β ∈ A, there is α ∈ S such that α ≤` β, i.e. Xα|Xβ. 2



2.3. DIVISION IN K[X1, . . . , XN ] 21

Corollary 2.2.6 Let S ⊆ Nn and I = 〈Xα | α ∈ S〉. Then the minimal elements of A =
{α ∈ Nn | Xα ∈ I} belong to S, i.e. I = 〈Xα1 , . . . , Xαs〉 for α1, . . . , αs ∈ S.

proof: By the previous lemma we have

A = {β ∈ Nn | (∃α ∈ S)(α ≤` β)} .

Let α0 be a minimal element of A. Then there exists α ∈ S such that α ≤` α0. Since S ⊆ A
and α0 is minimal, we obtain α0 = α ∈ S. 2

2.3 Division in k[X1, . . . , Xn]

Definition 2.3.1 Let f =
∑

α cαXα be a non-zero polynomial in k[X1, . . . , Xn] and ¹ a
term order.

1. The multidegree of f is

mdeg(f) = max{α ∈ Nn | cα 6= 0} ,

(the maximum is taken w.r.t. ¹).

2. The leading coefficient of f is

LC(f) = cmdeg(f) ∈ k .

3. The leading monomial of f is

LM(f) = Xmdeg(f) .

4. The leading term of f is
LT(f) = LC(f) · LM(f) .

Let Xα and Xβ be two monomials, and let ¹ be a term order. Then we write Xα ¹ Xβ if
α ¹ β.

Lemma 2.3.2 Let f, g ∈ k[X1, . . . , Xn] be non-zero polynomials. Then

1. mdeg(fg) = mdeg(f) + mdeg(g),

2. if f + g 6= 0, then mdeg(f + g) ≤ max{mdeg(f), mdeg(g)}.
proof: I claim that LM(fg) = LM(f) · LM(g) = Xmdeg(f)+mdeg(g). For sure fg contains a
term with Xmdeg(f)+mdeg(g). Thus it suffices to show that all other monomials appearing in
fg have smaller exponents. Let Xα (resp. Xβ) be a monomial appearing in f (resp. in g).
Then α ¹ mdeg(f) and β ¹ mdeg(g). We have

α + β ¹ mdeg(f) + β ¹ mdeg(f) + mdeg(g) .

Hence Xα+β has a smaller exponent than Xmdeg(f)+mdeg(g).
The second statement is obvious. 2
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Since k[X] is a PID, it is possible to use the division algorithm in order to find out whether
a given polynomial f ∈ k[X] belongs to an ideal or not. This can be decided according to the
remainder. However k[X1, . . . , Xn] is not a PID. Thus we will need a more general division
algorithm. More precisely, given a polynomial f ∈ k[X1, . . . , Xn] and an ordered s-tuple
(f1, . . . , fs), fi ∈ k[X1, . . . , Xn], we would like to express f as follows:

f = a1f1 + a2f2 + . . . + asfs + r ,

because if r = 0 then clearly f ∈ 〈f1, . . . , fs〉.
The division algorithm in k[X1, . . . , Xn] is a quite straightforward generalization of the

division algorithm in k[X]. We will illustrate it first on an example.

Example 2.3.3 Let f = X2Y + XY 2 + Y 2 and f1 = XY − 1, f2 = Y 2 − 1. I will use the
lex order such that X º Y . Then the division goes as follows:

a1: X + Y

a2: 1 r

XY − 1 X2Y + XY 2 + Y 2

Y 2 − 1 X2Y −X

XY 2 + X + Y 2

XY 2 − Y

X + Y 2 + Y

Y 2 + Y X

Y 2 − 1
Y + 1
1 X + Y

0 X + Y + 1

f = (X + Y )(XY − 1) + 1 · (Y 2 − 1) + X + Y + 1 .

The division depends on the order of the divisors fi. Let us divide f by (Y 2− 1, XY − 1).

a1: X + 1
a2: X r

Y 2 − 1 X2Y + XY 2 + Y 2

XY − 1 X2Y −X

XY 2 + X + Y 2

XY 2 −X

2X + Y 2

Y 2 2X

Y 2 − 1
1
0 2X + 1
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f = (X + 1)(Y 2 − 1) + X(XY − 1) + 2X + 1 .

Theorem 2.3.4 Let ¹ be a term order and F = (f1, . . . , fs) be an s-tuple of polynomials in
k[X1, . . . , Xn]. Then every f ∈ k[X1, . . . , Xn] can be written as

f = a1f1 + a2f2 + . . . + asfs + r ,

where ai, r ∈ k[X1, . . . , Xn] and either r = 0 or r is a k-linear combination of monomials,
none of which is divisible by any of LT(f1), . . . , LT(fs). We will call r a remainder of f on
division by F . Furthermore, if aifi 6= 0, then we have mdeg(aifi) ¹ mdeg(f).

proof: A precise description of the division algorithm is shown in Algorithm 1. We will

Algorithm 1 Division in k[X1, . . . , Xn]
Input: f, f1, . . . , fs and a term order ¹
Output: a1, . . . , as, r

a1 := 0, . . . , as := 0; r := 0
p := f
while p 6= 0 do

i := 1
divisionoccured := false
while i ≤ s and divisionoccured = false do

if LT(fi)|LT(p) then
ai := ai + LT(p)/LT(fi)
p := p− (LT(p)/LT(fi))fi

divisionoccured := true
else

i := i + 1
end if

end while
if divisionoccured = false then

r := r + LT(p)
p := p− LT(p)

end if
end while

prove that in each step of the algorithm we have

f = a1f1 + a2f2 + · · ·+ asfs + p + r . (2.1)

This is obvious for the initial values. In case when LT(fi)|LT(p) we get

aifi + p =
(

ai +
LT(p)
LT(fi)

)
fi +

(
p− LT(p)

LT(fi)
fi

)
.

Since all remaining values are unaffected, (2.1) remains valid. In case when none of LT(fi)
divides LT(p), we have

p + r = (p− LT(p)) + (r + LT(p))
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showing that (2.1) is still preserved.
Observe that mdeg(p) decreases in each step of the algorithm. Thus the algorithm must

eventually terminate since ¹ is a well-ordering. Moreover r has the desired properties since
LT(p) is added to r only if LT(p) is not divisible by any of LT(fi). Finally, if aifi 6= 0, then each
term of ai is of the form LT(p)/LT(fi) for some value of p. Observe that mdeg(p) ¹ mdeg(f)
at each step of the algorithm. Thus mdeg(aifi) ¹ mdeg(f) because

LT(aifi) = LT(ai)LT(fi) =
LT(p)
LT(fi)

LT(fi) = LT(p) .

2

Let f ∈ k[X1, . . . , Xn] and F = (f1, . . . , fs) an ordered s-tuple of polynomials in k[X1, . . . , Xn].
If the remainder r of f on the division by F is zero, then clearly f ∈ 〈f1, . . . , fs〉. However,
this is only sufficient conditions and not necessary as it is show in the following example.

Example 2.3.5 Let f1 = XY + 1, f2 = Y 2 − 1 ∈ k[X, Y ] with the lex order. Dividing
f = XY 2 −X by F = (f1, f2), we get

XY 2 −X = Y · (XY + 1) + 0 · (Y 2 − 1) + (−X − Y ) .

Dividing f = XY 2 −X by F = (f2, f1), we get

XY 2 −X = X · (Y 2 − 1) + 0 · (XY + 1) + 0 .

Thus f ∈ 〈f1, f2〉 but the remainder in the first case is −X − Y .

2.4 Hilbert Basis Theorem

Definition 2.4.1 Let I ⊆ k[X1, . . . , Xn] be an ideal and ¹ a term order. We define

LT(I) = {LT(f) | f ∈ I \ {0}} , LM(I) = {LM(g) | g ∈ I \ {0}} ,

where LT(f) and LM(f) are taken w.r.t. ¹. The ideal generated by LT(I) (resp. LM(I)) is
denoted 〈LT(I)〉 (resp. 〈LM(I)〉).

Observation 2.4.2 Let I ⊆ k[X1, . . . , Xn] be an ideal. Then 〈LT(I)〉 is a monomial ideal.

proof: It can be easily seen that 〈LT(I)〉 = 〈LM(I)〉 since LT(g) is just a multiple of LM(g)
by a non-zero constant. 2

Lemma 2.4.3 The ideal 〈LT(I)〉 = 〈LT(g1), . . . , LT(gs)〉 for some g1, . . . , gs ∈ I.

proof: By Corollary 2.2.6 we get 〈LT(I)〉 = 〈LM(I)〉 = 〈LM(g1), . . . , LM(gs)〉 for some
gi ∈ I. Again by the previous observation we have

〈LM(g1), . . . ,LM(gs)〉 = 〈LT(g1), . . . , LT(gs)〉 .

2
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Theorem 2.4.4 (Hilbert Basis Theorem) Every ideal I ⊆ k[X1, . . . , Xn] is finitely gen-
erated.

proof: Clearly, I = {0} is finitely generated. Thus assume that I 6= {0}. By previous
lemma there are g1, . . . , gs ∈ I such that 〈LT(I)〉 = 〈LT(g1), . . . , LT(gs)〉. I claim that I =
〈g1, . . . , gs〉.

Clearly 〈g1, . . . , gs〉 ⊆ I. Let f ∈ I. By the division algorithm there are polynomials
a1, . . . , as and r such that

f = a1g1 + · · ·+ asgs + r ,

where every term of r is divisible by none of LT(g1), . . . , LT(gs). Then r = f − (a1g1 + · · ·+
asgs), i.e. r ∈ I. If r 6= 0 then LT(r) ∈ 〈LT(I)〉 = 〈LT(g1), . . . ,LT(gs)〉. Thus by Lemma 2.2.5
we have LT(gi)|LT(r) for some i (a contradiction with the fact that r is the remainder of f
on division by (g1, . . . , gs)). Consequently, r = 0 which means that f ∈ 〈g1, . . . , gs〉. 2

Corollary 2.4.5 The polynomial ring k[X1, . . . , Xn] is Noetherian.

Corollary 2.4.6 Let S ⊆ k[X1, . . . , Xn]. Then V(S) = V(f1, . . . , fs) for some f1, . . . , fs ∈
〈S〉.
proof: We have V(S) = V(〈S〉) = V(f1, . . . , fs) since 〈S〉 is finitely generated by Hilbert
Basis Theorem. 2

2.5 Gröbner Bases

Definition 2.5.1 Fix a term order. A finite subset G = {g1, . . . , gs} of an ideal I is called a
Gröbner basis if

〈LT(I)〉 = 〈LT(g1), . . . ,LT(gs)〉 .
Observe that we have seen in the proof of Hilbert Basis Theorem that for every ideal I 6= {0}
a Gröbner basis exists and generates I.

Proposition 2.5.2 Let I ⊆ k[X1, . . . , Xn] be an ideal, G = {g1, . . . , gs} a Gröbner basis of
I w.r.t. a term order, and f ∈ k[X1, . . . , Xn]. There there is a unique r ∈ k[X1, . . . , Xn] with
the following two properties:

1. No term of r is divisible by any of LT(g1), . . . , LT(gs).

2. There is g ∈ I such that f = g + r.

proof: The division algorithm gives f =
∑

aigi + r, where r satisfies the first property and∑
aigi ∈ I. Thus r with the required properties exists.
Now, assume that we can express f as follows:

f = g1 + r1 = g2 + r2 ,

where g1, g2 ∈ I and r1, r2 have the required properties. Then r1−r2 ∈ I and no term is divisi-
ble by any of LT(g1), . . . , LT(gs). This means that r1−r2 = 0 otherwise LT(r1−r2) ∈ 〈LT(I)〉
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would be divisible by some LT(gi) by Lemma 2.2.5. 2

Observe that the division by a Gröbner basis G = {g1, . . . , gs} does not depend on the
order of gi’s.

Corollary 2.5.3 Gröbner bases solve the ideal membership problem. More precisely, let I ⊆
k[X1, . . . , Xn] be an ideal, G a Gröbner basis of I, and f ∈ k[X1, . . . , Xn]. Then f ∈ I iff the
remainder of f after division by G is zero.

proof: Let r be the remainder. We saw already that r = 0 implies f ∈ I. Conversely, assume
that f ∈ I. Then by the division algorithm we can write f =

∑
aigi + r where r satisfies the

conditions from the previous proposition. At the same time we can write f = f + 0 where 0
satisfies the same conditions as well. By uniqueness we get r = 0. 2

Definition 2.5.4 We will write f
G for the remainder of f on division by G = (g1, . . . , gs).

If we have a basis {g1, . . . , gs} (i.e. a generating set) of an ideal I, then it may happen
that

LT(I) 6= 〈LT(g1), . . . , LT(gs)〉 .
Thus not each generating set for I is necessarily a Gröbner basis. To see this consider for
example the ideal 〈f1, f2〉 where f1 = X3 − 2XY and f2 = X2Y + X − 2Y 2. Let us use the
lex term order. Then

X(X2Y + X − 2Y 2)− Y (X3 − 2XY ) = X2 .

Thus X2 ∈ 〈f1, f2〉 and X2 = LT(X2) ∈ 〈LT(I)〉. However,

X2 6∈ 〈LT(f1), LT(f2)〉 = 〈X3, X2Y 〉 .
This is caused by the fact that the leading terms in the combination producing X2 cancel.

Let α, β ∈ Nn, and let γ = sup{α, β}, i.e. for each i we have πi(γ) = max{πi(α), πi(β)}.
Then we call Xγ the least common multiple of Xα and Xβ. It is denoted by LCM(Xα, Xβ).
Fix a term order ¹. The corresponding strict order will be denoted by ≺.

Definition 2.5.5 Let f, g ∈ k[X1, . . . , Xn] be non-zero polynomials and Xγ = LCM(LM(f),LM(g)).
Then the S-polynomial of f and g is the combination

S(f, g) =
Xγ

LT(f)
f − Xγ

LT(g)
g .

Observe that the leading terms of Xγ

LT(f) f and Xγ

LT(g) g cancel in S(f, g). Indeed, as we
can write f = LT(f) + f ′ and g = LT(g) + g′ for some f ′, g′ ∈ k[X1, . . . , Xn] such that
mdeg(f ′) ≺ mdeg(f) and mdeg(g′) ≺ mdeg(g), we get

S(f, g) =
Xγ

LT(f)
(LT(f) + f ′)− Xγ

LT(g)
(LT(g) + g′) =

Xγ

LT(f)
f ′ − Xγ

LT(g)
g′ .

Moreover, since mdeg(f ′) ≺ mdeg(f) and mdeg(g′) ≺ mdeg(g), we have

mdeg(f ′) + γ −mdeg(f) ≺ γ , mdeg(g′) + γ −mdeg(g) ≺ γ .
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Thus mdeg(S(f, g)) ≺ γ because

mdeg(S(f, g)) ¹ max{mdeg(f ′) + γ −mdeg(f), mdeg(g′) + γ −mdeg(g)} .

Example 2.5.6 Let f = X3Y 2−X2Y 3 +X and g = 3X4Y +Y 2, and let ¹ be the lex order.
Then LCM(LM(f),LM(g)) = X4Y 2. Thus

S(f, g) =
X4Y 2

X3Y 2
f − X4Y 2

3X4Y
g = X · f − Y · g = −X3Y 3 −X2 − 1

3
Y 3 .

Lemma 2.5.7 Suppose that f =
∑s

i=1 ciX
α(i)gi, where gi ∈ k[X1, . . . , Xn], ci ∈ k \ {0},

α(i) ∈ Nn, and α(i) + mdeg(gi) = δ. If mdeg(f) ≺ δ, then there are cjk ∈ k such that

f =
∑

j,k

cjkX
δ−γjkS(gj , gk) ,

where Xγjk = LCM(LM(gj), LM(gk)). Furthermore, mdeg(Xδ−γjkS(gj , gk)) ≺ δ for each j, k.

proof: Let di = LC(gi). Thus cidi = LC(ciX
α(i)gi). Since mdeg(ciX

α(i)gi) = δ for each i
and mdeg(f) ≺ δ, we have

∑s
i=1 cidi = 0.

Define pi = Xα(i)gi/di and consider the following telescoping sum:

f =
s∑

i=1

ciX
α(i)gi =

s∑

i=1

cidipi = c1d1(p1 − p2) + (c1d1 + c2d2)(p2 − p3)+

(c1d1 + c2d2 + c3d3)(p3−p4)+ · · ·+(c1d1 + · · ·+ cs−1ds−1)(ps−1−ps)+(c1d1 + · · ·+ csds)ps .

Since α(i) + mdeg(gi) = δ (i.e. mdeg(gi) ≤` δ) for each i, we have for each pair j, k:

γjk = sup{mdeg(gj),mdeg(gk)} ≤` δ .

Thus Xδ−γjk is a monomial and we have

Xδ−γjkS(gj , gk) = Xδ−γjk

(
Xγjk

LT(gj)
gj − Xγjk

LT(gk)
gk

)
=

=
Xδ

djLM(gj)
gj − Xδ

dkLM(gk)
gk =

Xα(j)gj

dj
− Xα(k)gk

dk
= pj − pk .

Using this and
∑s

i=1 cidi = 0, the telescoping sum can be rewritten as follows:

f = c1d1X
δ−γ12S(g1, g2) + (c1d1 + c2d2)Xδ−γ23S(g2, g3)+

+ · · ·+ (c1d1 + · · ·+ cs−1ds−1)Xδ−γs−1,sS(gs−1, gs) ,

which is a sum of the desired form.
Finally, since Xδ−γjkS(gj , gk) = pj − pk, it suffices to show that mdeg(pj − pk) ≺ δ. But

this is obvious because mdeg(pj) = mdeg(pk) = δ and LC(pj) = LC(pk) = 1. 2

Theorem 2.5.8 Let I ⊆ k[X1, . . . , Xn] be an ideal. Then a basis G = {g1, . . . , gs} for I is a
Gröbner basis for I iff for all pairs i 6= j, the remainder of S(gi, gj) on division by G is zero.
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proof: (⇒): Since S(gi, gj) ∈ I, the remainder must be zero because G is a Gröbner basis.
(⇐): Let f ∈ I be a non-zero polynomial. We have to show that LT(f) ∈ 〈LT(g1), . . . ,LT(gs)〉.
There are some hi ∈ k[X1, . . . , Xn] such that

f =
s∑

i=1

higi .

By Lemma 2.3.2 we have mdeg(f) ¹ max{mdeg(higi) | 1 ≤ i ≤ s}. If we show that we can
find the polynomials hi in such a way that mdeg(f) = mdeg(higi) for some i, then we are
done since LT(gi)|LT(f) in that case.

Consider all possible ways that f can be expressed in the form
∑s

i=1 higi. Given such ex-
pression, let m(i) = mdeg(higi) and δ = max{m(1), . . . , m(s)}. Thus mdeg(f) ¹ δ. For each
such expression, we can get a possibly different δ. Since ¹ is a well-ordering, we can choose
such expression for which δ is minimal. For this expression we will prove that mdeg(f) = δ
which is what we want to show.

Suppose that mdeg(f) ≺ δ. We can write f in the following form:

f =
∑

m(i)=δ

higi +
∑

m(i)≺δ

higi =
∑

m(i)=δ

LT(hi)gi +
∑

m(i)=δ

(hi − LT(hi))gi +
∑

m(i)≺δ

higi .

Since monomials appearing in the second and the third summand have multidegree strictly
less than δ, the first summand must also have multidegree strictly less than δ (we are assuming
mdeg(f) ≺ δ).

Let LT(hi) = ciX
α(i). Then

∑
m(i)=δ LT(hi)gi =

∑
m(i)=δ ciX

α(i)gi. Thus we can use
Lemma 2.5.7 and express it by means of S-polynomials:

∑

m(i)=δ

LT(hi)gi =
∑

j,k

cjkX
δ−γjkS(gj , gk) .

Now we can use the assumption that the remainder of S(gj , gk) after division by G is zero,
i.e.

S(gj , gk) =
s∑

i=1

aijkgi ,

for some aijk ∈ k[X1, . . . , Xn]. Moreover, we know that mdeg(aijkgi) ¹ mdeg(S(gj , gk)) (see
Theorem 2.3.4). Then

Xδ−γjkS(gj , gk) =
s∑

i=1

bijkgi ,

where bijk = Xδ−γjkaijk and by Lemma 2.5.7

mdeg(bijkgi) ¹ mdeg(Xδ−γjkS(gj , gk)) ≺ δ .

Thus we obtain
∑

m(i)=δ

LT(hi)gi =
∑

j,k

cjkX
δ−γjkS(gj , gk) =

=
∑

j,k

cjk

(
s∑

i=1

bijkgi

)
=

∑

i


∑

j,k

cjkbijk


 gi =

s∑

i=1

h′igi ,
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and mdeg(h′igi) ≺ δ since cjk are constants. Finally,

f =
s∑

i=1

h′igi +
∑

m(i)=δ

(hi − LT(hi))gi +
∑

m(i)≺δ

higi .

Thus we have expressed f as a polynomial combination of gi’s where the multidegree of all
summands is strictly less than δ. But this is a contradiction with the minimality of δ. Hence
mdeg(f) = δ and we are done. 2

Example 2.5.9 Prove that G = {Y−X2, Z−X3} is a Gröbner basis for I = 〈Y −X2, Z −X3〉
w.r.t. the lex order given by Y Â Z Â X. We have

S(Y −X2, Z −X3) =
Y Z

Y
(Y −X2)− Y Z

Z
(Z −X3) = Y X3 − ZX2 .

By the division algorithm we get

Y X3 − ZX2 = X3(Y −X2) + (−X2)(Z −X3) + 0 .

Thus S(Y −X2, Z −X3)
G

= 0 showing that G is a Gröbner basis.
Show that G is not Gröbner basis w.r.t. the lex order given by X Â Y Â Z. We have

S(−X3 + Z,−X2 + Y ) =
X3

X3
(−X3 + Z)− X3

X2
(−X2 + Y ) = −XY + Z .

The division gets

−XY + Z = 0 · (−X3 + Z) + 0 · (−X2 + Y )−XY + Z .

Thus S(−X3 + Z,−X2 + Y )
G

= −XY + Z, i.e. G is not a Gröbner basis.

2.6 Buchberger’s Algorithm

Now we will present how to construct a Gröbner basis from a generating set for an ideal.

Theorem 2.6.1 Let I = 〈f1, . . . , ft〉 ⊆ k[X1, . . . , Xn] be a non-zero ideal and ¹ a term order.
Then a Gröbner basis for I w.r.t. ¹ can be constructed by Algorithm 2.

proof: First, observe that G ⊆ I in each step of the algorithm. This is clearly valid in the
initial step. Then if p, q ∈ I, then S(p, q) ∈ I and S(p, q)

G ∈ I. The algorithm terminates
when S(p, q)

G
= 0 for each pair p, q, i.e. G is a Gröbner basis.

Secondly, if the algorithm does not terminate, then G is expanded at least by one poly-
nomial S, i.e. G′ ( G. We will show that also 〈LT(G′)〉 ( 〈LT(G)〉. To see this consider
r ∈ G \ G′. Since r is a remainder on division by G′, LT(r) is not divisible by any of the
leading terms of elements from G′. Thus LT(r) 6∈ 〈LT(G′)〉 but LT(r) ∈ 〈LT(G)〉.

Finally, since the ideals 〈LT(G′)〉 form an ascending chain and k[X1, . . . , Xn] is Noethe-
rian, the chain must become constant, i.e. G = G′ at some step and the algorithm terminates.

2
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Algorithm 2 Buchberger’s Algorithm
Input: F = {f1, . . . , ft} and a term order ¹
Output: a Gröbner basis G = {g1, . . . , gs} for 〈F 〉 w.r.t. ¹ such that F ⊆ G

G := F
repeat

G′ := G
for each {p, q} ⊆ G′, p 6= q do

S := S(p, q)
G′

if S 6= 0 then
G := G ∪ {S}

end if
end for

until G = G′

Example 2.6.2 Find a Gröbner basis of 〈f1, f2〉 w.r.t. the lex order given by X Â Y , where
f1 = X2 and f2 = XY + Y 2.

Let F = (f1, f2). We have

S(f1, f2) = Y X2 −X(XY + Y 2) = −XY 2 = 0 ·X2 + (−Y )(XY + Y 2) + Y 3 ,

S(f1, f2)
F

= Y 3 .

Expand F by f3 = Y 3. Then

S(f1, f2) = f3 , S(f1, f2)
F

= 0 ,

S(f1, f3) = Y 3X2 −X2Y 3 = 0 , S(f1, f3)
F

= 0 ,

S(f2, f3) = Y 2(XY + Y 2)−XY 3 = Y 4 = Y · f3 , S(f2, f3)
F

= 0 .

Thus G = {X2, XY + 2Y 2, Y 3} is a Gröbner basis for 〈f1, f2〉.

Lemma 2.6.3 Let G be a Gröbner basis for a non-zero ideal I. If p ∈ G satisfies LT(p) ∈
〈LT(G \ {p})〉, then G \ {p} is a Gröbner basis for I as well.

proof: We know that 〈LT(G)〉 = 〈LT(I)〉. If LT(p) ∈ 〈LT(G \ {p})〉, then 〈LT(G \ {p})〉 =
〈LT(G)〉. Thus by definition G \ {p} is a Gröbner basis. 2

Definition 2.6.4 A minimal Gröbner basis for a non-zero ideal I is a Gröbner basis G for I
such that for all p ∈ G we have

1. LC(p) = 1,

2. LT(p) 6∈ 〈LT(G \ {p})〉.

Lemma 2.6.5 Let G,G′ be two minimal Gröbner bases for an ideal I ⊆ k[X1, . . . , Xn] w.r.t.
a term order ¹. Then LT(G) = LT(G′). Moreover, G and G′ have the same number of
elements.
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proof: Since G,G′ are Gröbner basis for I, we have 〈LT(G)〉 = 〈LT(I)〉 = 〈LT(G′)〉. If G is
a minimal Gröbner basis for I, then LT(G) is a minimal basis for 〈LT(G)〉 (i.e. it satisfies the
conditions from Definition 2.6.4). Let LT(g) ∈ LT(G) for some g ∈ G. Then LT(g′)|LT(g)
for some g′ ∈ G′. Further, LT(g′′)|LT(g′) for some g′′ ∈ G. Thus LT(g′′)|LT(g) showing that
LT(g′′) = LT(g) since LT(G) is minimal. Consequently, LT(g)|LT(g′). But this means that
LT(g) and LT(g′) may differ only by a unit. Since LC(g) = LC(g′) = 1, they must be equal.
Thus LT(G) ⊆ LT(G′). The second inclusion is proved analogously.

I claim that |G| = |LT(G)|. If there would be more elements in G, then there would have
to be g, g′ ∈ G such that LT(g) = LT(g′) but this is not possible because G is minimal. Since
LT(G) and LT(G′) have the same number of elements, we are done. 2

Example 2.6.6 Let G(a) = {g1(a), g2, g3} where g1(a) = X2 + aXY , g2 = XY , and g3 =
Y 2 − X. Then for any a ∈ k, G(a) is a minimal Gröbner basis for 〈G(0)〉 w.r.t. the grlex
order.

First, observe that g1(a) = g1(0) + a · g2 ∈ 〈G(0)〉 for each a ∈ k. Conversely, g1(0) =
g1(a)− a · g2 ∈ 〈G(a)〉 for each a ∈ k. Thus 〈G(a)〉 = 〈G(0)〉. We have

S(g1, g2) = Y (X2 + aXY )−X(XY ) = aXY 2 = aY · g2 , S(g1, g2)
G(0)

= 0 ,

S(g1, g3) = Y 2(X2 + aXY )−X2(Y 2 −X) = aXY 3 + X3 , S(g1, g3)
G(0)

= 0 ,

S(g2, g3) = Y (XY )−X(Y 2 −X) = X2 , S(g2, g3)
G(0)

= 0 .

Thus G(a) is a Gröbner basis for 〈G(0)〉. The minimality is obvious.

Definition 2.6.7 A reduced Gröbner basis for a non-zero ideal I is a Gröbner basis G for I
such that for all p ∈ G we have

1. LC(p) = 1,

2. no monomial of p lies in 〈LT(G \ {p})〉.
Observe that the Gröbner basis G(a) from Example 2.6.6 is reduced iff a = 0.

Proposition 2.6.8 Let I be a non-zero ideal. Then, for a given term order, I has a unique
reduced Gröbner basis.

proof: Let G be a minimal Gröbner basis for I. We say that g is reduced for G provided
that no monomial of g is in 〈LT(G \ {g})〉. Observe that if g is reduced for G, then g is
reduced for any other minimal Gröbner basis G′ for I such that LT(G′) = LT(G) since the
definition of reduced involves only the leading terms.

If G is not reduced then there is g ∈ G containing a monomial divisible by some element
of LT(G\{g}). Let g′ = gG\{g} and G′ = (G\{g})∪{g′}. I claim that G′ is minimal Gröbner
basis for I. Since G is minimal, LT(g) is not divisible by any of LT(G \ {g}). Thus LT(g)
must be the leading term of the remainder g′, i.e. LT(g) = LT(g′). Thus LT(G′) = LT(G).
Consequently, 〈LT(G′)〉 = 〈LT(G)〉 = 〈LT(I)〉 showing that G′ is a Gröbner basis for I.
Moreover, it is clearly minimal. In this way we can make all elements of G reduced without
changing the set of leading terms LT(G).
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Finally, we prove the uniqueness. Suppose that G,G′ are reduced Gröbner basis for I.
Since G and G′ are minimal, we have LT(G) = LT(G′) by Lemma 2.6.5. Thus, given g ∈ G,
there is g′ ∈ G′ such that LT(g) = LT(g′). If we can show g = g′, then G = G′ and we are
done.

Consider g − g′ ∈ I. We have g − g′G = 0. Since LT(g) = LT(g′), the leading terms in
g − g′ cancel and the remaining terms are divisible by none of LT(G) = LT(G′) since G and
G′ are reduced. This shows g − g′G = g − g′ and then g − g′ = 0 follows. 2

2.7 Elimination

Definition 2.7.1 Let I ⊆ k[X1, . . . , Xn] be an ideal. The r-th elimination ideal Ir ⊆
k[Xr+1, . . . , Xn] is an ideal defined by Ir = I ∩ k[Xr+1, . . . , Xn].

Observe that Ir is really an ideal of k[Xk+1, . . . , Xn].

Theorem 2.7.2 Let I ⊆ k[X1, . . . , Xn] be an ideal, and let G be a Gröbner basis for I
w.r.t. the lex order given by X1 Â · · · Â Xn. Then for every 0 ≤ r ≤ n the set Gr =
G ∩ k[Xr+1, . . . , Xn] is a Gröbner basis for the r-th elimination ideal Ir w.r.t. the lex order
given by Xr+1 Â · · · Â Xn.

proof: Let G = {g1, . . . , gs}. Relabeling, if necessary, we may assume that Gr = {g1, . . . , gm}.
We prove that Gr is a basis for Ir. Clearly Gr ⊆ Ir. Let f ∈ Ir. Since G is a Gröbner basis,
we have f

G = 0 and by the division algorithm

f = a1g1 + · · ·+ amgm + am+1gm+1 + · · ·+ asgs ,

where mdeg(aigi) ¹ mdeg(f). Thus aigi ∈ k[Xr+1, . . . , Xn] because ¹ is the lex order.
Consequently, am+1 = · · · = as = 0, i.e. f ∈ 〈Gr〉.

Now we prove that Gr is a Gröbner basis for Ir. Clearly, 〈LT(Gr)〉 ⊆ 〈LT(Ir)〉. Let
LT(f) ∈ LT(Ir) ⊆ k[Xr+1, . . . , Xn]. Then LT(g)|LT(f) for some g ∈ G. This is equivalent to
mdeg(g) ¹ mdeg(f). Thus g ∈ Gr = G∩ k[Xr+1, . . . , Xn] showing that LT(f) ∈ 〈LT(Gr)〉. 2

In fact if one wants to obtain a basis for Ir, it suffices to consider a so-called r-elimination
term order, i.e. a term order where any monomial containing at least one of the first r variables
is greater than all monomials in k[Xr+1, . . . , Xn]. This is useful especially in application since
the computation of Gröbner basis w.r.t. lex order might be more difficult. For instance one
can consider the term order ¹r defined as follows:

α ¹r β if
r∑

i=1

αi <
r∑

i=1

βi or
r∑

i=1

αi =
r∑

i=1

βi and α ¹grevlex β .

This is in fact a weighted term order for w = (1, . . . , 1, 0, . . . , 0), where the right-most 1 is at
the r-th position, refined by the grevlex term order.

Example 2.7.3 Consider the following system of polynomial equations:

X2 + Y + Z − 1 = 0
X + Y 2 + Z − 1 = 0
X + Y + Z2 − 1 = 0
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and the ideal I generated by the left-hand sides. Then the reduced Gröbner basis for I w.r.t.
the lex order given by X Â Y Â Z contains the following polynomials:

g1 = Y 2 − Y − Z2 + Z

g2 = Y Z2 + 1/2Z4 − 1/2Z2

g3 = Z6 − 4Z4 + 4Z3 − Z2

g4 = X + Y + Z2 − 1

Then I2 = I ∩ k[Z] = 〈g3〉 and I1 = I ∩ k[Y,Z] = 〈g1, g2, g3〉.
We can even solve the system of equations since g3 = Z2(Z − 1)2(Z2 + 2Z − 1). Thus the

only possible values of Z’s are 0, 1 and −1 ± √2. Substituting these values to g1, g2 we can
determine possible values of Y ’s and finally we obtain the corresponding values for X’s. In
this way we can find the following five solutions:

(1, 0, 0), (0, 1, 0), (0, 0, 1),
(−1 +

√
2,−1 +

√
2,−1 +

√
2),

(−1−
√

2,−1−
√

2,−1−
√

2).
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Chapter 3

Affine varieties

3.1 Hilbert’s Nullstellensatz

Theorem 3.1.1 (The Weak Nullstellensatz) Let k be an algebraically closed field and
I ⊆ k[X1, . . . , Xn] a proper ideal (i.e. I 6= k[X1, . . . , Xn]). Then V(I) 6= ∅.

Corollary 3.1.2 Let k be an algebraically closed field and I ⊆ k[X1, . . . , Xn] an ideal. Then
V(I) = ∅ iff 1 ∈ I.

proof: If 1 ∈ I, then V(I) = ∅ since 1 never vanish. Conversely, if 1 6∈ I, I is a proper ideal.
Thus V(I) 6= ∅ by the Weak Nullstellensatz. 2

The assumption that k is algebraically closed is necessary. Consider for example an ideal
I = 〈X2 + 1〉 ⊆ R. The ideal I is proper and V(I) = ∅.

Definition 3.1.3 Let I ⊆ k[X1, . . . , Xn] be an ideal. The radical of I is the set
√

I = {f | (∃m ∈ N)(fm ∈ I)} .

An ideal I ⊆ k[X1, . . . , Xn] is called radical if I =
√

I.

Lemma 3.1.4 The radical
√

I is a radical ideal containing I.

proof: Clearly 0 ∈ √
I because 01 = 0 ∈ I. Let f, g ∈ √

I and h ∈ k[X1, . . . , Xn]. Then
there are m, r ∈ N such that fm ∈ I and gr ∈ I. Thus (fh)m = fmhm ∈ I, i.e. fh ∈ √I. In
the binomial expansion of (f + g)m+r−1 every term has a factor f igj with i + j = m + r − 1.
Since either i ≥ m or j ≥ r, either f i ∈ I or gj ∈ I, whence f igj ∈ I. Thus (f + g)m+r−1 ∈ I,
i.e. f + g ∈ √I.

For each f ∈ I we have f1 ∈ I, hence f ∈ √I (i.e. I ⊆ √
I). Finally, we have to show

that
√√

I =
√

I. Clearly,
√

I ⊆
√√

I. Assume that f ∈
√√

I, i.e. there is m ∈ N such that
fm ∈ √I. Thus there is r ∈ N such that (fm)r ∈ I. Consequently, fmr ∈ I, i.e. f ∈ √I. 2

Theorem 3.1.5 (The Strong Nullstellensatz) Let k be an algebraically closed field. If I
is an ideal in k[X1, . . . , Xn], then

I(V(I)) =
√

I .

35
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proof: To show the inclusion
√

I ⊆ I(V(I)), assume that f ∈ √I such that fm ∈ I. Then
fm(a1, . . . , an) = 0 for each (a1, . . . , an) ∈ V(I). Thus we also have f(a1, . . . , an) = 0 for
each (a1, . . . , an) ∈ V(I), i.e. f ∈ I(V(I)).

To prove the other inclusion, assume that I 6= 〈0〉 (for I = 〈0〉 the claim is trivial). Let
f ∈ I(V(I)) and f 6= 0. We may suppose by Hilbert Basis Theorem that I = 〈f1, . . . , fs〉.
Consider an ideal I ′ ⊆ k[X1, . . . , Xn, Y ] defined by

I ′ = 〈f1, . . . , fs, 1− Y · f〉 .

For every point (a1, . . . , an+1) ∈ V(I ′) we have an+1f(a1, . . . , an) = 1 and fi(a1, . . . , an) = 0
for i = 1, . . . , s. But then (a1, . . . , an) ∈ V(I) and f(a1, . . . , an) 6= 0 contradicting the choice
of f . Consequently, V(I ′) = ∅ and the Weak Nullstellensatz yields 1 ∈ I ′.

Hence there are polynomials h, h1, . . . , hn ∈ k[X1, . . . , Xn, Y ] such that

1 =
s∑

i=1

hifi + h(1− Y · f) .

In the fraction field k(X1, . . . , Xn, Y ) we may substitute 1/f for Y and we get

1 =
s∑

i=1

hi(X1, . . . , Xn, 1/f)fi .

Each hi(X1, . . . , Xn, 1/f) is a fraction of polynomials where the denominator is fm for some
m ∈ N. Then for suitably large m ∈ N all h′i = fmhi(X1, . . . , Xn, 1/f) ∈ k[X1, . . . , Xn]. Thus
multiplying both sides by fm, we obtain fm =

∑s
i=1 h′ifi, i.e. f ∈ √I. 2

Now, let us discuss several consequences of the Strong Nullstellensatz. The first one tells
us how to recognize whether a polynomial belong to a radical ideal.

Proposition 3.1.6 Let k be an arbitrary field and I = 〈f1, . . . , fs〉 ⊆ k[X1, . . . , Xn] be an
ideal. Then f ∈ √I iff 1 ∈ 〈f1, . . . , fs, 1− Y f〉 ⊆ k[X1, . . . , Xn, Y ].

proof: We have seen in the proof of the Strong Nullstellensatz that 1 ∈ 〈f1, . . . , fs, 1− Y f〉
implies f ∈ √I. Conversely, let f ∈ √I, i.e. fm ∈ I ⊆ 〈f1, . . . , fs, 1− Y f〉 for some m ∈ N.
Thus

1 = Y mfm + (1− Y mfm) = Y mfm + (1− Y f)(1 + Y f + · · ·+ Y m−1fm−1) ,

showing that 1 ∈ 〈f1, . . . , fs, 1− Y f〉. 2

The second consequence concerns the correspondence between affine varieties and ideals.

Theorem 3.1.7 Let k be an arbitrary field. The maps
{

affine varieties
in kn

}
I−→
V←−

{
ideals in

k[X1, . . . , Xn]

}
.

are inclusion-reversing and V(I(V )) = V for any variety V ⊆ kn (i.e. I is always one-to-one).
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In addition, if k is algebraically closed, and if we restrict to radical ideals, then the maps
{

affine varieties
in kn

}
I−→
V←−

{
radical ideals in
k[X1, . . . , Xn]

}
.

are inclusion-reversing bijections which are inverses of each other.

proof: We know already that I and V are inclusion-reversing (see Observation 1.7.6 and
1.7.8). We will show that V(I(V )) = V . By Hilbert Basis Theorem we may assume that
V = V(f1, . . . , fs). Let a ∈ V . Then every f ∈ I(V ) vanishes on a. Thus a ∈ V(I(V )).
Conversely, f1, . . . , fs ∈ I(V ), and thus 〈f1, . . . , fs〉 ⊆ I(V ). Since V is inclusion-reversing,
we get V(I(V )) ⊆ V(〈f1, . . . , fs〉) = V .

In addition, if k is algebraically closed, then by the Strong Nullstellensatz we have
I(V(I)) =

√
I. Thus if we restrict the mappings only on radical ideals, then I(V(I)) =

√
I = I

and we are done. 2

It follows from the latter theorem that if we have a system of polynomial equations
f1 = · · · = fs whose solution set is V(〈f1, . . . , fs〉), then V(〈f1, . . . , fs〉) = V(

√
〈f1, . . . , fs〉).

Indeed, we have

V(〈f1, . . . , fs〉) = V(I(V(〈f1, . . . , fs〉))) = V(
√
〈f1, . . . , fs〉) .

Finally, we will prove that there is one-to-one correspondence between points of affine
n-space and maximal ideals in k[X1, . . . , Xn].

Definition 3.1.8 Let R be a ring. A proper ideal I ⊆ R is called maximal if for any ideal
J ⊇ I we have J = I or J = k[X1, . . . , Xn].

Lemma 3.1.9 Let R be a ring. Every maximal ideal I ⊆ R is prime.

proof: Assume that I ⊆ R is a maximal ideal which is not prime. Then there are polyno-
mials f, g such that fg ∈ I, f 6∈ I and g 6∈ I. Since I is maximal, we have 〈I ∪ {f}〉 = R.
Thus 1 = cf + h for some c ∈ R and h ∈ I. If we multiply by g, we obtain g = cfg + hg ∈ I
which is a contradiction with the fact that g 6∈ I. 2

Lemma 3.1.10 Let I ⊆ k[X1, . . . , Xn] be a prime ideal. Then I is radical.

proof: We have to show that if fm ∈ I for m > 1, then also f ∈ I. But it is easy to see
since fm = f · fm−1. 2

Theorem 3.1.11 If k is algebraically closed field, then every maximal ideal in k[X1, . . . , Xn]
is of the form 〈X1 − a1, . . . , Xn − an〉 for some a1, . . . , an ∈ k.

proof: Let I ⊆ k[X1, . . . , Xn] be a maximal ideal. By the Weak Nullstellensatz we have
V(I) 6= ∅, i.e. there is a point (a1, . . . , an) ∈ V(I). Since I is inclusion-reversing, we get
I(V(I)) ⊆ I({(a1, . . . , an)}). By the Strong Nullstellensatz I(V(I)) =

√
I. As I is max-

imal, I is prime hence radical, i.e. I =
√

I. Thus we have I ⊆ I({(a1, . . . , an)}). Since
I({(a1, . . . , an)}) 6= k[X1, . . . , Xn], we get I = I({(a1, . . . , an)}) by maximality of I.
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Thus it suffices to show that I({(a1, . . . , an)}) = 〈X1 − a1, . . . , Xn − an〉. Clearly,

〈X1 − a1, . . . , Xn − an〉 ⊆ I({(a1, . . . , an)}) .

Assume that there is f ∈ I({(a1, . . . , an)}) such that f 6∈ 〈X1 − a1, . . . , Xn − an〉. Then by
the division algorithm we have f = g1(X1 − a1) + · · · + gn(Xn − an) + r for some r ∈ k.
Moreover r 6= 0 because f 6∈ 〈X1 − a1, . . . , Xn − an〉. Since r ∈ I({(a1, . . . , an)}), we get
1 = (1/r)r ∈ I({(a1, . . . , an)}) (a contradiction). 2

3.2 Operations with ideals

Definition 3.2.1 Let I, J be ideals in k[X1, . . . , Xn]. Then we define the following opera-
tions:

1. The sum of I and J is the set

I + J = {f + g | f ∈ I, g ∈ J} .

2. The product of I and J is the ideal

IJ = 〈{fg | f ∈ I, g ∈ J}〉 .

Observe that if I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gr〉, then IJ = 〈{figj | 1 ≤ i ≤ s, 1 ≤ j ≤ r}〉.

Lemma 3.2.2 Let I, J be ideals in k[X1, . . . , Xn]. Then I +J is the smallest ideal containing
I and J . Moreover, if I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gr〉, then I+J = 〈f1, . . . , fs, g1, . . . , gr〉.
proof: Clearly 0 = 0 + 0 ∈ I + J . Let f, g ∈ I + J and h ∈ k[X1, . . . , Xn]. Then there
are f1, g1 ∈ I and f2, g2 ∈ J such that f = f1 + f2 and g = g1 + g2. Thus f + g =
(f1 + g1) + (f2 + g2) ∈ I + J . Further, hf = h(f1 + f2) = hf1 + hf2 ∈ I + J .

The fact that I + J is the smallest ideal containing I and J is evident since I + J con-
tains both and each ideal containing both must be closed under addition. Thus also the last
statement is obvious. 2

Theorem 3.2.3 If I, J are ideals in k[X1, . . . , Xn], then V(I + J) = V(I) ∩ V(J) and
V(IJ) = V(I ∩ J) = V(I) ∪V(J).

proof: We saw in Lemma 1.7.9 that V(I)∩V(J) = V(I ∪ J). But V(I ∪ J) = V(〈I ∪ J〉) =
V(I + J) since I + J is the smallest ideal containing I and J .

The fact that V(IJ) = V(I)∪V(J) also follows from Lemma 1.7.9. Note that IJ ⊆ I∩J .
Thus V(I ∩ J) ⊆ V(IJ). Finally, let x ∈ V(I) ∪V(J). Then x ∈ V(I) or x ∈ V(J), say
that x ∈ V(I). Thus f(x) = 0 for all f ∈ I ⊇ I ∩ J , i.e. x ∈ V(I ∩ J) showing that
V(I) ∪V(J) ⊆ V(I ∩ J). Summing up, we have

V(I) ∪V(J) ⊆ V(I ∩ J) ⊆ V(IJ) = V(I) ∪V(J) .

2



3.2. OPERATIONS WITH IDEALS 39

So far we have seen operations with ideals corresponding to the set-theoretic union and
intersection. In the rest of the section we will concentrate on the set-theoretic difference. Of
course affine varieties are not closed under this difference (consider e.g. a line and remove a
single point). Thus we will try to find the smallest affine variety containing the difference.

Definition 3.2.4 The Zariski closure of S ⊆ kn, denoted S, is the smallest affine variety
V(I(S)). It is in fact the closure in Zariski topology.

Proposition 3.2.5 Let S ⊆ kn. Then V(I(S)) is the smallest affine variety containing S.

proof: If W ⊇ S is an affine variety containing S, then I(W ) ⊆ I(S). Thus W = V(I(W )) =
V(I(S)). 2

Definition 3.2.6 Let I, J be ideals in k[X1, . . . , Xn], then the ideal quotient (or colon ideal)
of I and J is the set

I : J = {f ∈ k[X1, . . . , Xn] | (∀g ∈ J)(fg ∈ I)} .

Proposition 3.2.7 If I, J be ideals in k[X1, . . . , Xn], then I : J is an ideal containing I.

proof: Note that I : J ⊇ I because for each f ∈ I we have fg ∈ I for all g ∈ J . Thus
0 ∈ I : J . Let f1, f2 ∈ I : J and h ∈ k[X1, . . . , Xn]. Then for all g ∈ J we have f1g ∈ I and
f2g ∈ I. Consequently, (f1 + f2)g = f1g + f2g ∈ I for all g ∈ J . Finally, f1hg ∈ I for all
g ∈ J . Thus also f1h ∈ I : J . 2

Theorem 3.2.8 Let I, J be ideals in k[X1, . . . , Xn]. Then V(I : J) ⊇ V(I) \V(J). If, in
addition, k is algebraically closed and I is radical, then

V(I : J) = V(I) \V(J) .

proof: First, we will show that I : J ⊆ I(V(I) \V(J)). Let f ∈ I : J and x ∈ V(I) \V(J).
Then fg ∈ I for all g ∈ J . Since x ∈ V(I), we have f(x)g(x) = 0 for all g ∈ J . As x 6∈ V(J),
there is g ∈ J such that g(x) 6= 0. Hence f(x) = 0 showing that I : J ⊆ I(V(I) \V(J)).
Thus V(I : J) ⊇ V(I(V(I) \V(J))) = V(I) \V(J).

Now assume that k is algebraically closed and I =
√

I. Let x ∈ V(I : J), i.e. if fg ∈ I
for all g ∈ J , then f(x) = 0. Suppose that f ∈ I(V(I) \V(J)). Then for each g ∈ J the
polynomial fg vanishes on V(I) because f vanishes on V(I) \V(J) and g on V(J). Thus
fg ∈ I(V(I)) =

√
I = I for each g ∈ J . It follows that f(x) = 0, i.e. x ∈ V(I(V(I) \V(J))).

2

Example 3.2.9

〈XZ, Y Z〉 : 〈Z〉 = {f ∈ k[X, Y, Z] | (∀h ∈ k[X,Y, Z])(hZ · f ∈ 〈XZ, Y Z〉)}
= {f ∈ k[X, Y, Z] | Z · f ∈ 〈XZ, Y Z〉}
= {f ∈ k[X, Y, Z] | Z · f = aXZ + bY Z}
= {f ∈ k[X, Y, Z] | f = aX + bY }
= 〈X,Y 〉 .
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3.3 Irreducible varieties

Definition 3.3.1 An affine variety V ⊆ kn is irreducible if whenever V = V1 ∪ V2 for some
affine varieties V1, V2, then either V1 = V or V2 = V .

Proposition 3.3.2 Let V ⊆ kn be an affine variety. Then V is irreducible iff I(V ) is a
prime ideal.

proof: (⇒): Let fg ∈ I(V ). Set V1 = V ∩V(f) and V2 = V ∩V(g). The sets V1, V2 are
affine varieties because affine varieties are closed under intersections. Then

V1 ∪ V2 = (V ∩V(f)) ∪ (V ∩V(g)) = V ∩ (V(f) ∪V(g)) = V ∩V(fg) = V .

The last equality follows from V(fg) ⊇ V because {fg} ⊆ I(V ). Since V is irreducible, we
have either V = V1 or V = V2, say the former holds. Then V = V ∩V(f) ⊆ V(f). Thus f
vanishes on V , i.e. f ∈ I(V ) and I(V ) is prime.

(⇐): Let V = V1 ∪ V2. Suppose that V 6= V1. We have to show that V2 = V . First,
V2 ⊆ V and thus I(V ) ⊆ I(V2). Second, since V1 ( V , we have I(V ) ( I(V1) (otherwise
V = V(I(V )) = V(I(V1)) = V1). Take f ∈ I(V1) \ I(V ) and any g ∈ I(V2). Then fg vanishes
on V = V1 ∪ V2, i.e. fg ∈ I(V ). Since I(V ) is prime, g belongs to I(V ) because f 6∈ I(V ).
Thus I(V ) = I(V2). Since I is one-to-one, we get V = V2. 2

Proposition 3.3.3 Let V1 ⊇ V2 ⊇ V3 ⊇ · · · be a descending sequence of affine varieties.
Then there is n ∈ N such that Vn = Vn+1 = · · · .
proof: Applying the mapping I, we get an ascending sequence of ideals:

I(V1) ⊆ I(V2) ⊆ I(V3) ⊆ · · · .

Since k[X1, . . . , Xn] is Noetherian, there is n ∈ N such that I(Vn) = I(Vn+1) = · · · . But this
means that Vn = Vn+1 = · · · because V(I(Vi)) = Vi. 2

Definition 3.3.4 Let V ⊆ kn be an affine variety. A decomposition V = V1∪· · ·∪Vm, where
each Vi is irreducible, is called a minimal decomposition if Vi 6⊆ Vj for i 6= j.

Theorem 3.3.5 Let V ⊆ kn be an affine variety. Then V has a minimal decomposition
V = V1 ∪ · · · ∪ Vm unique up to order of Vi’s.

proof: The existence of the minimal decomposition V = V1 ∪ · · · ∪ Vm follows from Propo-
sition 3.3.3.

To show that the decomposition is unique, assume that V = V ′
1∪· · ·V ′

s is another minimal
decomposition. Then for each i we have

Vi = Vi ∩ V = Vi ∩ (V ′
1 ∪ · · ·V ′

s ) = (Vi ∩ V ′
1) ∪ · · · ∪ (Vi ∩ V ′

s ) .

Since Vi is irreducible, we have Vi = Vi ∩ V ′
j for some j, i.e. Vi ⊆ V ′

j . Applying the same
argument also for V ′

j (using Vi’s to decompose V ), there is k such that V ′
j ⊆ Vk. Since

the decomposition into Vi’s is minimal, we get Vi = V ′
j . Thus all Vi’s must appear between

V ′
1 , . . . , V

′
s . A symmetric argument finishes the proof. 2
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Corollary 3.3.6 Let k be an algebraically closed field. Then every radical ideal I ⊆ k[X1, . . . , Xn]
can be written uniquely as a finite intersection of prime ideals, I =

⋂s
i=1 Pi, where Pi 6⊆ Pj

for i 6= j.

proof: First, observe that I(V1 ∪ V2) = I(V1) ∩ I(V2). Indeed, let f ∈ k[X1, . . . , Xn]. Then
f ∈ I(V1 ∪ V2) iff f vanishes on V1 and V2 iff f ∈ I(V1) and f ∈ I(V2). Thus we have

I =
√

I = I(V(I)) = I(V1 ∪ · · · ∪ Vm) =
m⋂

i=1

I(Vi) ,

where V(I) = V1 ∪ · · · ∪ Vm is the unique minimal decomposition. Since Vi’s are irreducible,
the ideals I(Vi) are prime. 2

3.4 Varieties corresponding to principal ideals

Proposition 3.4.1 Let f ∈ k[X1, . . . , Xn] and I = 〈f〉. If f = ufa1
1 · · · fas

s is the unique
factorization into irreducibles, then

√
I = 〈f1 · · · fs〉 .

proof: Let N = max{a1, . . . , ar}. Then

(f1 · · · fs)N = fN−a1
1 · · · fN−as

s · f .

Thus (f1 · · · fs)N ∈ I and f1 · · · fs ∈
√

I.
Conversely, let g ∈ √I, i.e. gM ∈ I for some M ∈ N. Thus there is a polynomial h such

that gM = h · f . Consider the unique factorization of g = vgb1
1 · · · gbr

r into irreducibles. Then

gM = vMgMb1
1 · · · gMbr

r = h · ufa1
1 · · · fas

s .

Since k[X1, . . . , Xn] is a UFD, the irreducible polynomials on both sides must be the same
up to units. Thus each fi equals (up to a unit) to some gj . Consequently, g is a polynomial
multiple of f1 · · · fs, i.e. g ∈ 〈f1 · · · fs〉. 2

Definition 3.4.2 Let f ∈ k[X1, . . . , Xn]. The reduction of f is the polynomial fred such that
〈fred〉 =

√
〈f〉. A polynomial f is called reduced (or square-free) if f = fred.

Let f = (X + Y 2)(X − Y )2(Y − 3)5. Then fred = (X + Y 2)(X − Y )(Y − 3). Observe also
that each irreducible polynomial is reduced.

Proposition 3.4.3 Let f ∈ C[X1, . . . , Xn] and let f = ufa1
1 · · · fas

s be its decomposition into
irreducible factors (u is a unit). Then

V(f) = V(f1) ∪ · · · ∪V(fs)

is the minimal decomposition into irreducible components.
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proof: Let a ∈ V(f). Then 0 = f(a) = ufa1
1 (a) · · · fas

s (a). Thus at least for one i we have
fi(a) = 0, i.e. a ∈ V(fi). Consequently, V(f) ⊆ V(f1) ∪ · · · ∪ V(fs). To see the second
inclusion, note that 〈f1 · · · fs〉 ⊆ 〈fi〉 for each i. Thus 〈f1 · · · fs〉 ⊆

⋂s
i=1〈fi〉. Consequently,

I(V(f)) =
√
〈f〉 = 〈f1 · · · fs〉 ⊆

s⋂

i=1

〈fi〉 =
s⋂

i=1

I(V(fi)) = I(
s⋃

i=1

V(fi)) .

Applying the mapping V to both sides, we get

s⋃

i=1

V(fi) ⊆ V(f) ,

since V is inclusion-reversing and
⋃s

i=1 V(fi) is a variety because affine varieties are closed
under finite unions.

Now we have to show that V(fi) is irreducible, i.e. I(V(fi)) =
√
〈fi〉 = 〈fi〉 is prime.

Since fi is irreducible, fi is a prime element because C[X1, . . . , Xn] is a UFD. Thus 〈fi〉 is a
prime ideal. Finally, V(fi) 6⊆ V(fj) for i 6= j. Assume not. Then

〈fi〉 = I(V(fi)) ⊇ I(V(fj)) = 〈fj〉 .

Thus fj |fi which is not possible. 2

3.5 Polynomial mapping on a variety

Definition 3.5.1 Let V ⊆ km and W ⊆ kn be affine varieties. A function φ : V → W is a
polynomial mapping if there exist polynomials f1, . . . , fn ∈ k[X1, . . . , Xm] such that

φ(a1, . . . , am) = (f1(a1, . . . , am), . . . , fn(a1, . . . , am)) ,

for all (a1, . . . , am) ∈ V . We say that (f1, . . . , fn) represents φ.

Now we will be interested mainly in the case when W = k. Thus φ is represented by a
single polynomial. Given a polynomial mapping φ : V → k, the polynomial which represents
φ is usually not unique. Consider e.g. V = V(Y −X2) ⊆ R2. Then polynomial f = X3 +Y 3

represents a polynomial mapping φ from V to R. However, for any h ∈ I(V ) the polynomial
g = X3 + Y 3 + h(X,Y ) represents the same polynomial mapping since for all (a, b) ∈ V we
have

φ(a, b) = a3 + b3 = a3 + b3 + 0 = a3 + b3 + h(a, b) .

Proposition 3.5.2 Let V ⊆ km be an affine variety. Then f, g ∈ k[X1, . . . , Xm] represent
the same polynomial mapping φ : V → k iff f − g ∈ I(V ).

proof: If f − g ∈ I(V ), then for any point a = (a1, . . . , am) ∈ V , we have f(a) − g(a) = 0.
Thus f, g represent the same polynomial mapping φ : V → k. Conversely, if f, g represent
the same polynomial mapping φ : V → k, then at every point a ∈ V we have f(a)− g(a) = 0.
Thus f − g ∈ I(V ). 2
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Definition 3.5.3 Let V ⊆ kn be an affine variety. We denote by k[V ] the set of all polynomial
mappings from V to k.

The set k[V ] forms a ring under the point-wise operations, i.e. if φ, ψ ∈ k[V ], then

(φ + ψ)(a) = φ(a) + ψ(a)
(φ · ψ)(a) = φ(a) · ψ(a) .

Additive and multiplicative identity of k[V ] are represented respectively by constant polyno-
mials 0 and 1.

Observe that if f represents φ ∈ k[V ] and g represents ψ ∈ k[V ], then f + g represents
φ + ψ. Indeed, for all a ∈ V we have

(φ + ψ)(a) = φ(a) + ψ(a) = f(a) + g(a) = (f + g)(a) .

Similarly, f · g represents φ · ψ.

Theorem 3.5.4 Let V ⊆ kn be an affine variety. Then the ring k[V ] is isomorphic to
k[X1, . . . , Xn]/I(V ).

proof: Let us define a mapping Ψ : k[X1, . . . , Xn]/I(V ) by Ψ([f ]) = φ where φ : V → k is
the polynomial mapping represented by f . By Proposition 3.5.2 Ψ is a well-defined function
since if [f ] = [f ′], then f −f ′ ∈ I(V ), i.e. f, f ′ represent the same polynomial mapping. Since
every polynomial mapping φ ∈ k[V ] can be represented by a polynomial in k[X1, . . . , Xn],
Ψ is onto. To see that Ψ is injective, assume that [f ] 6= [g]. Then f − g 6∈ I(V ), i.e. they
represent different polynomial mappings from k[V ]. Thus Ψ([f ]) 6= Ψ([g]).

Let [f ], [g] ∈ k[X1, . . . , Xn]/I(V ). Then Ψ([f ]) and Ψ([g]) are represented by f and g
respectively. Thus Ψ([f ]) + Ψ([g]) is represented by f + g. Hence

Ψ([f ] + [g]) = Ψ([f + g]) = Ψ([f ]) + Ψ([g]) .

Similarly, we have
Ψ([f ] · [g]) = Ψ([f · g]) = Ψ([f ]) ·Ψ([g]) .

Finally, Ψ([1]) is the polynomial mapping in k[V ] which is represented by the constant poly-
nomial 1, i.e. Ψ([1]) is the multiplicative identity in k[V ]. 2

Corollary 3.5.5 Let V ⊆ kn be an affine variety. Then k[V ] is an integral domain iff V is
irreducible. In addition, if k is algebraically closed, then k[V ] is a field iff V = {(a1, . . . , an)}.
In fact, in this case k[V ] is isomorphic to k.

proof: Since k[X1, . . . , Xn]/I(V ) is an integral domain iff I(V ) is a prime filter, the state-
ment follows from the previous theorem. Assume that k is algebraically closed. Then
k[X1, . . . , Xn]/I(V ) is a field iff I(V ) is a maximal filter iff I(V ) = 〈X1 − a1, . . . , Xn − an〉 for
some (a1, . . . , an) ∈ kn. Concerning the last statement, it can be easily seen that k[V ], where
V = {(a1, . . . , an)}, is isomorphic to k since each function in k[V ] can be represented by a
constant polynomial. 2
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Observe that if V = V(I), then k[V ] need not be isomorphic to k[X1, . . . , Xn]/I. We
proved this only for the case when I = I(V ). To see this, consider an affine variety V =
{(0, 0)} ⊆ C2. Then I(V ) = 〈X,Y 〉 and C[V ] ∼= C[X, Y ]/I(V ) is a field. However, if we take
a different defining ideal for V , e.g. I = 〈X2, Y 〉, then C[X, Y ]/I is not a field since 〈X2, Y 〉
is not a maximal ideal.

3.6 Zero-dimensional ideals

Lemma 3.6.1 Fix a term order on k[X1, . . . , Xn] and let I ⊆ k[X1, . . . , Xn] be an ideal.
Then every f ∈ k[X1, . . . , Xn] is congruent w.r.t. I to a unique polynomial r which is a
k-linear combination of the monomials in the complement of 〈LT(I)〉.
proof: Let G be a Gröbner basis for I w.r.t. the fixed term order and f ∈ k[X1, . . . , Xn]. Set
r = f

G. Then r is unique and it is a k-linear combination of monomials from the complement
of 〈LT(I)〉. Further, f = q + r for some q ∈ I. Thus f − r = q ∈ I, i.e. f ∼I r. 2

Observe, that k[X1, . . . , Xn]/I can be viewed also as a k-vector space since we can define
the scalar multiplication by c·[f ] = [c·f ] for c ∈ k. It can be easily checked that this definition
satisfies all the axioms of a k-vector space. For instance

(c + d) · [f ] = [(c + d) · f ] = [cf + df ] = [cf ] + [df ] = c · [f ] + d · [f ] .

Theorem 3.6.2 Let I ⊆ k[X1, . . . , Xn] be an ideal. Then k[X1, . . . , Xn]/I is isomorphic as
a k-vector space to S = Span(Xα | Xα 6∈ 〈LT(I)〉).

proof: By the previous lemma the mapping Φ([f ]) = f
G is a bijection. Indeed, let [f ], [g] ∈

k[X1, . . . , Xn]/I. Then r = f
G ∼I f and r′ = gG ∼I g. If r = r′, then f ∼I r = r′ ∼I g, i.e.

[f ] = [g]. To see that Φ is onto, consider r ∈ S. Then rG = r since any monomial in r is not
divisible by any of LT(I). Thus Φ([r]) = r.

Now, it suffices to check that Φ is a linear mapping. First, we will show that f + g
G =

f
G + gG and c · fG = c · fG. We have f = q + f

G and g = h + gG for some q, h ∈ I. Thus
f + g = (q + h) + (fG + gG). Since none of the monomials in f

G + gG is divisible by any of
LT(I), we get f

G + gG = f + g
G by Proposition 2.5.2. Similarly, c · f = c · q + c · fG, i.e.

c · fG = c · fG. Hence we get

Φ([f ] + [g]) = Φ([f + g]) = f + g
G = f

G + gG = Φ([f ]) + Φ([g]) ,

Φ(c · [f ]) = Φ([c · f ]) = c · fG = c · fG = c · Φ([f ]) .

2

Observe that B = {Xα | Xα 6∈ 〈LT(I)〉} is a basis for S. Thus, if B is finite, we have

dimS = dim k[X1, . . . , Xn]/I = |B| .

Theorem 3.6.3 Let k be an algebraically closed field and V = V(I) ⊆ kn an affine variety.
Then V is finite iff k[X1, . . . , Xn]/I is finite-dimensional.
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proof: (⇐): To show that V is finite, it suffices to prove that for each i there can be only
finitely many distinct i-th components of the points of V . Fix i and consider the classes
[Xj

i ] ∈ k[X1, . . . , Xn]/I, where j ∈ N. Since k[X1, . . . , Xn]/I is finite-dimensional, [Xj
i ] must

be linearly dependent. Thus for some cj ∈ k we have

[0] =
∑

cj [X
j
i ] =

[∑
cjX

j
i

]
.

Thus
∑

cjX
j
i ∈ I. Since

∑
cjX

j
i can have only finitely many roots in k, there are only finitely

many distinct i-th components of the points of V .
(⇒): For this it suffices to show that dimS is finite. If V = ∅, then by the Weak

Nullstellensatz I = k[X1, . . . , Xn]. Thus k[X1, . . . , Xn]/I is the trivial k-vector space. If V is
nonempty, then for a fixed i, let aj , j = 1, . . . , t be the distinct i-th components of the points
of V . Let

f(Xi) =
t∏

j=1

(Xi − aj) .

By construction f vanishes at every point of V , so f ∈ I(V ) = I(V(I)) =
√

I. Thus there is
m ∈ N such that fm ∈ I. This means that Xtm

i = LT(fm) ∈ 〈LT(I)〉.
Now we know that for each i there is mi ∈ N such that Xmi

i ∈ 〈LT(I)〉. Thus any
monomial Xα1

1 · · ·Xαn
n such that mi ≤ αi (for at least one i) must belong to 〈LT(I)〉 as well.

Consequently, the monomials in the complement of 〈LT(I)〉 must have αi ≤ mi − 1 for all
i. As a result, there can be at most m1 · · ·mn many monomials in the complement showing
that dimS is finite. 2

Corollary 3.6.4 Let k be an algebraically closed field and V = V(I) ⊆ kn an affine variety.
Then V is finite iff I ∩ k[Xi] 6= 〈0〉 for each i ∈ {1, . . . , n}.
proof: The right-to-left direction is trivial. For the other observe that in the first part of
previous proof we have constructed for arbitrary i a polynomial

∑
cjX

j
i from k[Xi] which

belongs to I. 2

Definition 3.6.5 Let V1, . . . , Vt be k-vector spaces. The direct product
∏t

i=1 Vi of V1, . . . , Vt

is the k-vector space defined on V1 × · · · × Vt componentwise.

Lemma 3.6.6 (Chinese Remainder Theorem) Let I1, . . . , It ⊆ k[X1, . . . , Xn] be ideals.
Set I =

⋂t
i=1 Ii. Then we have the following:

1. The map Φ : k[X1, . . . , Xn]/I → ∏t
i=1 k[X1, . . . , Xn]/Ii defined by

Φ([f ]I) = ([f ]I1 , . . . , [f ]It)

is an injective linear mapping.

2. If the ideals I1, . . . , It are pairwise comaximal, i.e. Ii + Ij = k[X1, . . . , Xn] for i 6= j,
then Φ is an isomorphism of k-vector spaces.

proof:
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1. The mapping Φ is well-defined since if [f ]I = [f ′]I , then [f ]Ii = [f ′]Ii for all i because
I ⊆ Ii for each i. Let f, g ∈ k[X1, . . . , Xn] and c ∈ k. Then

Φ([f ]I +[g]I) = Φ([f +g]I) = ([f +g]I1 , . . . , [f +g]It) = ([f ]I1 +[g]I1 , . . . , [f ]It +[g]It) =
= ([f ]I1 , . . . , [f ]It) + ([g]I1 , . . . , [g]It) = Φ([f ]I) + Φ([g]I) ,

Φ(c · [f ]I) = Φ([cf ]I) = ([cf ]I1 , . . . , [cf ]It) = (c[f ]I1 , . . . , c[f ]It) =
= c([f ]I1 , . . . , [f ]It) = c · Φ([f ]I) .

Thus Φ is a linear mapping. To see that it is one-to-one, assume that [f ]I 6= [g]I . Then
f − g 6∈ I =

⋂t
i=1 Ii, i.e. f − g does not belong to at least one of Ii’s, say to Ij . Hence

[f ]Ij 6= [g]Ij showing that Φ([f ]I) 6= Φ([g]I).

2. Fix a number i ∈ {1, . . . , t} and let Ji =
⋂

j 6=i Ij . Since Ii and Ij are comaximal
for all j 6= i, there are elements aj ∈ Ii and bj ∈ Ij such that aj + bj = 1. Then
1 =

∏
j 6=i(aj + bj) ∈ Ii +

∏
j 6=i Ij ⊆ Ii + Ji. Thus Ii and Ji are comaximal. Thus

there are elements pi ∈ Ii and qi ∈ Ji such that pi + qi = 1. Let ([r1]I1 , . . . , [rt]It) ∈∏t
i=1 k[X1, . . . , Xn]/Ii. I claim that Φ([q1r1 + · · ·+ qtrt]I) = ([r1]I1 , . . . , [rt]It). To prove

this we have to show that for each i we have [q1r1 + · · ·+ qtrt]Ii = [ri]Ii . Observe that
for each j 6= i we have qj ∈ Jj =

⋂
l 6=j Il ⊆ Ii. Thus

∑
j 6=i qjrj ∈ Ii showing that

[q1r1 + · · ·+ qtrt]Ii = [qiri]Ii . But [qiri]Ii = [(1− pi)ri]Ii = [ri]Ii .

2

Theorem 3.6.7 Let k be an algebraically closed field and I = 〈f1, . . . , fs〉 ⊆ k[X1, . . . , Xn]
such that V(I) is finite. Then

|V(I)| ≤ dim k[X1, . . . , Xn]/I .

If, in addition, I is radical, then

|V(I)| = dim k[X1, . . . , Xn]/I .

proof: Let V(I) = {p1, . . . , pt}. To each point pi = (a1, . . . , an) ∈ V(I) we can assign the
maximal ideal Mi = 〈X1 − a1, . . . , Xn − an〉. Clearly, I ⊆ Mi for each i. Indeed, let f ∈ I.
Then f(pi) = 0. Since Mi is maximal, hence radical, we have Mi =

√
Mi = I(V(Mi)) =

I({pi}), i.e. f ∈ Mi. Consequently, I ⊆ ⋂t
i=1 Mi. Since 〈LT(I)〉 ⊆ 〈LT(

⋂t
i=1 Mi)〉, we

get dim k[X1, . . . , Xn]/I ≥ dim k[X1, . . . , Xn]/
⋂t

i=1 Mi. It follows from Chinese Remainder
Theorem that k[X1, . . . , Xn]/

⋂t
i=1 Mi

∼= ∏t
i=1 k[X1, . . . , Xn]/Mi. Further, k[X1, . . . , Xn]/Mi

is a field isomorphic to k (see Corollary 3.5.5), i.e.
∏t

i=1 k[X1, . . . , Xn]/Mi
∼= kt. Thus we

have

t = dim
t∏

i=1

k[X1, . . . , Xn]/Mi = dim k[X1, . . . , Xn]/
t⋂

i=1

Mi ≤ dim k[X1, . . . , Xn]/I .

Now assume that I is radical. We will prove that instead of inclusion I ⊆ ⋂t
i=1 Mi we

have in fact equality I =
⋂t

i=1 Mi. Let f ∈ ⋂t
i=1 Mi. Then for each i we have f(pi) = 0.

Thus we get
f ∈ I(p1, . . . , pt) = I(V(I)) =

√
I = I .
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The rest of the proof is a trivial modification of the previous method. 2

Lemma 3.6.8 Let k be a field containing Q and f ∈ k[X] a non-constant polynomial. Then
f is square-free iff gcd(f, f ′) = 1. Moreover, fred = f/ gcd(f, f ′).

proof: (⇐): We will prove it contra-positively. Assume that f is not square-free. Then we
can write f = f2

1 f2 for some f1, f2 ∈ k[X] such that f1 is non-constant. The derivative of f
is f ′ = 2f1f

′
1f2 + f2

1 f ′2. Thus f1| gcd(f, f ′) showing that f1 must be a constant polynomial (a
contradiction).

(⇒): Let f = f1 · · · ft be the decomposition into irreducible polynomials. Then

f ′ =
t∑

i=1

f1 · · · fi−1 · f ′i · fi+1 · · · ft =
t∑

i=1

gif
′
i ,

where gi = f1 · · · fi−1 ·fi+1 · · · ft. Since k contains Q and f ′is are non-constant, we have f ′i 6= 0
for each i.1

Let j ∈ {1, . . . , t}. I claim that gcd(fj , f
′) = 1. We will prove that fj cannot be the

greatest common divisor of fj and f ′. Suppose that fj |f ′. Then we have

f ′ = afj =
t∑

i=1

gif
′
i =

∑

i6=j

fjhif
′
i + gjf

′
j .

Thus

gjf
′
j = fj


a−

∑

i 6=j

hif
′
i


 .

Since gj does not contain fj , f ′j must be divisible by fj but it is a contradiction with the fact
that f ′j 6= 0 and deg f ′j < deg fj .

Finally, we show that gcd(f, f ′) = 1. Assume that some irreducible c divides f and f ′.
Since f = f1 · · · ft, c is (up to units) either 1 or one of the irreducible factors. Suppose that
c = fj . Then c| gcd(fj , f

′) but gcd(fj , f
′) = 1 which is a contradiction (i.e. c must be 1).

To prove the last statement observe that gcd(f, f ′) = fa1−1
1 · · · fat−1

t where f = ufa1
1 · · · fat

t

is the factorization into irreducibles. Thus fred = f/ gcd(f, f ′) = uf1 · · · ft. 2

Lemma 3.6.9 Let I, J be ideals. Then
√

I ∩ J =
√

I ∩√J .

proof: Let f ∈ √
I ∩ J . Then fm ∈ I ∩ J for some m ∈ N. Thus f ∈ √

I and f ∈ √
J .

Conversely, let f ∈ √I ∩ √J . Then there are m, p ∈ N such that fm ∈ I and fp ∈ J . Thus
fmfp = fm+p ∈ I ∩ J , i.e. f ∈ √I ∩ J . 2

Proposition 3.6.10 (Seidenberg’s Lemma) Let k be an algebraically closed field and let
I ⊆ k[X1, . . . , Xn] be an ideal. If there exists a non-zero polynomials gi ∈ I ∩ k[Xi] for each
i ∈ {1, . . . , n} such that gcd(gi, g

′
i) = 1, then I is radical.

1If k is finite then this step does not work. Consider e.g. f = X3 − 2 over the three-element field Z/〈3〉.
Then f ′ = 3X2 = 0X2 = 0.
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proof: By Lemma 3.6.8 the polynomials g1, . . . , gn are square-free. We proceed by induction
on n. For n = 1, the principal ideal I ⊆ k[X1] contains a square-free polynomial. Therefore
it is generated by a square-free polynomial, i.e. it is a radical ideal.

Let n > 1. We write g1 = h1 · · ·ht with irreducible polynomials h1, . . . , ht ∈ k[X1].
We claim that I =

⋂t
i=1(I + 〈hi〉). For every f ∈ ⋂t

i=1(I + 〈hi〉) there are ri ∈ I and
qi ∈ k[X1, . . . , Xn] such that f = ri + qihi, i ∈ {1, . . . , t}. Thus we have

f ·
∏

j 6=i

hj = (ri + qihi) ·
∏

j 6=i

hj = ri ·
∏

j 6=i

hj + qig1 ∈ I .

Since
gcd(

∏

j 6=1

hj ,
∏

j 6=2

hj , . . . ,
∏

j 6=t

hj) = 1 ,

there are p1, . . . , pt ∈ k[X1] such that

p1 ·
∏

j 6=1

hj + p2 ·
∏

j 6=2

hj + · · ·+ pt ·
∏

j 6=t

hj = 1

(see Lemma 1.3.7 and note that k[X1] is a PID). Thus

f = p1 · f ·
∏

j 6=1

hj + p2 · f ·
∏

j 6=2

hj + · · ·+ pt · f ·
∏

j 6=t

hj ∈ I ,

which proves the claim.
Because of this claim and by Lemma 3.6.9 it is sufficient to show that I + 〈hi〉 is radical

for each i = 1, . . . , t. Thus we may assume that g1 is irreducible. Then g1 = X1 − a for some
a ∈ k since k is an algebraically closed field. Let us define the following ideal

J = {f(a,X2, . . . , Xn) ∈ k[X2, . . . , Xn] | f ∈ I} .

Observe that f(X1, X2, . . . , Xn) ∈ I if, and only if, f(a,X2, . . . , Xn) ∈ J . If f does not
contain X1 then it is clear. Assume that f(a,X2, . . . , Xn) ∈ J and f contains X1. Then
by division algorithm we can write f = h1(X1 − a) + h2 where h2 ∈ k[X2, . . . , Xn]. If we
substitute for X1 the value a we get

f(a, X2, . . . , Xn) = h1(a− a) + h2(X2, . . . , Xn) = h2(X2, . . . , Xn) .

Hence h2 = f(a,X2, . . . , Xn) ∈ J . Since h2 does not contain X1, we have h2 ∈ I. Thus f ∈ I.
Note that g2, . . . , gn belongs to J and still satisfy gcd(gi, g

′
i) = 1 for i ∈ {2, . . . , n}. Thus

by induction assumption J ⊆ k[X2, . . . , Xn] is a radical ideal. Let fm ∈ I for some m ∈ N.
Then f(a,X2, . . . , Xn)m ∈ J and since J is radical we have f(a,X2, . . . , Xn) ∈ J . Finally, by
the above observation we get f ∈ I. 2

Corollary 3.6.11 Let k be an algebraically closed field. Then the following algorithm com-
putes the radical of an ideal I ⊆ k[X1, . . . , Xn] such that V(I) is finite.

1. For i = 1, . . . , n compute a generator gi ∈ k[Xi] of the elimination ideal I ∩ k[Xi].

2. Compute the reduction (gi)red of gi’s and return the ideal I + 〈(g1)red, . . . , (gn)red〉.
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proof: By Corollary 3.6.4 the generators gi exist. By Lemma 3.6.8 we can compute (gi)red

for each i. Since the ideal J = I + 〈(g1)red, . . . , (gn)red〉 satisfies I ⊆ J ⊆ √
I, we have√

I =
√

J . Indeed, we have
√

I ⊆ √
J since the operation assigning to an ideal its radical is

monotone w.r.t. inclusion and
√

I ⊇ √
J follows from

√
J ⊆

√√
I =

√
I. Let hi = (gi)red

for each i. By Lemma 3.6.8 the polynomials hi satisfy gcd(hi, h
′
i) = 1. Thus by Seidenberg’s

Lemma yields the claim. 2

3.7 Systems of polynomial equations

In this section, let k be an algebraically closed field.

Definition 3.7.1 Let I ⊆ k[X1, . . . , Xn] be an ideal such that V(I) is finite and i ∈ {1, . . . , n}.
We say that I is in normal Xi-position if any two points (a1, . . . , an), (b1, . . . , bn) ∈ V(I) sat-
isfy ai 6= bi.

Lemma 3.7.2 Let I ⊆ k[X1, . . . , Xn] be an ideal such that V(I) is finite. Then there exists
a tuple (c1, . . . , cn−1) ∈ kn−1 such that

c1a1 + · · ·+ cn−1an−1 + an 6= c1b1 + · · ·+ cn−1bn−1 + bn

for all pairs of points (a1, . . . , an), (b1, . . . , bn) ∈ V(I).

proof: Let (a1, . . . , an), (b1, . . . , bn) ∈ V(I) be two distinct points in the variety given by
I. In choosing the tuple (c1, . . . , cn−1) ∈ kn−1, we have to avoid the solutions of the linear
equation

(a1 − b1)ξ1 + · · ·+ (an−1 − bn−1)ξn−1 = bn − an .

Every such equation determines a hyperplane in kn−1. Since there are only finitely many of
them, we can choose a point (c1, . . . , cn−1) ∈ kn−1 which is not contained in any of these
hyperplanes. 2

Consequently, we can transform the ideal I into an ideal in normal Xn-position. More
precisely, let

A =




1 0 · · · 0 −c1

0 1 · · · 0 −c2

...
...

. . .
...

...
0 0 · · · 1 −cn−1

0 0 · · · 0 1




be the matrix of linear transformation assigning to an n-tuple (X1, . . . , Xn) the n-tuple

(X1, . . . , Xn) · A = (X1, . . . , Xn−1, Xn − c1X1 − · · · − cn−1Xn−1) .
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The matrix A is clearly invertible and

A−1 =




1 0 · · · 0 c1

0 1 · · · 0 c2

...
...

. . .
...

...
0 0 · · · 1 cn−1

0 0 · · · 0 1




.

We denote the n-tuple (X1, . . . , Xn) by X. Let us define the set

J = {f(X · A) | f ∈ I} .

Observe that f(X) ∈ J iff f(X · A−1) is in I, Indeed, if f(X) ∈ J , then there is g(X) ∈ I
such that g(X · A) = f(X). Thus f(X · A−1) = g((X · A−1) · A) = g(X).

Now we can prove that J is an ideal. Zero polynomial is clearly in J . Let f(X), g(X) ∈ J
and h(X) ∈ k[X1, . . . , Xn]. Then f(X · A−1) ∈ I and g(X · A−1) ∈ I. Thus

f(X · A−1) + g(X · A−1) ∈ I .

i.e.
f(X) + g(X) = f((X · A) · A−1) + g((X · A) · A−1) ∈ J

by definition of J . Similarly f(X · A−1) · h(X · A−1) ∈ I. Thus

f(X) · h(X) = f((X · A) · A−1) · h((X · A) · A−1) ∈ J .

Moreover, there is a correspondence between points of V(I) and points of V(J). We have
(a1, . . . , an) ∈ V(I) iff (a1, . . . , an + c1a1 + · · · + cn−1an−1) ∈ V(J). Indeed, let f(X) ∈ J .
Then f(X · A−1) ∈ I, i.e.

f((a1, . . . , an) · A−1) = f(a1, . . . , an−1, an + c1a1 + · · ·+ cn−1an−1) = 0 .

Since we chose f arbitrarily, (a1, . . . , an−1, an + c1a1 + · · · + cn−1an−1) ∈ V(J). Conversely,
if f(X) ∈ I, then f(X · A) ∈ J . Thus

0 = f((a1, . . . , an−1, an+c1a1+· · ·+cn−1an−1)·A) = f(((a1, . . . , an)·A−1)·A) = f(a1, . . . , an) .

Finally, it can be easily seen that if c1, . . . , cn−1 are chosen according to Lemma 3.7.2, then
J is in normal Xn-position. Although Lemma 3.7.2 does not give us a deterministic algorithm
how to find the numbers c1, . . . , cn−1, we can still construct a probabilistic algorithm choosing
c1, . . . , cn−1 randomly and then checking whether J is in normal Xn-position. For that we
need a criterion how to recognize whether an ideal in normal Xn-position. Before we formulate
the promised criterion, we have to prove several technical statements.

Proposition 3.7.3 Let R be a ring and I ⊆ R an ideal. Then there is a one-to-one corre-
spondence between set of ideals in R containing I and set of ideals in R/I. More precisely,
let J ⊇ I be an ideal in R and J̃ an ideal in R/I. Then the following mappings Φ and Ψ are
inverses of each other:

J
Φ−→ {[j]I ∈ R/I | j ∈ J}

{j ∈ R | [j]I ∈ J̃} Ψ←− J̃

Moreover, Φ and Ψ preserve inclusions, i.e. J1 ⊆ J2 implies Φ(J1) ⊆ Φ(J2) and similarly for
Ψ. We also have Φ(R) = R/I and Ψ(R/I) = R.
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proof: Let J ⊇ I be an ideal in R. We have to check that Φ(J) is an ideal in R/I. Let
[a]I , [b]I ∈ Φ(J) and [c]I ∈ R/I. Then a, b ∈ J and [a]I + [b]I = [a + b]I . Since a + b ∈ J , we
get [a + b]I ∈ Φ(J). Analogously [a]I · [c]I = [a · c]I ∈ Φ(J). Clearly, [0]I ∈ Φ(J). Similarly,
we can check for an ideal J̃ in R/I that Ψ(J̃) is an ideal in R containing I. Indeed, let a ∈ I.
Then a ∈ Ψ(J̃) since I = [0]I ∈ J̃ .

Further, we have to show that Ψ ◦ Φ is an identity on the set of ideals in R and Φ ◦ Ψ
an identity on the set of ideals in R/I. Let J be an ideal in R containing I. Then j ∈ J iff
[j]I ∈ Φ(J) iff j ∈ Ψ(Φ(J)). Similarly, let J̃ be an ideal in R/I. Then [j]I ∈ J̃ iff j ∈ Ψ(J̃)
iff [j]I ∈ Φ(Ψ(J̃)).

Finally, it can easily seen that Φ and Ψ are inclusion preserving and Φ(R) = R/I,
Ψ(R/I) = R. 2

Observe that if J is a maximal ideal in R containing an ideal I, then Φ(J) is a maximal
ideal in R/I. Similarly Ψ(J̃) is maximal for a maximal ideal J̃ in R/I.

Lemma 3.7.4 Let R, S be rings and Φ : R → S be a ring isomorphism and let I ⊆ R be an
ideal. Then Φ(I) is an ideal in S. Moreover, if I is maximal, then Φ(I) is maximal.

proof: Recall that Φ(I) = {b ∈ S | (∃a ∈ R)(b = Φ(a))}. Let b1, b2 ∈ Φ(I) and c ∈ S. Then
there are a1, a2 ∈ I such that Φ(a1) = b1 and Φ(a2) = b2. Thus

b1 + b2 = Φ(a1) + Φ(a2) = Φ(a1 + a2) .

Since a1 + a2 ∈ I, we get b1 + b2 ∈ Φ(I). As Φ is an isomorphism, there is c′ ∈ R such that
Φ(c′) = c. Consequently,

b1c = Φ(a1) · Φ(c′) = Φ(a1c
′) .

Thus b1c ∈ Φ(I). Finally, 0 ∈ Φ(I) because 0 = Φ(0).
Now assume that I is maximal. Let J ) Φ(I). Then using the inverse of Φ (which a

ring isomorphism as well) we get Φ−1(J) ) Φ−1(Φ(I)) = I. By maximality of I the ideal
Φ−1(J) = R. But this means that J = Φ(R) = S. 2

Theorem 3.7.5 Let I ⊆ k[X1, . . . , Xn] be a radical ideal such that V(I) is finite and gn the
monic generator of I ∩ k[Xn]. Then the following conditions are equivalent:

1. The ideal I is in normal Xn-position.

2. deg(gn) = dim k[X1, . . . , Xn]/I.

3. The mapping Φ : k[Xn]/〈gn〉 → k[X1, . . . , Xn]/I defined by

Φ([f ]〈gn〉) = [f ]I ,

is a ring isomorphism, i.e. the rings k[Xn]/〈gn〉 and k[X1, . . . , Xn]/I are isomorphic.

proof: First, I claim that the mapping Φ : k[Xn]/〈gn〉 → k[X1, . . . , Xn]/I defined by

Φ([f ]〈gn〉) = [f ]I ,

is always an injective ring homomorphism. The mapping Φ is well-defined since 〈gn〉 ⊆ I.
Thus whenever [f ]〈gn〉 = [f ′]〈gn〉, then [f ]I = [f ′]I . The fact that Φ is a homomorphism can be
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easily checked. Finally, let [f ]〈gn〉 6= [g]〈gn〉. Assume that [f ]I = [g]I . Then f−g ∈ I∩k[Xn] =
〈gn〉 which is not possible. Thus [f ]I 6= [g]I .

Second, note that 〈gn〉 is radical. If fm ∈ 〈gn〉 ⊆ I, then f ∈ k[Xn] ∩ I = 〈gn〉. Thus we
have by Theorem 3.6.7

deg(gn) = dim k[Xn]/〈gn〉 ≤ dim k[X1, . . . , Xn]/I .

The inequality follows from the fact that Φ transforms a basis of k[Xn]/〈gn〉 into a linearly
independent subset of k[X1, . . . , Xn]/I.

(1 ⇒ 2): If I is in normal Xn-position, then gn has at least dim k[X1, . . . , Xn]/I many
roots, i.e. deg(gn) ≥ dim k[X1, . . . , Xn]/I.

(2 ⇒ 3): If dim k[X1, . . . , Xn]/I = deg(gn) = dim k[Xn]/〈gn〉, then the rings k[Xn]/〈gn〉
and k[X1, . . . , Xn]/I are isomorphic as k-vector spaces. Since Φ is also an injective linear
mapping, it must be onto. Thus Φ is a ring isomorphism.

(3 ⇒ 1): If the rings k[Xn]/〈gn〉 and k[X1, . . . , Xn]/I are isomorphic, then d = deg(gn)
is exactly the number of points in V(I). Let a1, . . . , ad ∈ k be the roots of gn (the roots
are pairwise distinct because gn is square-free). Then gn =

∏d
i=1(Xn − ai). Thus the max-

imal ideals in k[Xn] containing 〈gn〉 are of the form 〈Xn − ai〉. Then 〈[Xn − ai]〈gn〉〉 is a
maximal ideal in k[Xn]/〈gn〉. By Lemma 3.7.4 we have Φ(〈[Xn − ai]〈gn〉〉) is a maximal ideal
in k[X1, . . . , Xn]/I. Thus this ideal corresponds to a maximal ideal Mi in k[X1, . . . , Xn] by
Proposition 3.7.3. The ideal Mi has to be of this form 〈X1 − α1i, . . . , Xn − αni〉 for some
α1i, . . . , αni ∈ k by Theorem 3.1.11. Observe that

Φ(〈[Xn − ai]〈gn〉〉) = 〈Φ([Xn − ai]〈gn〉)〉 = 〈[Xn − ai]I〉 .

Thus Xn − ai ∈ Mi. Since Xn − ai ∈ Mi, we get that αni = ai. Now for different roots
ai 6= aj we obtain different maximal ideals Mi and Mj , i.e. different points (α1i, . . . , ai) and
(α1j , . . . , aj) in V(I). Since there are exactly d points in V(I), all of them have pairwise
different the last component. 2

Theorem 3.7.6 (The Shape Lemma) Let I ⊆ k[X1, . . . , Xn] be a radical ideal in normal
Xn-position such that V(I) is finite, gn the monic generator of I ∩ k[Xn], and d = deg(gn).

1. The reduced Gröbner basis of I w.r.t. lex term order is of the form

{X1 − g1, . . . , Xn−1 − gn−1, gn} ,

where g1, . . . , gn−1 ∈ k[Xn].

2. The polynomial gn has d distinct roots a1, . . . , ad ∈ k, and

V(I) = {(g1(ai), . . . , gn−1(ai), ai) | i = 1, . . . , d} .

proof: By Theorem 3.7.5 using the isomorphism Φ : k[Xn]/〈gn〉 → k[X1, . . . , Xn]/I, each
polynomial f ∈ k[X1, . . . , Xn] is congruent w.r.t. I to a polynomial g ∈ k[Xn]. Indeed, since
Φ is onto there is [g]〈gn〉 ∈ k[Xn]/〈gn〉 such that

[f ]I = Φ([g]〈gn〉) = [g]I .
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Thus for each Xi ∈ k[X1, . . . , Xn] there is a polynomial gi ∈ k[Xn] such that Xi − gi ∈ I.
We show that G = {X1 − g1, . . . , Xn−1 − gn−1, gn} is a Gröbner basis w.r.t. the lex term
order. Clearly LT(G) = {X1, . . . , Xn−1, X

d
n}. Let f ∈ I. If LT(f) contains at least one

of X1, . . . , Xn−1, then LT(f) ∈ 〈LT(G)〉. If LT(f) contains only Xn, then f ∈ I ∩ k[Xn],
i.e. LT(gn)|LT(f). Thus G is a Gröbner basis. Moreover, it is obvious that G is a reduced
Gröbner basis.

Finally, since gn is square-free, it has d distinct roots. It is also clear that the solutions of
a system of polynomial equations X1 − g1 = · · · = Xn−1 − gn−1 = gn = 0 has solutions of the
form (g1(ai), . . . , gn−1(ai), ai) for a root ai of gn. 2

Corollary 3.7.7 (Solving a system of polynomial equations) Let k be an algebraically
closed field, f1, . . . , fs ∈ k[X1, . . . , Xn], and I = 〈f1, . . . , fs〉. Consider the following sequence
of instructions:

1. For i = 1, . . . , n compute a generator gi of I ∩ k[Xi]. If gi = 0 for some i, then return
“Infinite number of solutions” and stop.

2. By Lemma 3.6.8 compute hi = (gi)red for each i. Then replace I by I + 〈h1, . . . , hn〉.
3. Compute number d of monomials in the complement of 〈LT(I)〉, i.e.

d = |{Xα | Xα 6∈ 〈LT(I)〉}| .

4. Check if deg(hn) = d. In this case, let (c1, . . . , cn−1) = (0, . . . , 0) and continue with step
7.

5. Choose randomly (c1, . . . , cn−1) ∈ kn−1. Apply the coordinate transformation

X1 7→ X1, . . . , Xn−1 7→ Xn−1, Xn 7→ Xn − c1X1 − · · · − cn−1Xn−1

to I and get an ideal J .

6. Compute a generator of J ∩ k[Xn] and check if it has degree d. If not, repeat steps 5
and 6 until this is the case. Then rename J and call it I.

7. Compute the reduced Gröbner basis of I w.r.t. the lex term order. It has shape

{X1 − g1, . . . , Xn−1 − gn−1, gn}

with polynomials g1, . . . , gn ∈ k[Xn] and with deg gn = d. Return the tuples (c1, . . . , cn−1)
and (g1, . . . , gn) and stop.

This is an algorithm which decides whether the system of polynomial equations f1 = · · · =
fs = 0 has finitely many solutions. In that case, it returns tuples (c1, . . . , cn−1) ∈ kn−1 and
(g1, . . . , gn) ∈ k[Xn] such that, after we perform the linear change of coordinates

X1 7→ X1, . . . , Xn−1 7→ Xn−1, Xn 7→ Xn − c1X1 − · · · − cn−1Xn−1 ,

the transformed system of equations has the set of solutions

{(g1(ai), . . . , gn−1(ai), ai) | i = 1, . . . , d} ,
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where a1, . . . , an ∈ k are roots of gn.
In other words, the original system of equations has the set of solutions

{(g1(ai), . . . , gn−1(ai), ai − c1g1(ai)− · · · − cn−1gn−1(ai)) | i = 1, . . . , d} .

proof: The correctness of the first step follows from Corollary 3.6.4. By Corollary 3.6.11
the ideal I is replaced by radical

√
I in step 2. By Theorem 3.6.7 the number d computed

in step 3 is exact number of solutions. If deg(gn) = d, then I is in normal Xn-position by
Theorem 3.7.5. If not there is (c1, . . . , cn−1) ∈ kn−1 by Lemma 3.7.2 such that, after the
linear change of coordinates, the transformed ideal J is in normal Xn-position. Thus by the
Shape Lemma the transformed system of equations has the solution set

{(g1(ai), . . . , gn−1(ai), ai) | i = 1, . . . , d} .

Let A be the matrix representing the linear change of coordinates. Since we proved that
(b1, . . . , bn) ∈ V(I) iff (b1, . . . , bn) · A−1 ∈ V(J), we get (g1(ai), . . . , gn−1(ai), ai) · A ∈ V(I)
because

(g1(ai), . . . , gn−1(ai), ai) = (g1(ai), . . . , gn−1(ai), ai) · A · A−1 .

2


