Introduction to Algebraic Geometry

Rostislav Horčík

Version 1.11

Chapter 1

Polynomial rings and affine varieties

1.1 Commutative rings and fields

Definition 1.1.1 An algebra $(R,+, \cdot, 0,1)$ is called a commutative ring if the following conditions are satisfied:

1. $(a+b)+c=a+(b+c)$ and $(a b) c=a(b c)$ for all $a, b, c \in R$,
2. $a+b=b+a$ and $a b=b a$ for all $a, b \in R$,
3. $a(b+c)=a b+a c$ for all $a, b, c \in R$,
4. $a+0=a \cdot 1=a$ for all $a \in R$,
5. Given $a \in R$, there is $b \in R$ such that $a+b=0$.

We will often omit the word commutative since all the considered rings in this course are commutative.

Typical example is set of integers \mathbb{Z} endowed with the usual addition and multiplication.
Definition 1.1.2 A commutative ring R is called a field if for all $a \in R \backslash\{0\}$ there is $b \in R$ such that $a b=1$.

Typical examples are real numbers \mathbb{R}, rational numbers \mathbb{Q} and complex numbers \mathbb{C}.
Definition 1.1.3 Let R be a ring. The group of units R^{\times}is the set

$$
R^{\times}=\{a \in R \mid(\exists b \in R)(a b=1)\}
$$

Proposition 1.1.4 The set R^{\times}forms an Abelian group under the multiplication from R.
PROOF: Let $a, c \in R^{\times}$. Then there are $b, d \in R$ such that $a b=1$ and $c d=1$. Thus $(a c)(b d)=(a b)(c d)=1 \cdot 1=1$, i.e. $a c \in R^{\times}$. Further, we have trivially $1 \in R^{\times}$. Finally, if follows from the definition of R^{\times}that for each $a \in R^{\times}$the corresponding $b \in R$ such that $a b=1$ is the inverse of a and clearly $b \in R^{\times}$as well.

Example 1.1.5 $\mathbb{Z}^{\times}=\{1,-1\}$. Let k be a field then $k^{\times}=k \backslash\{0\}$.

Definition 1.1.6 A commutative ring R is an integral domain if whenever $a, b \in R$ and $a b=0$, then either $a=0$ or $b=0$.

Observation 1.1.7 Let R be an integral domain and $a, b, c \in R, c \neq 0$. Then $a c=b c$ implies $a=b$.

PROOF: $0=a c-b c=(a-b) c$ implies $a-b=0$.

Definition 1.1.8 Let R, S be rings. A mapping $\phi: R \rightarrow S$ is a ring homomorphism if $\phi(1)=1, \phi(a+b)=\phi(a)+\phi(b)$ and $\phi(a \cdot b)=\phi(a) \cdot \phi(b)$ for all $a, b \in R$. If in addition ϕ is one-to-one and onto, then ϕ is called a ring isomorphism.

Definition 1.1.9 Let R be an integral domain. The field of fractions k of R is the collection of fractions a / b with $a, b \in R, b \neq 0$, and with the usual rules for addition and multiplication, i.e.

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}, \quad \frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} .
$$

Note that since R is an integral domain and $b, d \neq 0$, we have $b d \neq 0$. In addition, two of these fractions a / b and a^{\prime} / b^{\prime} represent the same element in k if $a b^{\prime}=a^{\prime} b$.

Moreover, the subset $\{a / 1 \mid a \in R\}$ forms an integral domain which is isomorphic to R.

1.2 Ideals

Definition 1.2.1 Let R be a commutative ring. A subset $I \subseteq R$ is said to be an ideal if it satisfies:

1. $0 \in I$,
2. if $a, b \in I$, then $a+b \in I$,
3. if $a \in I$ and $b \in R$, then $b \cdot a \in I$.

If $I \neq R$ then I is called a proper ideal.
Lemma 1.2.2 Ideals are closed under arbitrary intersections. If $I_{0} \subseteq I_{1} \subseteq \cdots$ is an ascending chain of ideals, then $\bigcup_{i \in \mathbb{N}} I_{i}$ is an ideal.
proof: Let $\left\{I_{\lambda} \mid \lambda \in \Lambda\right\}$ be a family of ideals indexed by the elements of Λ. Then clearly $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is an ideal. Let $I_{0} \subseteq I_{1} \subseteq \cdots$ be an ascending chain of ideals and let $I=\bigcup_{i \in \mathbb{N}} I_{i}$. Then clearly $0 \in I$. If $a, b \in I$ then there is $i \in \mathbb{N}$ such that $a, b \in I_{i}$. Thus $a+b \in I_{i} \subseteq I$. Similarly, if $a \in I$ then $a \in I_{i}$ for some i. Hence $b \cdot a \in I_{i} \subseteq I$ for any $b \in R$.

Definition 1.2.3 Let R be a commutative ring and $S \subseteq R$. The smallest ideal containing S is called the ideal generated by S (it is just the intersection of all ideals containing S). We denote it by $\langle S\rangle$.

Let $a_{1}, \ldots, a_{n} \in R$. We write $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ instead of $\left\langle\left\{a_{1}, \ldots, a_{n}\right\}\right\rangle$.

Lemma 1.2.4 Let R be a commutative ring and $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq R$. Then

$$
\left\langle a_{1}, \ldots, a_{n}\right\rangle=\left\{\sum_{i=1}^{n} b_{i} \cdot a_{i} \mid b_{1}, \ldots, b_{n} \in R\right\} .
$$

In particular, if $a \in R$, then

$$
\langle a\rangle=\{b \cdot a \mid b \in R\} .
$$

PROOF: First, we check that $I=\left\{\sum_{i=1}^{n} b_{i} \cdot a_{i} \mid b_{1}, \ldots, b_{n} \in R\right\}$ is an ideal. Since $\sum_{i=1}^{n} 0 \cdot a_{i}=$ 0 , we have $0 \in I$. If $b=\sum_{i=1}^{n} b_{i} \cdot a_{i} \in I$ and $c=\sum_{i=1}^{n} c_{i} \cdot a_{i} \in I$ for some $b_{i}, c_{i} \in R$. Then $b+c=\sum_{i=1}^{n}\left(b_{i}+c_{i}\right) a_{i} \in I$. Let $d \in R$. Then $d b=\sum_{i=1}^{n}\left(d b_{i}\right) \cdot a_{i} \in I$. Thus I is an ideal.

Since I contains all the generators a_{i}, we have $\left\langle a_{1}, \ldots, a_{n}\right\rangle \subseteq I$. On the other hand, all elements of the form $\sum_{i=1}^{n} b_{i} \cdot a_{i}$, where $b_{1}, \ldots, b_{n} \in R$, belong to $\left\langle a_{1}, \ldots, a_{n}\right\rangle$. Thus $I=\left\langle a_{1}, \ldots, a_{n}\right\rangle$.

Definition 1.2.5 The ideal generated by a single element is called principal. A proper ideal I is called prime if $a b \in I$ implies $a \in I$ or $b \in I$.

Proposition 1.2.6 The following conditions on a ring R are equivalent:

1. every ideal in R is finitely generated;
2. every ascending chain of ideals $I_{0} \subseteq I_{1} \subseteq \cdots$ becomes constant, i.e. for some m, $I_{m}=I_{m+1}=\cdots$;
3. every non-empty set of ideals in R has a maximal element (i.e. an element not properly contained in any other ideal in the set).

PROOF: $(1 \Rightarrow 2)$: If $I_{0} \subseteq I_{1} \subseteq \cdots$ is an ascending chain, then $I=\bigcup_{i \in \mathbb{N}} I_{i}$ is again an ideal, and hence has a finite set $\left\{a_{1}, \ldots, a_{n}\right\}$ of generators. For some m, all $a_{i} \in I_{m}$. Thus $I_{m}=I_{m+1}=\cdots=I$.
$(2 \Rightarrow 3)$: If (3) is false, then there is a non-empty set S of ideals with no maximal element. Thus there must be a strictly increasing sequence $I_{0} \subseteq I_{1} \subseteq \cdots$ that never becomes constant.
$(3 \Rightarrow 1)$: Let I be an ideal, and let S be the set of ideals $J \subseteq I$ that are finitely generated. Let $J^{\prime}=\left\langle a_{1}, \ldots, a_{r}\right\rangle$ be the maximal element of S. If $J^{\prime} \neq I$, then there is $a \in I$ and $a \notin J^{\prime}$. But $J^{\prime} \subsetneq\left\langle a_{1}, \ldots, a_{r}, a\right\rangle \subseteq I$ (a contradiction).

Definition 1.2.7 A ring R is Noetherian if it satisfies the conditions of the proposition.

1.3 Principal ideal domains and unique factorization

Definition 1.3.1 An integral domain R is called principal ideal domain (PID) if each its ideal is principal.

Theorem 1.3.2 Let R be a PID. Then R is Noetherian.

Proof: Trivial, since each ideal is finitely generated.

Definition 1.3.3 Let R be an integral domain.

1. An elements $a, b \in R$ are said to be associates if there is a unit $u \in R^{\times}$such that $a=u b$. We denote this fact $a \sim b$.
2. An element $a \in R$ divides $b \in R$ (denoted $a \mid b)$ if $b=a c$ for some $c \in R$.
3. A non-zero non-unit element $a \in R$ is irreducible if it does not factor, i.e. $a=b c$ implies b or c is a unit.
4. A non-zero non-unit element $a \in R$ is prime if it generates a prime ideal, i.e. $a \mid b c$ implies $a \mid b$ or $a \mid c$.
5. Let $a, b \in R$. We say that $c \in R$ is a greatest common divisor (gcd) of a and b if $c \mid a$, $c \mid b$, and if any element $d \in R$ which divides both a and b also divides c.

Lemma 1.3.4 1. If a is prime then a is irreducible.
2. If a is prime and $a \mid c_{1} c_{2} \cdots c_{n}$, then a|c for some i. If each c_{j} is irreducible, then a and c_{i} are associates for some i.
3. If $a \sim b$, then a is irreducible (prime) iff b is irreducible (prime). In other words, if a is irreducible (prime) and u is a unit, then au is irreducible (prime).
4. A greatest common divisor is unique up to a unit.

PROOF:

1. Suppose $a=b c$. Then $a \mid b c$, i.e. $a \mid b$ or $a \mid c$ since a is prime. Assume that $a \mid b$. Then $b=a d$. Consequently, $a=a d c$ which implies $d c=1$. Thus c is a unit.
2. By induction on n. For $n=1,2$ it holds. For $n>2$ we have $a \mid\left(c_{1} \cdots c_{n-1}\right) c_{n}$. Thus $a \mid c_{n}$ or $a \mid c_{1} \cdots c_{n-1}$. Assume that each c_{j} is irreducible. We have $a \mid c_{i}$ for some i, i.e. $c_{i}=a d$. Since c_{i} is irreducible, we get that d is a unit (a is not unit).
3. Let a be irreducible and u a unit. If $a u=c d$ then $a=u^{-1} c d$. Thus either $u^{-1} c$ or d is a unit. If d is a unit, we are done. If $u^{-1} c$ is a unit, then $v u^{-1} c=1$ for some v. Thus c is a unit.

Let a be prime. If $a u \mid c d$ then $c d=a u q$, i.e. $a \mid c d$. Thus $a \mid c$ or $a \mid d$, say $a \mid c$. Then $c=a x=(a u)\left(u^{-1} x\right)$, i.e. $a u \mid c$.
4. Let c and c^{\prime} be two gcd of a and b. Then $c \mid c^{\prime}$ and $c^{\prime} \mid c$, i.e. $c^{\prime}=c x$ and $c=c^{\prime} y$ for some x, y. Thus $c=c^{\prime} y=c x y$ which implies $1=x y$. Consequently, x is a unit and $c \sim c^{\prime}$.

Definition 1.3.5 An integral domain R is called a unique factorization domain (UFD) if every non-zero non-unit element has unique factorization into irreducible elements, i.e. if $a=p_{1} \cdots p_{n}=q_{1} \cdots q_{m}$, then $n=m$ and there is a permutation σ such that p_{i} and $q_{\sigma(i)}$ are associates. In other words, we can reorder the factors q_{i} in such a way that $p_{i} \sim q_{i}$ for all i.

Observe that if R is a UFD and $a=p_{1} \cdots p_{m}$ is a factorization into irreducible elements, then some of the irreducible factors p_{i} can be associates. We can group them together and write $a=u p_{1}^{s_{1}} \cdots p_{n}^{s_{n}}$ where $u \in R^{\times}$and $s_{1}, \ldots, s_{n} \in \mathbb{N}$.

Example 1.3.6 The set \mathbb{Z} is a UFD since each integer can be uniquely expressed as a product of primes.

Lemma 1.3.7 Let R be a PID and $a, b \in R$. Let $\langle a, b\rangle=\langle c\rangle$. Then $c=\operatorname{gcd}(a, b)$.
Proof: Since $a \in\langle c\rangle$, we have $c \mid a$. Similarly $c \mid b$. Let $d \mid a$ and $d \mid b$, i.e. $a=d y$ and $b=d z$ with $y, z \in R$. Since $c \in\langle a, b\rangle$, we get $c=w a+t b$ with $w, t \in R$. Then $c=w d y+t d z=d(w y+t z)$, i.e. $d \mid c$.

Lemma 1.3.8 Let R be a PID. Then a is irreducible iff a is prime.
Proof: (\Leftarrow) Follows from Lemma 1.3.4.
(\Rightarrow) Suppose that a is irreducible and $a \mid b c$. If a does not divide b then $\operatorname{gcd}(a, b)=1$. Since $\langle 1\rangle=\langle a, b\rangle$, we can write $1=x a+y b$ with some $x, y \in R$. Then $c=x a c+y b c$. Since $a \mid b c$, we get $a \mid c$.

Theorem 1.3.9 Every PID R is a UFD.
Proof: First, we prove that a finite factorization into irreducible elements exists. Consider all principal ideals $\langle d\rangle$ where d does not factor into a finite product of irreducibles. Since R is Noetherian, there is a maximal such ideal $\langle c\rangle$. The element c must be reducible otherwise it would have a factorization. Thus $c=a b$ where neither a nor b is a unit. Since each $\langle a\rangle$ and $\langle b\rangle$ contains $\langle c\rangle$ properly (if e.g. $\langle a\rangle=\langle c\rangle$, then $a \sim c$ and $b \sim 1$), each a and b factors into finite product of irreducibles. This gives a finite factorization of c (a contradiction).

Secondly, we deal with the uniqueness. Let $p_{1} \cdots p_{n}=q_{1} \cdots q_{m}$ be two factorization into irreducibles. We will show by induction on n that $m=n$ and after a suitable reordering of factors p_{i} and q_{i} are associates. Let $n=1$. Then $p_{1}=q_{1} \cdots q_{m}$. Since p_{1} is prime and $p_{1} \mid q_{1} \cdots q_{m}$, there is i such that p_{1} and q_{i} are associates, i.e. $q_{i}=u p_{1}$ for some unit u. W.l.o.g. we can assume that $i=1$. Thus $p_{1}=u p_{1} q_{2} \cdots q_{m}$. Consequently, $1=u q_{2} \cdots q_{m}$. Hence q_{j}, $j>1$ are units and cannot be irreducibles.

Now assume that the claim is valid for $n-1$. Since $p_{1} \mid q_{1} \cdots q_{m}$, there is i such that $q_{i}=u p_{1}$ for a unit u. Again w.l.o.g. we can assume that $i=1$. Thus we have

$$
p_{2} \cdots p_{n-1}=u q_{2} \cdots q_{m} .
$$

By induction assumption $n-1=m-1$ and after a suitable reordering $p_{2} \sim u q_{2}$ and $p_{j} \sim q_{j}$ for $j>2$. Thus $n=m$. Since $p_{2}=v u q_{2}$ for a unit v, we get that $p_{2} \sim q_{2}$. Consequently, p_{i} and q_{i} are associates for all i and the proof is done.

1.4 Polynomials in one variable

Definition 1.4.1 Let R be a ring. Then the polynomial ring $R[X]$ is the collection of all formal sums of the form $a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n}$ where $a_{i} \in R . R[X]$ forms a commutative ring under the usual addition and multiplication of polynomials.

The degree of a non-zero polynomial f is the largest n such that $a_{n} \neq 0$, and is denoted by $\operatorname{deg}(f)$.

Proposition 1.4.2 If R is an integral domain, then $R[X]$ is an integral domain.
PROOF: Suppose that $f(X)=a_{0}+\cdots+a_{n} X^{n}, a_{n} \neq 0$ and $g(X)=b_{0}+\cdots+b_{m} X^{m}, b_{m} \neq 0$ are non-zero polynomials. Then the $(n+m)$-th coefficient of $f g$ is $a_{n} \cdot b_{m}$. Since R is an integral domain, we have $a_{n} \cdot b_{m} \neq 0$, i.e. $f g$ is not the zero polynomial.

Observe that in this case we have $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$ for non-zero polynomials f, g.

Proposition 1.4.3 Let R be an integral domain. Then $R[X]^{\times}=R^{\times}$(if we identify the elements of R with the constant polynomials in $R[X]$).

Proof: Clearly $R^{\times} \subseteq R[X]^{\times}$. Let $f \in R[X]$ be a non-constant polynomial (i.e. $\operatorname{deg}(f) \geq 1$). Consider $f g$ for $g \in R[X]$. If $g=0$ then $f g=0$. If $g \neq 0$ then $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g) \geq$ $\operatorname{deg}(f) \geq 1$. Thus in both cases $f g \neq 1$, i.e. $f \notin R[X]^{\times}$.

Proposition 1.4.4 Let k be a field and $f, g \in k[X], g \neq 0$. Then there exists unique polynomials $q, r \in k[X]$ such that $f=g q+r$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$.

Theorem 1.4.5 Let k be a field. Then $k[X]$ is a PID.
Proof: Let I be an ideal in $k[X]$. The case $I=\{0\}$ is trivial. Assume that $I \neq\{0\}$. Let $g \in I$ be an element of the smallest degree ≥ 0. Consider any $f \in I$. Then $f=g q+r$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$. But $r=g q-f \in I$. Since g has the smallest degree, it follows that $r=0$. Thus $f=g q$, i.e. $I=\langle g\rangle$.

Corollary 1.4.6 Let k be a field. Then $k[X]$ is a UFD.

1.5 Polynomials in more variables

Let X_{1}, \ldots, X_{n} be variables. A monomial in X_{1}, \ldots, X_{n} is an expression $X_{1}^{\alpha_{1}} \cdot X_{2}^{\alpha_{2}} \cdots X_{n}^{\alpha_{n}}$, where $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{N}$. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ then we simply write X^{α} instead of $X_{1}^{\alpha_{1}}$. $X_{2}^{\alpha_{2}} \cdots X_{n}^{\alpha_{n}}$.

Definition 1.5.1 Let R be a ring. A polynomial f in X_{1}, \ldots, X_{n} with coefficients in R is a finite linear combination of monomials, i.e.

$$
f=\sum_{\alpha} a_{\alpha} X^{\alpha}, \quad a_{\alpha} \in R,
$$

where the sum is over a finite number of n-tuples $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$. The set of all polynomials in X_{1}, \ldots, X_{n} is denoted $R\left[X_{1}, \ldots, X_{n}\right]$.

An example of polynomial from $\mathbb{Z}\left[X_{1}, X_{2}, X_{3}\right]$ is for instance

$$
f=2 X_{1}^{3} X_{3}+5 X_{1} X_{2} X_{3}-X_{2}^{6} X_{3}^{2}+13
$$

Observe that
$f=\left(2 X_{1}^{3}\right) X_{3}+\left(5 X_{1} X_{2}\right) X_{3}+\left(-X_{2}^{6}\right) X_{3}^{2}+(13) X_{3}^{0}=\left(2 X_{1}^{3}+5 X_{1} X_{2}\right) X_{3}+\left(-X_{2}^{6}\right) X_{3}^{2}+(13) X_{3}^{0}$, and $2 X_{1}^{3}+5 X_{1} X_{2},-X_{2}^{6}, 13$ are polynomials in $\mathbb{Z}\left[X_{1}, X_{2}\right]$.

Observation 1.5.2 Let R be a ring. Then $R\left[X_{1}, \ldots, X_{n}\right]=R\left[X_{1}, \ldots, X_{n-1}\right]\left[X_{n}\right]$, i.e. each element $f \in R\left[X_{1}, \ldots, X_{n}\right]$ can be expressed as follows:

$$
f=\sum_{j=0}^{d} f_{j}\left(X_{1}, \ldots, X_{n-1}\right) X_{n}^{j}, \quad f_{j} \in R\left[X_{1}, \ldots, X_{n-1}\right], \quad d \in \mathbb{N} .
$$

Corollary 1.5.3 Let R be a ring. Then $R\left[X_{1}, \ldots, X_{n}\right]$ is a ring as well. In addition, if R is an integral domain, then $R\left[X_{1}, \ldots, X_{n}\right]$ is an integral domain.

PROOF: By induction on the number of variables.
Let k be a field. Then $k\left[X_{1}, \ldots, X_{n}\right]$ is an integral domain whence it has the field of fractions. We denote it by $k\left(X_{1}, \ldots, X_{n}\right)$.

Proposition 1.5.4 $R\left[X_{1}, \ldots, X_{n}\right]^{\times}=R^{\times}$.
proof: By induction and Proposition 1.4.3.

1.6 Unique factorization domain

In this we are going to prove that also $k\left[X_{1}, \ldots, X_{n}\right]$ is a UFD for a field k. Observe that $k\left[X_{1}, \ldots, X_{n}\right]$ is no more a PID. To see this, consider the polynomial ring $k[X, Y]$ and the ideal $\langle X, Y\rangle$. Assume that there is $f(X, Y)$ such that $\langle f\rangle=\langle X, Y\rangle$. Then $X=g(X, Y) \cdot f(X, Y)$ and $Y=h(X, Y) \cdot f(X, Y)$ for some $g, h \in k[X, Y]$. Let us see f, g as elements from $k[X][Y]$. Then

$$
0=\operatorname{deg}(X)=\operatorname{deg}(g \cdot f)=\operatorname{deg}(g)+\operatorname{deg}(f) .
$$

Thus $\operatorname{deg} f=0$ which implies that f is a constant polynomial, i.e. a member of $k[X]$. Similarly, $\operatorname{deg}(f)=0$ for f seen as an element of $k[Y][X]$, i.e. $f \in k[Y]$. Consequently, $f \in k$. Thus $\langle f\rangle=k[X, Y]$. However, $\langle X, Y\rangle \neq k[X, Y]$. If they would be the same ideals, then $1=f(X, Y) \cdot X+g(X, Y) \cdot Y$ for some $f, g \in k[X, Y]$ which is a contradiction.

Proposition 1.6.1 Let R be a UFD and $a, b \in R$. Then $\operatorname{gcd}(a, b)$ exists.

PROOF: Let $a=u p_{1}^{r_{1}} \cdots p_{n}^{r_{n}}$ and $b=v p_{1}^{s_{1}} \cdots p_{n}^{s_{n}}, u, v \in R^{\times}$(allow the exponents to be 0 , to use a common set of irreducibles to express both a and b). We claim that $\operatorname{gcd}(a, b)$ is

$$
g=p_{1}^{\min \left(r_{1}, s_{1}\right)} \cdots p_{n}^{\min \left(r_{n}, s_{n}\right)} .
$$

Clearly $g \mid a$ and $g \mid b$. Let $d \mid a$ and $d \mid b$. Enlarge the collection of inequivalent irreducibles p_{i} if necessary such that d can be expressed as

$$
d=w p_{1}^{h_{1}} \cdots p_{n}^{h_{n}}, \quad w \in R^{\times} .
$$

From $d \mid a$ we have $a=d D$ for some $D \in R$. Let

$$
D=W p_{1}^{H_{1}} \cdots p_{n}^{H_{n}}, \quad W \in R^{\times} .
$$

Then

$$
w W p_{1}^{h_{1}+H_{1}} \cdots p_{n}^{h_{n}+H_{n}}=d D=a=u p_{1}^{r_{1}} \cdots p_{n}^{r_{n}} .
$$

Unique factorization and non-associateness of the p_{i} implies that the exponents are the same, i.e. for all i we have $h_{i}+H_{i}=r_{i}$. Thus $h_{i} \leq r_{i}$. Similarly $h_{i} \leq s_{i}$. Hence $h_{i} \leq \min \left(r_{i}, s_{i}\right)$, i.e. $d \mid g$.

Observe that if any pair elements in a ring has a gcd, then each n-tuple of elements has it. In fact, we have

$$
\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)=\operatorname{gcd}\left(\operatorname{gcd}\left(a_{1}, a_{2}\right), a_{3}, \ldots, a_{n}\right)
$$

Proposition 1.6.2 Let R be a UFD and $a \in R$. Then a is irreducible iff a is prime.
PROOF: The right-to-left direction follows from Lemma 1.3.4. Suppose that a is irreducible and $a \mid b c$. If b or c is a unit, then a divides the other one. If b or c is 0 , then $a \mid 0$. Thus assume that b, c are non-unit non-zero elements. There is d such that $a d=b c$. Since R is a UFD, b and c have unique factorizations into irreducibles, i.e. $b=b_{1} \cdots b_{n}$ and $c=c_{1} \cdots c_{m}$. Then $b_{1} \cdots b_{n} c_{1} \cdots c_{m}$ is a factorization of $b c$. As a is irreducible, $a \sim b_{i}$ or $a \sim c_{j}$. Thus either $a \mid b$ or $a \mid c$.

Proposition 1.6.3 Let R be a UFD with field of fractions F. If $f(X) \in R[X]$ factors into the product of two non-constant polynomials in $F[X]$, then it factors into the product of two non-constant polynomials in $R[X]$.

PRoof: Let $f=g h$ in $F[X]$. For suitable $c, d \in R, g_{1}=c g$ and $h_{1}=d h$ have coefficients in R. Thus $c d f=g_{1} \cdot h_{1}$ in $R[X]$. Since R is a UFD, $c d$ factors into the finite product of irreducibles. Let $p \in R$ be a irreducible element such that $p \mid c d$. Then $p \mid g_{1} h_{1}$. Since p is prime by Lemma 1.6.2, $p \mid g_{1}$ or $p \mid h_{1}$ (say $p \mid g_{1}$). Thus p divides all the coefficients of g_{1} and $g_{1}=p g_{2}$. Now we have a factorization $(c d / p) f=g_{2} \cdot h_{1}$. Continuing in this fashion, we can remove all the irreducible factors of $c d$.

It follows from the construction of the proof of the latter proposition that if $f=g h=g^{\prime} h^{\prime}$ with $g, h \in F[X]$ and $g^{\prime}, h^{\prime} \in R[X]$, then $g^{\prime}=u g$ and $h^{\prime}=v h$ for some $u, v \in F^{\times}$, i.e. $g^{\prime} \sim g$ and $h^{\prime} \sim h$ in $F[X]$, i.e. $\operatorname{deg}(g)=\operatorname{deg}\left(g^{\prime}\right)$ and $\operatorname{deg}(h)=\operatorname{deg}\left(h^{\prime}\right)$.

Corollary 1.6.4 Let R be a UFD with fraction field F and $f \in R[X]$. If $f=f_{1} f_{2} \cdots f_{n}$ for $f_{i} \in F[X]$ non-constant polynomials, then $f=f_{1}^{\prime} f_{2}^{\prime} \cdots f_{n}^{\prime}$ with non-constant polynomials $f_{i}^{\prime} \in R[X]$ and $f_{i} \sim f_{i}^{\prime}$ in $F[X]$.
Proof: By induction on n. For $n=2$ the claim follows from Proposition 1.6.3 and the above discussion. Assume that the claim is valid for $n-1$ and $f=f_{1} \cdots f_{n}$. Then by Proposition 1.6.3 $f=f_{1}^{\prime} g$ with $f_{1}^{\prime}, g \in R[X], f_{1} \sim f_{1}^{\prime}$ and $g \sim f_{2} \cdots f_{n}$ in $F[X]$. Thus there is $u \in F^{\times}$ such that $g=u f_{2} \cdots f_{n}$. By induction assumption $g=f_{2}^{\prime} \cdots f_{n}^{\prime}$ with $f_{i}^{\prime} \in R[X]$ non-constant, $f_{2}^{\prime} \sim u f_{2} \sim f_{2}$, and $f_{i}^{\prime} \sim f_{i}$ for $i>2$. Thus $f=f_{1}^{\prime} f_{2}^{\prime} \cdots f_{n}^{\prime}$ and $f_{i} \sim f_{i}^{\prime}$ in $F[X]$.

Note that if f_{i} is irreducible in $F[X]$ then f_{i}^{\prime} is irreducible in $F[X]$ by Lemma 1.3.4.
Definition 1.6.5 Let R be a UFD and $f \in R[X]$. The content of f (denoted $c(f)$) is the gcd of all coefficients of f, i.e. $c(f)=\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)$ for $f=a_{0}+\cdots+a_{n} X^{n}$. A polynomial f is said to be primitive if $c(f)=1$.

Lemma 1.6.6 Let R be a UFD and $f \in R[X]$. Then $f=c(f) \cdot f_{1}$ with f_{1} primitive and this decomposition is unique up to units in R.

PROOF: Clearly $f=c(f) \cdot f_{1}$ for a primitive polynomial f_{1}. Suppose that $f=c(f) \cdot f_{1}=d \cdot g$ where $g \in R[X]$ is a primitive polynomial and $d \in R$. Then $d \mid f$ (i.e. $f=d h$ and $\operatorname{deg}(h)=\operatorname{deg}(f))$. Hence $d \mid c(f)$, i.e. $c(f)=d u$ for some $u \in R$. Consequently, $u f_{1}=g$. Since $u \mid g$ and g is primitive, we get $u \sim 1$. Thus $c(f) \sim d$ and $f_{1} \sim g$.

Lemma 1.6.7 (Gauss's Lemma) The product of two primitive polynomials is primitive.
PROOF: Let

$$
f=a_{0}+\cdots+a_{m} X^{m}, \quad g=b_{0}+\cdots+b_{n} X^{n}
$$

be primitive polynomials, and let p be an irreducible element of R. Let a_{i} be the first coefficient of f not divisible by p and b_{j} the first coefficient of g not divisible by p. Then $(i+j)$-th coefficient c_{i+j} of $f g$ equals:

$$
c_{i+j}=\left(a_{0} b_{i+j}+a_{1} b_{i+j-1}+\cdots+a_{i-1} b_{j+1}\right)+a_{i} b_{j}+\left(a_{i+1} b_{j-1}+\cdots+a_{i+j} b_{0}\right)
$$

All the terms of c_{i+j} are divisible by p except $a_{i} b_{j}$. Therefore p does not divide the $(i+j)$-th coefficient of $f g$. We have shown that no irreducible element divides all the coefficients of $f g$. Thus $f g$ must be primitive.

Lemma 1.6.8 Let R be a UFD and $f, g \in R[X]$. Then $c(f g)=c(f) \cdot c(g)$.
PROOF: Let $f=c(f) \cdot f_{1}$ and $g=c(g) \cdot g_{1}$ with f_{1} and g_{1} primitive. Then $f g=c(f) c(g) f_{1} g_{1}$ with $f_{1} g_{1}$ primitive by Gauss's lemma. Since the decomposition $f g=c(f) c(g) f_{1} g_{1}$ is unique, we have $c(f g)=c(f) c(g)$ (up to a unit).

Lemma 1.6.9 Let R be a UFD with field of fraction F. Then irreducible elements of $R[X]$ are exactly

1. the constant polynomials $f=c$ with c an irreducible element of R and
2. the primitive polynomials $f \in R[X]$ that are irreducible in $F[X]$.

PROOF: Each constant polynomial $f=c$ with c an irreducible element of R is clearly irreducible in $R[X]$ and vice versa. Let $f \in R[X]$ such that f is primitive and irreducible in $F[X]$. Then the only possible factorization in $R[X]$ is $f=d g$ where $d \in R$ since f is irreducible in $F[X]$. Since f is primitive and $d \mid f, d \in R^{\times}$, i.e. f is irreducible in $R[X]$. Conversely, let f be an irreducible non-constant polynomial in $R[X]$. Then $f=c(f) f_{1}$. Thus $c(f)$ is a unit in $R[X]^{\times}=R^{\times}$, i.e. f is primitive. Moreover, f is irreducible in $F[X]$ by Proposition 1.6.3.

Theorem 1.6.10 Let R be a UFD with field of fractions F. Then $R[X]$ is a UFD.
PROOF: First, we show that there is a factorization into irreducibles. Let $f \in R[X]$. Then $f=c(f) f_{1}$ with f_{1} primitive. Since R is UFD, $c(f)$ factors into irreducibles of R which are irreducibles of $R[X]$ as well by Lemma 1.6.9. As $f_{1} \in F[X]$ and $F[X]$ is a UFD, f_{1} factors into irreducibles in $F[X]$, say $f_{1}=g_{1} \cdots g_{n}$. By Corollary 1.6.4 $f_{1}=g_{1}^{\prime} \cdots g_{n}^{\prime}$ where g_{i}^{\prime} are non-constant polynomials from $R[X]$ and each g_{i}^{\prime} is irreducible in $F[X]$. It follows from Lemma 1.6.8 that each g_{i}^{\prime} must be primitive since f_{1} is primitive. Thus they are irreducible in $R[X]$ by Lemma 1.6.9.

Now let

$$
f=c_{1} \cdots c_{m} f_{1} \cdots f_{n}=d_{1} \cdots d_{r} g_{1} \cdots g_{s}
$$

be two factorizations of f into irreducibles with $c_{i}, d_{j} \in R$ and f_{i}, g_{j} primitive polynomials. By Lemma 1.6.6 we have

$$
c_{1} \cdots c_{m} \sim d_{1} \cdots d_{r}, \quad f_{1} \cdots f_{n} \sim g_{1} \cdots g_{s} .
$$

Since R is a UFD, we see that $m=r$ and c_{i} 's differ from d_{i} 's only by units and ordering. Similarly since $F[X]$ is a UFD, we see that $n=s$ and f_{i} 's differ from g_{i} 's only by units in F and ordering. But if $f_{i}=u g_{j}$ with $u \in F^{\times}$, then $u \in R^{\times}$because f_{i} and g_{j} are primitive. Indeed, $u=a / b$ for $a, b \in R$. Then $h=b f_{i}=a g_{j}$. Since f_{i} and g_{i} are primitive, we get $b \sim c(h) \sim a$ in R, i.e. $a / b \in R^{\times}$.

Corollary 1.6.11 Let k be a field. Then $k\left[X_{1}, \ldots, X_{n}\right]$ is a UFD.
Example 1.6.12 Let $f, g \in k[X]$ such that $\operatorname{gcd}(f, g)=1$ in $k[X]$. Prove that the following polynomial from $k[X, Y]$ is irreducible:

$$
h(X, Y)=f(X) \cdot Y+g(X) .
$$

Clearly h is irreducible in $k(X)[Y]$ (its degree in $k(X)[Y]$ is 1). Thus the only possible factorizations of h as a product $p q$ are such that either $p \in k(X)$ or $q \in k(X)$, say $p \in k(X)$. Then $q=c \cdot Y+d$ for some $c, d \in k(X)$. Since we are interested in factorizations in $k[X, Y]$, assume that $p, q \in k[X, Y]$, i.e. $c, d \in k[X]$. We have

$$
h=f \cdot Y+g=p q=p(c \cdot Y+d)=p c \cdot Y+p d .
$$

Thus $f=p c$ and $g=p d$. As $\operatorname{gcd}(f, g)=1$ in $k[X]$, we get $p \in k^{\times}$, i.e. h is irreducible in $k[X, Y]$.

Example 1.6.13 Prove that $Y+X^{n} \in k[X, Y]$ is irreducible for all $n \in \mathbb{N}$.

1.7 Affine varieties

Definition 1.7.1 Let k be a field. We define an affine n-space to be the set

$$
k^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{1}, \ldots, a_{n} \in k\right\}
$$

Let $f \in k\left[X_{1}, \ldots, X_{n}\right]$. Then f defines a function $f: k^{n} \rightarrow k$ in the obvious way. This correspondence need not be one-to-one. For instance, if k is a finite field, then there are only finitely many functions from k^{n} to k but countable many polynomials. However, as long as k is infinite, this assignment is injective.

Proposition 1.7.2 Let k be an infinite field and $f \in k\left[X_{1}, \ldots, X_{n}\right]$. Then $f=0$ iff $f: k^{n} \rightarrow$ k is the zero function.

PROOF: The left-to-right direction is obvious. The other one can be proven by induction on the number of variables. When $n=1$, we know that a non-zero polynomial in $k\left[X_{1}\right]$ can have only finitely many roots. Since $f(a)=0$ for all $a \in k$ (and k is infinite), f must be the zero polynomial. Now assume that the claim is valid for $n-1$, and let $f \in k\left[X_{1}, \ldots, X_{n}\right]$. We can write $f\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=0}^{d} g_{i}\left(X_{1}, \ldots, X_{n-1}\right) X_{n}^{i}$. Fix $\left(a_{1}, \ldots, a_{n-1}\right) \in k^{n-1}$. Since $f\left(a_{1}, \ldots, a_{n-1}, x_{n}\right)$ is the zero function, $f\left(a_{1}, \ldots, a_{n-1}, X_{n}\right)$ must be the zero polynomial in $k\left[X_{n}\right]$, i.e. its coefficients $g_{i}\left(a_{1}, \ldots, a_{n-1}\right)$ are zero. As $\left(a_{1}, \ldots, a_{n-1}\right)$ was chosen arbitrarily, we get by the induction assumption that g_{i} are the zero polynomials. Thus f must be the zero polynomial.

Corollary 1.7.3 Let k be an infinite field and $f, g \in k\left[X_{1}, \ldots, X_{n}\right]$. Then $f=g$ iff $f: k^{n} \rightarrow$ k and $g: k_{n} \rightarrow k$ are the same functions.

Proof: Assume that $f: k^{n} \rightarrow k$ and $g: k_{n} \rightarrow k$ are the same functions. Then $f-g$ is the zero function, i.e. $f-g$ is the zero polynomial. Thus $f=g$ in $k\left[X_{1}, \ldots, X_{n}\right]$. The other direction is trivial.

Definition 1.7.4 Let $S \subseteq k\left[X_{1}, \ldots, X_{n}\right]$. Then the affine variety defined by S is the set

$$
\mathbf{V}(S)=\left\{a \in k^{n} \mid f(a)=0 \text { for all } f \in S\right\} .
$$

By abuse of notation, we also write $\mathbf{V}\left(f_{1}, \ldots, f_{k}\right)$ for $\mathbf{V}(S)$ if $S=\left\{f_{1}, \ldots, f_{n}\right\}$.
Example 1.7.5 Here are some simple examples of affine varieties:

1. the affine n-space $k^{n}=\mathbf{V}(0)$,
2. the empty set $\emptyset=\mathbf{V}(1)$,
3. any single point $\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}=\mathbf{V}\left(X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right)$,
4. a circle in \mathbb{R}^{2} centered at the origin is the affine variety $\mathbf{V}\left(X^{2}+Y^{2}-r\right)$, where r is its radius,
5. any linear subspace of k^{n}.

Observation 1.7.6 Let $S_{1}, S_{2} \subseteq k\left[X_{1}, \ldots, X_{n}\right]$. If $S_{1} \subseteq S_{2}$ then $\mathbf{V}\left(S_{2}\right) \subseteq \mathbf{V}\left(S_{1}\right)$.
Note, that if $f, g \in S$ and $h \in k\left[X_{1}, \ldots, X_{n}\right]$, then

$$
\mathbf{V}(S \cup\{0\})=\mathbf{V}(S \cup\{f+g\})=\mathbf{V}(S \cup\{f \cdot h\})=\mathbf{V}(S) .
$$

Thus $\mathbf{V}(\langle S\rangle)=\mathbf{V}(S)$. Thus there is no difference whether we consider S to be a subset of $k\left[X_{1}, \ldots, X_{n}\right]$ or an ideal in $k\left[X_{1}, \ldots, X_{n}\right]$.

Definition 1.7.7 Let $V \subseteq k^{n}$. Then the set

$$
\mathbf{I}(V)=\left\{f \in k\left[X_{1}, \ldots, X_{n}\right] \mid f(a)=0 \text { for all } a \in V\right\}
$$

is called ideal of V.
The set $\mathbf{I}(V)$ is really an ideal. Clearly, the zero polynomial $0 \in \mathbf{I}(V)$. If $f, g \in \mathbf{I}(V)$, then $(f+g)(a)=f(a)+g(a)=0+0=0$ for all $a \in V$. Finally, for any $h \in k\left[X_{1}, \ldots, X_{n}\right]$ we have $(h \cdot f)(a)=h(a) \cdot f(a)=h(a) \cdot 0=0$ for all $a \in V$.

Observation 1.7.8 Let $V_{1}, V_{2} \subseteq k^{n}$. If $V_{1} \subseteq V_{2}$ then $\mathbf{I}\left(V_{2}\right) \subseteq \mathbf{I}\left(V_{1}\right)$.
Thus we have the following correspondence between affine varieties and ideals:

$$
\left\{\begin{array}{c}
\text { affine varieties } \\
\text { in } k^{n}
\end{array}\right\} \underset{\mathrm{I}}{\stackrel{\mathrm{v}}{\leftrightarrows}}\left\{\begin{array}{c}
\text { ideals in } \\
k\left[X_{1}, \ldots, X_{n}\right]
\end{array}\right\} .
$$

The mappings \mathbf{I}, \mathbf{V} are not inverses of each other in general. Consider e.g. $\left\langle X^{2}\right\rangle$ in $k[X]$. Then $\mathbf{V}\left(X^{2}\right)=\{0\}$ and $\mathbf{I}\left(\mathbf{V}\left(X^{2}\right)\right)=\langle X\rangle \neq\left\langle X^{2}\right\rangle$. However, we have $S \subseteq \mathbf{I}(\mathbf{V}(S))$ for S an ideal.

Lemma 1.7.9 Affine varieties are closed under arbitrary intersections and finite unions, i.e.

1. if $\left\{S_{i}\right\}$ is a family of subsets of $k\left[X_{1}, \ldots, X_{n}\right]$, then $\bigcap_{i} \mathbf{V}\left(S_{i}\right)=\mathbf{V}\left(\bigcup_{i} S_{i}\right)$,
2. if $S_{1}, S_{2} \subseteq k\left[X_{1}, \ldots, X_{n}\right]$, then $\mathbf{V}\left(S_{1}\right) \cup \mathbf{V}\left(S_{2}\right)=\mathbf{V}\left(S_{1} S_{2}\right)$, where

$$
S_{1} S_{2}=\left\{f \cdot g \mid f \in S_{1}, g \in S_{2}\right\} .
$$

PROOF: The first part is trivial. For the second consider $a \in \mathbf{V}\left(S_{1}\right) \cup \mathbf{V}\left(S_{2}\right)$. Thus either $f(a)=0$ for all $f \in S_{1}$ or $g(a)=0$ for all $g \in S_{2}$, say $f(a)=0$ for all $f \in S_{1}$. Then $(f \cdot g)(a)=f(a) \cdot g(a)=0$ for all $f \cdot g$ in $S_{1} S_{2}$. Conversely, assume that $a \notin \mathbf{V}\left(S_{1}\right) \cup \mathbf{V}\left(S_{2}\right)$, i.e. $a \notin \mathbf{V}\left(S_{1}\right)$ and $a \notin \mathbf{V}\left(S_{2}\right)$. Thus there $f \in S_{1}$ and $g \in S_{2}$ such that $f(a) \neq 0$ and $g(a) \neq 0$. Hence $(f \cdot g)(a) \neq 0$, i.e. $f \cdot g \notin \mathbf{V}\left(S_{1} S_{2}\right)$.

Remark 1.7.10 Due to the previous lemma, it can be easily seen that affine varieties on k^{n} forms a topology whose closed sets are exactly affine varieties. This topology on k^{n} is called Zariski topology. Zariski topology e.g. on \mathbb{R}^{n} is much more coarser than the usual one (closed set are in some sense "very small"). For instance the only closed proper subsets of k^{1} w.r.t. this topology are just finite subsets.

Example 1.7.11 Let $f, g \in \mathbb{C}[X, Y]$. Show that $\mathbf{V}(f, g)$ is finite iff f and g have no common irreducible factor.
(\Rightarrow) : First, we prove that $\mathbf{V}(f)$ is infinite if f is non-constant. W.l.o.g. we can assume that $f=\sum_{i=0}^{N} a_{i}(X) Y^{i}$ and $N>0$ (otherwise interchange the variables). Then $a_{N} \in \mathbb{C}[X]$ is the leading coefficient of f. Clearly, a_{N} can vanish only for finitely many values of X. This means that for infinitely many values of X, the leading coefficient a_{N} is non-zero. If we fix one of those values $x \in \mathbb{C}$, then $f(x, Y)$ is a polynomial from $\mathbb{C}[Y]$ of degree N. Since \mathbb{C} is algebraically closed, $f(x, Y)$ has at least one root. Thus for each value of X where a_{N} does not vanish, we have an element of $\mathbf{V}(f)$. Moreover, for different such values, we get different elements of $\mathbf{V}(f)$.

Secondly, it is clear that if f and g have a common irreducible factor d, then $\mathbf{V}(d)$ is infinite and $\mathbf{V}(d) \subseteq \mathbf{V}(f, g)$ because $f=d u$ and $g=d v$ for some $u, v \in \mathbb{C}[X, Y]$.
(\Leftarrow) : This implication holds for any field. So assume that $f, g \in k[X, Y]$. Recall that $k[X, Y]=k[X][Y]$. Consider factorizations of f and g into irreducibles:

$$
f=c_{1} \cdots c_{n} \cdot f_{1} \cdots f_{m}, \quad g=d_{1} \cdots d_{k} \cdot g_{1} \cdots g_{s}
$$

where $c_{i}, d_{j} \in k[X]$ and $f_{i}, g_{j} \in k[X][Y]$ primitive. If f, g have no common irreducible factor in $k[X, Y]$, then $c_{i} \not \nsim d_{j}$ and $f_{i} \nsucc g_{j}$. I claim that f, g have no common irreducible factor also in $k(X)[Y]$. Clearly, c_{i}, d_{j} are units of $k(X)$ and f_{i}, g_{j} are irreducibles also in $k(X)[Y]$. Assume that there is an irreducible element $e \in k(X)[Y]$ such that $e \mid f$ and $e \mid g$ in $k(X)[Y]$. Then $e \sim f_{i}$ for some i and $e \sim g_{j}$ for some j in $k(X)[Y]$. Thus $f_{i}=u g_{j}$ for some $u \in k(X)^{\times}$. Since f_{i}, g_{j} are primitive $u \in k[X]^{\times}=k^{\times}, f_{i} \sim g_{j}$ in $k[X][Y]$ (a contradiction). Consequently, $\operatorname{gcd}(f, g)=1$ in $k(X)[Y]$.

Finally, since $\langle f, g\rangle=\langle 1\rangle$ in $k(X)[Y]$, there are $A, B \in k(X)[Y]$ such that $A f+B g=1$. If we multiply this equality by all denominators of all coefficients of A, B (which are from $k[X])$, we get $\tilde{A} f+\tilde{B} g=\tilde{C}$ for some $\tilde{A}, \tilde{B} \in k[X, Y]$ and $\tilde{C} \in k[X]$. Thus $\tilde{C} \in\langle f, g\rangle$ in $k[X, Y]$. Since $\tilde{C} \in k[X]$, it can have only finitely many roots. Let x_{1}, \ldots, x_{k} be these roots. Then $(x, y) \in \mathbf{V}(f, g)$ only if $x=x_{i}$ for some i. Further, for all i we have that $f\left(x_{i}, Y\right), g\left(x_{i}, Y\right) \in k[Y]$ can also have only finitely many roots. Thus $\mathbf{V}(f, g)$ is finite.

1.8 Quotient rings

Definition 1.8.1 Let R be a ring. An equivalence relation \sim on R is called a congruence if $a \sim a^{\prime}$ and $b \sim b^{\prime}$ implies $a+b \sim a^{\prime}+b^{\prime}$ and $a b \sim a^{\prime} b^{\prime}$.

Lemma 1.8.2 Let R be a ring and I its ideal. Then the relation defined by $a \sim_{I} b$ iff $a-b \in I$, is a congruence.
PROOF: First, $a-a=0 \in I, b-a=-1 \cdot(a-b) \in I$, and $a-b, b-c \in I$ implies $a-c=a-b+b-c \in I$. Suppose that $a \sim a^{\prime}$ and $b \sim b^{\prime}$, i.e. $a-a^{\prime}, b-b^{\prime} \in I$. Then $a+b-a^{\prime}-b^{\prime}=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right) \in I$. Further, $a b-a^{\prime} b^{\prime}=a b-a^{\prime} b+a^{\prime} b-a^{\prime} b^{\prime}=$ $\left(a-a^{\prime}\right) b+a^{\prime}\left(b-b^{\prime}\right) \in I$.

Definition 1.8.3 Let R be a ring and I its ideal. Then the quotient ring R / I is the set of equivalence classes $\{[a] \mid a \in R\}$ where $[a]=\left\{b \in R \mid a \sim_{I} b\right\}$ endowed with operations: $[a]+[b]=[a+b]$ and $[a] \cdot[b]=[a \cdot b]$. The additive identity is $[0]$ and multiplicative is [1].

It is easy to check that the latter algebra is really a ring. One has to only show that the operations are well-defined (i.e. they are independent of the choice of representatives of the equivalence classes). Suppose that $a \sim_{I} a^{\prime}$ and $b \sim_{I} b^{\prime}$. Then by Lemma 1.8.2 we have $a+b \sim_{I} a^{\prime}+b^{\prime}$ and $a b \sim_{I} a^{\prime} b^{\prime}$, i.e. $[a]+[b]=[a+b]=\left[a^{\prime}+b^{\prime}\right]=\left[a^{\prime}\right]+\left[b^{\prime}\right]$ and $[a] \cdot[b]=[a b]=\left[a^{\prime} b^{\prime}\right]=\left[a^{\prime}\right] \cdot\left[b^{\prime}\right]$. The ring axioms are trivially satisfied e.g.

$$
[a]([b]+[c])=[a(b+c)]=[a b+a c]=[a][b]+[a][c], \quad[1] \cdot[a]=[1 \cdot a]=[a] .
$$

Observe that $[0]=\{f \mid f-0 \in I\}=I$.
Lemma 1.8.4 Let R be a ring and I an ideal. Then R / I is an integral domain iff I is prime.
Proof: (\Leftarrow) : Assume that $[a][b]=[0]$. Then $a b=a b-0 \in I$. Since I is prime, we get $a \in I$ or $b \in I$. Thus $[a]=[0]$ or $[b]=[0]$.
(\Rightarrow) : Let $a b \in I$. Then $[0]=[a b]=[a][b]$. Since R / I is an integral domain either $[a]=[0]$ or $[b]=[0]$. Thus either $a \in I$ or $b \in I$.

Definition 1.8.5 Let R be a ring and I a proper ideal. The ideal I is called maximal if for all ideals $J \supseteq I$ we have either $J=R$ or $J=I$.

Observe that each maximal ideal I is prime. Indeed, assume that $a b \in I$. If $a \notin I$ and $b \notin I$, then $\langle I \cup\{a\}\rangle=R$, i.e. $1=f a+g$ for some $f \in R$ and $g \in I$. Thus $b=f a b+b g \in I$.

Lemma 1.8.6 Let R be a ring and I a proper ideal. Then I is maximal iff R / I is a field.
PROOF: (\Rightarrow) : Since I is prime, R / I is an integral domain. We will prove that all non-zero elements of R / I have a multiplicative inverse. Let $[a] \neq[0]$, i.e. $a \notin I$. Since I is maximal, we have $\langle I \cup\{a\}\rangle=R$. Thus $1=f a+g$ for some $f \in R$ and $g \in I$. Consequently, $f a-1=g \in I$, i.e. $[f][a]=[f a]=[1]$.
(\Leftarrow) : Assume that R / I is a field. Let $a \notin I$. Then there is $b \in R$ such that $[a][b]=[a b]=$ [1]. Thus $1-a b=g \in I$. Since $1=g+a b \in\langle I \cup\{a\}\rangle$, we get $\langle I \cup\{a\}\rangle=R$. Hence we see that whenever we try to extend I by an element a not belonging to I, we obtain the whole ring R. This means that I is maximal.

Chapter 2

Gröbner bases

In this chapter we will develop the theory of Gröbner bases. The following problems can be considered as our motivation:

- Ideal description: Given an ideal I in $k\left[X_{1}, \ldots, X_{n}\right]$. Is there a finite generating set for I ?
- Ideal membership: Given a polynomial $f \in k\left[X_{1}, \ldots, X_{n}\right]$ and an ideal $I=\left\langle f_{1}, \ldots, f_{n}\right\rangle \subseteq$ $k\left[X_{1}, \ldots, X_{n}\right]$. Is there an algorithm how to decide whether $f \in I$ or not?
- Solution of a system of polynomial equations: Given an ideal $I=\left\langle f_{1}, \ldots, f_{n}\right\rangle \subseteq$ $k\left[X_{1}, \ldots, X_{n}\right]$. Can we describe $\mathbf{V}(I)$ (at least if it is finite)?

In the case of polynomials in one variable we can answer all the questions immediately. Since $k[X]$ is a PID, the answer to the first question is trivially "yes". Moreover, if $I=$ $\left\langle f_{1}, \ldots, f_{n}\right\rangle \subseteq k[X]$, then $I=\langle g\rangle$ where $g=\operatorname{gcd}\left(f_{1}, \ldots, f_{n}\right)$. Thus all polynomials in I are just multiples of g. Consequently, we have an algorithm for the second problem because $f \in I$ iff $g \mid f$ which can be easily determine by the division algorithm. The last problem is just the problem of computing the roots of g since $\mathbf{V}(I)=\mathbf{V}(g)$.

2.1 Term orders

We have seen that the division algorithm of polynomials in one variable was important for solving the first two above-mentioned problems. We would like to generalize it to the case of several variables. Note that the division in $k[X]$ uses the fact that we can order terms of a given polynomial w.r.t. the powers of X. We need something similar also for polynomials in $k\left[X_{1}, \ldots, X_{n}\right]$.

Definition 2.1.1 A relation \preceq on a set S is a partial order if it is reflexive, transitive and antisymmetric. In addition, \preceq is a total order if $x \preceq y$ or $y \preceq x$ for all $x, y \in S$. Finally, a total order on S is called a well-ordering if each non-empty subset of S has a minimum.

Let $M \subseteq S$. Recall that an element $y \in M$ is said to be minimal element of M w.r.t. a partial order \preceq if $x \in M$ together with $x \preceq y$ implies $x=y$.

Observe that the relation \leq_{ℓ} on \mathbb{N}^{n} defined as follows:

$$
\left(a_{1}, \ldots, a_{n}\right) \leq_{\ell}\left(b_{1}, \ldots, b_{n}\right) \text { if } a_{i} \leq b_{i} \text { for all } i
$$

is a partial order.
Let $\alpha=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ and $\beta=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{N}^{n}$. Then we define the i-th projection $\pi_{i}(\alpha)=a_{i}$, the sum $\alpha+\beta=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$ and the difference $\alpha-\beta=\left(a_{1}-b_{1}, a_{2}-b_{2}, \ldots, a_{n}-b_{n}\right) \in \mathbb{Z}^{n}$.

Definition 2.1.2 A total order \preceq on \mathbb{N}^{n} is called a term order (or monomial ordering) if

1. $\alpha \preceq \beta$ implies $\alpha+\gamma \preceq \beta+\gamma$ for all $\gamma \in \mathbb{N}^{n}$,
2. $\overline{0} \preceq \alpha$ for all $\alpha \in \mathbb{N}^{n}$ (where $\overline{0}$ is the zero n-tuple).

Example 2.1.3 Let $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ and $\beta=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{N}^{n}$. Then we define the following term orders:

- Lexicographic Order: $\alpha \preceq_{l e x} \beta$ if either $\alpha=\beta$ or the left-most non-zero component of $\beta-\alpha$ is positive.
- Graded Lex Order (grlex): $\alpha \preceq_{\text {grlex }} \beta$ if either

$$
|\alpha|=\sum_{i=1}^{n} a_{i}<|\beta|=\sum_{i=1}^{n} b_{i} \quad \text { or } \quad|\alpha|=|\beta| \text { and } \alpha \preceq_{\text {lex }} \beta .
$$

- Graded Reverse Lex Order (grevlex): $\alpha \preceq_{\text {grevex }} \beta$ if either

$$
|\alpha|=\sum_{i=1}^{n} a_{i}<|\beta|=\sum_{i=1}^{n} b_{i} \quad \text { or } \quad|\alpha|=|\beta|
$$

and the right-most non-zero component of $\beta-\alpha$ is negative.

- Weighted Order: Let $w \in \mathbb{N}^{n}$. Then $\alpha \preceq_{w} \beta$ if

$$
\alpha \cdot w<\beta \cdot w \quad \text { or } \quad \alpha \cdot w=\beta \cdot w \text { and } \alpha \preceq_{l e x} \beta .
$$

We have e.g.

$$
\begin{aligned}
& (0,3,4) \preceq_{\text {lex }}(1,2,0) \text { since }(1,2,0)-(0,3,4)=(1,-1,-4), \\
& (3,2,1) \preceq_{\text {lex }}(3,2,4) \text { since }(3,2,4)-(3,2,1)=(0,0,3), \\
& (0,0,1) \preceq_{\text {lex }}(0,1,0) \preceq_{\text {lex }}(1,0,0),
\end{aligned}
$$

$$
(3,2,0) \preceq_{\text {grlex }}(1,2,3) \text { since }|(3,2,0)|=5<6=|(1,2,3)|,
$$

$$
(1,1,5) \preceq_{\text {grlex }}(1,2,4) \text { since }|(1,1,5)|=7=|(1,2,4)| \text { and }(1,1,5) \preceq_{\text {lex }}(1,2,4),
$$

$$
(0,0,1) \preceq_{\text {grlex }}(0,1,0) \preceq_{\text {grlex }}(1,0,0),
$$

$$
(4,2,3) \preceq_{\text {grevlex }}(4,7,1) \text { since }|(4,2,3)|=9<12=|(4,7,1)| \text {, }
$$

$$
(4,1,3) \preceq_{\text {grevlex }}(1,5,2) \text { since }|(4,1,3)|=8=|(1,5,2)| \text { and }(1,5,2)-(4,1,3)=(-3,4,-1),
$$

$$
(0,0,1) \preceq_{\text {grevlex }}(0,1,0) \preceq_{\text {grevlex }}(1,0,0),
$$

Lemma 2.1.4 Let \preceq be a term order on \mathbb{N}^{n}. Then $\leq_{\ell} \subseteq \preceq$, i.e. whenever $\alpha \leq_{\ell} \beta$ then $\alpha \preceq \beta$.

PROOF: If $\alpha \leq_{\ell} \beta$ then $\pi_{i}(\alpha) \leq \pi_{i}(\beta)$ for all i. Thus $\beta-\alpha \in \mathbb{N}^{n}$. Consequently, $\overline{0} \preceq \beta-\alpha$. Finally,

$$
\alpha=\overline{0}+\alpha \preceq \beta-\alpha+\alpha=\beta
$$

Theorem 2.1.5 (Dickson's Lemma) Let $\emptyset \neq S \subseteq \mathbb{N}^{n}$. Then S has finitely many minimal elements w.r.t. \leq_{ℓ}.

PROOF: By induction on n. For $n=1$ it is trivial since \leq_{ℓ} coincides with the usual order \leq on \mathbb{N} which is a well-ordering. Assume that the claim is valid for $n-1$. Let $S \subseteq \mathbb{N}^{n}$ and $\alpha_{0} \in S$. Let us define for each $i \in\{1, \ldots, n\}$ and each $a \in\left\{0,1, \ldots, \pi_{i}\left(\alpha_{0}\right)-1\right\}$ the following set:

$$
S_{i, a}=\left\{\alpha \in S \mid \pi_{i}(\alpha)=a\right\}
$$

Obviously every $S_{i, a}$ can be identify with a subset of \mathbb{N}^{n-1}. By induction assumption there is a finite set $M_{i, a}$ of minimal elements of $S_{i, a}$. Let

$$
M=\left\{\alpha_{0}\right\} \cup \bigcup_{i, a} M_{i, a}
$$

The set M is obviously finite. I claim that each minimal element of S belongs to M. Let $\beta \in S$. We will show that $\alpha \leq_{\ell} \beta$ for some $\alpha \in M$. If β is not greater than or equal to α_{0}, then it has at least one component strictly smaller than the same component in α_{0}, i.e. there is i such that $\pi_{i}(\beta) \leq \pi_{i}\left(\alpha_{0}\right)-1$. Thus $\beta \in S_{i, a}$ for some i and a. Consequently β must be greater than or equal to some $\alpha \in M_{i, a} \subseteq M$.

Corollary 2.1.6 Each term order \preceq on \mathbb{N}^{n} is a well-ordering.
PROOF: Let $\emptyset \neq S \subseteq \mathbb{N}^{n}$. Then S has finitely many minimal elements $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ w.r.t. \leq_{ℓ}. Let $\beta \in S$. Then $\alpha_{i} \leq_{\ell} \beta$ for some i which implies $\alpha_{i} \preceq \beta$. Since \preceq is a total order, one of $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ must be the minimum of S w.r.t. \preceq.

Note that since \preceq is a well-ordering, every strictly increasing sequence in \mathbb{N}^{n} eventually terminates.

2.2 Monomial ideals

Definition 2.2.1 An ideal $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ is monomial if there is $S \subseteq \mathbb{N}^{n}$ (possibly infinite) such that I is generated by $\left\{X^{\alpha} \mid \alpha \in S\right\}$. We write $\left\langle X^{\alpha} \mid \alpha \in S\right\rangle$ for the monomial ideal generated by $S \subseteq \mathbb{N}^{n}$.

Theorem 2.2.2 Each monomial ideal in $k\left[X_{1}, \ldots, X_{n}\right]$ is finitely generated.
proof: Let I be a monomial ideal, and let $A=\left\{\alpha \mid X^{\alpha} \in I\right\}$. By Dickson's Lemma the set A has finitely many minimal elements $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$. I claim that $I=\left\langle X^{\alpha_{1}}, \ldots, X^{\alpha_{k}}\right\rangle$. Clearly $I \supseteq\left\langle X^{\alpha_{1}}, \ldots, X^{\alpha_{k}}\right\rangle$. For the second inclusion it suffices to show that each generator of I lies in $\left\langle X^{\alpha_{1}}, \ldots, X^{\alpha_{k}}\right\rangle$. Let X^{α} be a generator of I, hence $\alpha \in A$. Then $\alpha_{i} \leq_{\ell} \alpha$ for some i, i.e.
$\alpha-\alpha_{i} \in \mathbb{N}^{n}$. Thus $X^{\alpha}=X^{\alpha_{i}} X^{\alpha-\alpha_{i}} \in\left\langle X^{\alpha_{1}}, \ldots, X^{\alpha_{k}}\right\rangle$.

Lemma 2.2.3 Let $A \subseteq \mathbb{N}^{n}$ satisfying the following condition:

$$
\begin{equation*}
\alpha \in A, \quad \beta \in \mathbb{N}^{n} \Longrightarrow \alpha+\beta \in A \tag{}
\end{equation*}
$$

Then the k-linear subspace J of $k\left[X_{1}, \ldots, X_{n}\right]$ generated by $\left\{X^{\alpha} \mid \alpha \in A\right\}$ is the monomial ideal $\left\langle X^{\alpha} \mid \alpha \in A\right\rangle$.
Proof: We have to prove that J is an ideal. Clearly J is closed under addition and $0 \in J$. Let $f \in J$ and $g \in k\left[X_{1}, \ldots, X_{n}\right]$. Then

$$
f g=\left(\sum_{\alpha \in A} c_{\alpha} X^{\alpha}\right) \cdot\left(\sum_{\beta \in \mathbb{N}^{n}} d_{\beta} X^{\beta}\right)=\sum_{\alpha, \beta} c_{\alpha} d_{\beta} X^{\alpha+\beta}
$$

where all the sums are finite. Since A satisfies $\left(^{*}\right)$, we get $X^{\alpha+\beta} \in J$. Thus $f g \in J$.
Clearly, $J \subseteq\left\langle X^{\alpha} \mid \alpha \in A\right\rangle$ because every k-linear combination of the monomials X^{α} must belong to $\left\langle X^{\alpha} \mid \alpha \in A\right\rangle$. On the other hand, since $\left\langle X^{\alpha} \mid \alpha \in A\right\rangle$ is the smallest ideal containing all X^{α} for $\alpha \in A$, we get $J \supseteq\left\langle X^{\alpha} \mid \alpha \in A\right\rangle$.

From the previous lemma we obtain the following characterization of monomial ideals.
Theorem 2.2.4 Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be a monomial ideal and $A=\left\{\alpha \mid X^{\alpha} \in I\right\}$. Then A satisfies $\left({ }^{*}\right)$ and I is generated as a k-linear subspace of $k\left[X_{1}, \ldots, X_{n}\right]$ by $\left\{X^{\alpha} \mid \alpha \in A\right\}$.

Conversely, let $A \subseteq \mathbb{N}^{n}$ satisfying (*). Then the k-linear subspace of $k\left[X_{1}, \ldots, X_{n}\right]$ generated by $\left\{X^{\alpha} \mid \alpha \in A\right\}$ is a monomial ideal.
Proof: (\Rightarrow) : Let I be a monomial ideal. First, we will show that A satisfies (${ }^{*}$). Let $\alpha \in A$ and $\beta \in \mathbb{N}^{n}$. Then $X^{\alpha} \in I$. Consequently, $X^{\alpha} X^{\beta}=X^{\alpha+\beta} \in I$. Thus $\alpha+\beta \in A$. The fact that I is generated as a k-linear subspace by A follows from Lemma 2.2.3. Indeed, since A satisfies $\left({ }^{*}\right)$, the k-linear subspace generated by $\left\{X^{\alpha} \mid \alpha \in A\right\}$ is the monomial ideal $\left\langle X^{\alpha} \mid \alpha \in A\right\rangle$ which is obviously equal to I.
(\Leftarrow) : It follows immediately from Lemma 2.2.3.

Lemma 2.2.5 Let $S \subseteq \mathbb{N}^{n}$ and $I=\left\langle X^{\alpha} \mid \alpha \in S\right\rangle$ be the corresponding monomial ideal. Then $I=\left\langle X^{\alpha} \mid \alpha \in A\right\rangle$ where

$$
A=\left\{\beta \in \mathbb{N}^{n} \mid(\exists \alpha \in S)\left(\alpha \leq_{\ell} \beta\right)\right\}
$$

Moreover, $X^{\beta} \in I$ iff $X^{\alpha} \mid X^{\beta}$ for some $\alpha \in S$, i.e. $A=\left\{\alpha \in \mathbb{N}^{n} \mid X^{\alpha} \in I\right\}$.
Proof: Observe that $S \subseteq A$. Thus $I=\left\langle X^{\alpha} \mid \alpha \in S\right\rangle \subseteq\left\langle X^{\alpha} \mid \alpha \in A\right\rangle$. On the other hand, let $\beta \in A$, i.e. there is $\alpha \in S$ such that $\alpha \leq_{\ell} \beta$. Then $\beta-\alpha \in \mathbb{N}^{n}$ and $X^{\beta}=X^{\beta-\alpha} X^{\alpha}$, i.e. $X^{\beta} \in I$. Hence $\left\langle X^{\alpha} \mid \alpha \in A\right\rangle \subseteq I$.

The right-to-left direction of the second statement is straightforward. For the other one assume that $X^{\beta} \in I$. Observe that A satisfies (${ }^{*}$). Thus by Lemma 2.2.3 I is generated as a k-linear space by $\left\{X^{\alpha} \mid \alpha \in A\right\}$. Consequently, $X^{\beta}=\sum_{\alpha \in A} c_{\alpha} X^{\alpha}$ where the sum is finite. Since two polynomials are equal iff they have the same coefficients, $\beta=\alpha$ for some $\alpha \in A$. As $\beta \in A$, there is $\alpha \in S$ such that $\alpha \leq_{\ell} \beta$, i.e. $X^{\alpha} \mid X^{\beta}$.

Corollary 2.2.6 Let $S \subseteq \mathbb{N}^{n}$ and $I=\left\langle X^{\alpha} \mid \alpha \in S\right\rangle$. Then the minimal elements of $A=$ $\left\{\alpha \in \mathbb{N}^{n} \mid X^{\alpha} \in I\right\}$ belong to S, i.e. $I=\left\langle X^{\alpha_{1}}, \ldots, X^{\alpha_{s}}\right\rangle$ for $\alpha_{1}, \ldots, \alpha_{s} \in S$.

PROOF: By the previous lemma we have

$$
A=\left\{\beta \in \mathbb{N}^{n} \mid(\exists \alpha \in S)\left(\alpha \leq_{\ell} \beta\right)\right\}
$$

Let α_{0} be a minimal element of A. Then there exists $\alpha \in S$ such that $\alpha \leq_{\ell} \alpha_{0}$. Since $S \subseteq A$ and α_{0} is minimal, we obtain $\alpha_{0}=\alpha \in S$.

2.3 Division in $k\left[X_{1}, \ldots, X_{n}\right]$

Definition 2.3.1 Let $f=\sum_{\alpha} c_{\alpha} X^{\alpha}$ be a non-zero polynomial in $k\left[X_{1}, \ldots, X_{n}\right]$ and \preceq a term order.

1. The multidegree of f is

$$
\operatorname{mdeg}(f)=\max \left\{\alpha \in \mathbb{N}^{n} \mid c_{\alpha} \neq 0\right\}
$$

(the maximum is taken w.r.t. \preceq).
2. The leading coefficient of f is

$$
\mathrm{LC}(f)=c_{\operatorname{mdeg}(f)} \in k
$$

3. The leading monomial of f is

$$
\operatorname{LM}(f)=X^{\operatorname{mdeg}(f)}
$$

4. The leading term of f is

$$
\operatorname{LT}(f)=\operatorname{LC}(f) \cdot \operatorname{LM}(f) .
$$

Let X^{α} and X^{β} be two monomials, and let \preceq be a term order. Then we write $X^{\alpha} \preceq X^{\beta}$ if $\alpha \preceq \beta$.

Lemma 2.3.2 Let $f, g \in k\left[X_{1}, \ldots, X_{n}\right]$ be non-zero polynomials. Then

1. $\operatorname{mdeg}(f g)=\operatorname{mdeg}(f)+\operatorname{mdeg}(g)$,
2. if $f+g \neq 0$, then $\operatorname{mdeg}(f+g) \leq \max \{\operatorname{mdeg}(f), \operatorname{mdeg}(g)\}$.

PROOF: I claim that $\mathrm{LM}(f g)=\mathrm{LM}(f) \cdot \mathrm{LM}(g)=X^{\operatorname{mdeg}(f)+\operatorname{mdeg}(g)}$. For sure $f g$ contains a term with $X^{\operatorname{mdeg}(f)+\operatorname{mdeg}(g)}$. Thus it suffices to show that all other monomials appearing in $f g$ have smaller exponents. Let X^{α} (resp. X^{β}) be a monomial appearing in f (resp. in g). Then $\alpha \preceq \operatorname{mdeg}(f)$ and $\beta \preceq \operatorname{mdeg}(g)$. We have

$$
\alpha+\beta \preceq \operatorname{mdeg}(f)+\beta \preceq \operatorname{mdeg}(f)+\operatorname{mdeg}(g)
$$

Hence $X^{\alpha+\beta}$ has a smaller exponent than $X^{\operatorname{mdeg}(f)+\operatorname{mdeg}(g)}$.
The second statement is obvious.

Since $k[X]$ is a PID, it is possible to use the division algorithm in order to find out whether a given polynomial $f \in k[X]$ belongs to an ideal or not. This can be decided according to the remainder. However $k\left[X_{1}, \ldots, X_{n}\right]$ is not a PID. Thus we will need a more general division algorithm. More precisely, given a polynomial $f \in k\left[X_{1}, \ldots, X_{n}\right]$ and an ordered s-tuple $\left(f_{1}, \ldots, f_{s}\right), f_{i} \in k\left[X_{1}, \ldots, X_{n}\right]$, we would like to express f as follows:

$$
f=a_{1} f_{1}+a_{2} f_{2}+\ldots+a_{s} f_{s}+r
$$

because if $r=0$ then clearly $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
The division algorithm in $k\left[X_{1}, \ldots, X_{n}\right]$ is a quite straightforward generalization of the division algorithm in $k[X]$. We will illustrate it first on an example.

Example 2.3.3 Let $f=X^{2} Y+X Y^{2}+Y^{2}$ and $f_{1}=X Y-1, f_{2}=Y^{2}-1$. I will use the lex order such that $X \succeq Y$. Then the division goes as follows:

The division depends on the order of the divisors f_{i}. Let us divide f by $\left(Y^{2}-1, X Y-1\right)$.

$a_{1}:$	$X+1$	
$a_{2}:$	X	r
$Y^{2}-1$	$X^{2} Y+X Y^{2}+Y^{2}$	
$X Y-1$	$X^{2} Y-X$	
	$X Y^{2}+X+Y^{2}$	
	$X Y^{2}-X$	
	$2 X+Y^{2}$	$2 X$
	Y^{2}	
	$Y^{2}-1$	$2 X+1$
	1	$2 X$

$$
f=(X+1)\left(Y^{2}-1\right)+X(X Y-1)+2 X+1
$$

Theorem 2.3.4 Let \preceq be a term order and $F=\left(f_{1}, \ldots, f_{s}\right)$ be an s-tuple of polynomials in $k\left[X_{1}, \ldots, X_{n}\right]$. Then every $f \in k\left[X_{1}, \ldots, X_{n}\right]$ can be written as

$$
f=a_{1} f_{1}+a_{2} f_{2}+\ldots+a_{s} f_{s}+r
$$

where $a_{i}, r \in k\left[X_{1}, \ldots, X_{n}\right]$ and either $r=0$ or r is a k-linear combination of monomials, none of which is divisible by any of $\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{s}\right)$. We will call r a remainder of f on division by F. Furthermore, if $a_{i} f_{i} \neq 0$, then we have $\operatorname{mdeg}\left(a_{i} f_{i}\right) \preceq \operatorname{mdeg}(f)$.

PROOF: A precise description of the division algorithm is shown in Algorithm 1. We will

```
Algorithm 1 Division in \(k\left[X_{1}, \ldots, X_{n}\right]\)
Input: \(f, f_{1}, \ldots, f_{s}\) and a term order \(\preceq\)
Output: \(a_{1}, \ldots, a_{s}, r\)
    \(a_{1}:=0, \ldots, a_{s}:=0 ; r:=0\)
    \(p:=f\)
    while \(p \neq 0\) do
        \(i:=1\)
        divisionoccured := false
        while \(i \leq s\) and divisionoccured \(=\) false do
            if \(\operatorname{LT}\left(f_{i}\right) \mid \operatorname{LT}(p)\) then
                \(a_{i}:=a_{i}+\operatorname{LT}(p) / \operatorname{LT}\left(f_{i}\right)\)
                \(p:=p-\left(\operatorname{LT}(p) / \operatorname{LT}\left(f_{i}\right)\right) f_{i}\)
                divisionoccured \(:=\) true
            else
                \(i:=i+1\)
            end if
        end while
        if divisionoccured \(=\) false then
            \(r:=r+\operatorname{LT}(p)\)
            \(p:=p-\operatorname{LT}(p)\)
        end if
    end while
```

prove that in each step of the algorithm we have

$$
\begin{equation*}
f=a_{1} f_{1}+a_{2} f_{2}+\cdots+a_{s} f_{s}+p+r \tag{2.1}
\end{equation*}
$$

This is obvious for the initial values. In case when $\operatorname{LT}\left(f_{i}\right) \mid \mathrm{LT}(p)$ we get

$$
a_{i} f_{i}+p=\left(a_{i}+\frac{\operatorname{LT}(p)}{\operatorname{LT}\left(f_{i}\right)}\right) f_{i}+\left(p-\frac{\operatorname{LT}(p)}{\operatorname{LT}\left(f_{i}\right)} f_{i}\right)
$$

Since all remaining values are unaffected, (2.1) remains valid. In case when none of $\operatorname{LT}\left(f_{i}\right)$ divides $\operatorname{LT}(p)$, we have

$$
p+r=(p-\mathrm{LT}(p))+(r+\mathrm{LT}(p))
$$

showing that (2.1) is still preserved.
Observe that $\operatorname{mdeg}(p)$ decreases in each step of the algorithm. Thus the algorithm must eventually terminate since \preceq is a well-ordering. Moreover r has the desired properties since $\mathrm{LT}(p)$ is added to r only if $\operatorname{LT}(p)$ is not divisible by any of $\operatorname{LT}\left(f_{i}\right)$. Finally, if $a_{i} f_{i} \neq 0$, then each term of a_{i} is of the form $\operatorname{LT}(p) / \operatorname{LT}\left(f_{i}\right)$ for some value of p. Observe that $\operatorname{mdeg}(p) \preceq \operatorname{mdeg}(f)$ at each step of the algorithm. Thus $\operatorname{mdeg}\left(a_{i} f_{i}\right) \preceq \operatorname{mdeg}(f)$ because

$$
\operatorname{LT}\left(a_{i} f_{i}\right)=\operatorname{LT}\left(a_{i}\right) \operatorname{LT}\left(f_{i}\right)=\frac{\operatorname{LT}(p)}{\operatorname{LT}\left(f_{i}\right)} \operatorname{LT}\left(f_{i}\right)=\operatorname{LT}(p) .
$$

Let $f \in k\left[X_{1}, \ldots, X_{n}\right]$ and $F=\left(f_{1}, \ldots, f_{s}\right)$ an ordered s-tuple of polynomials in $k\left[X_{1}, \ldots, X_{n}\right]$. If the remainder r of f on the division by F is zero, then clearly $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$. However, this is only sufficient conditions and not necessary as it is show in the following example.

Example 2.3.5 Let $f_{1}=X Y+1, f_{2}=Y^{2}-1 \in k[X, Y]$ with the lex order. Dividing $f=X Y^{2}-X$ by $F=\left(f_{1}, f_{2}\right)$, we get

$$
X Y^{2}-X=Y \cdot(X Y+1)+0 \cdot\left(Y^{2}-1\right)+(-X-Y)
$$

Dividing $f=X Y^{2}-X$ by $F=\left(f_{2}, f_{1}\right)$, we get

$$
X Y^{2}-X=X \cdot\left(Y^{2}-1\right)+0 \cdot(X Y+1)+0 .
$$

Thus $f \in\left\langle f_{1}, f_{2}\right\rangle$ but the remainder in the first case is $-X-Y$.

2.4 Hilbert Basis Theorem

Definition 2.4.1 Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal and \preceq a term order. We define

$$
\operatorname{LT}(I)=\{\operatorname{LT}(f) \mid f \in I \backslash\{0\}\}, \quad \operatorname{LM}(I)=\{\operatorname{LM}(g) \mid g \in I \backslash\{0\}\},
$$

where $\operatorname{LT}(f)$ and $\operatorname{LM}(f)$ are taken w.r.t. \preceq. The ideal generated by $\operatorname{LT}(I)$ (resp. $\mathrm{LM}(I)$) is denoted $\langle\mathrm{LT}(I)\rangle$ (resp. $\langle\mathrm{LM}(I)\rangle)$.

Observation 2.4.2 Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal. Then $\langle\operatorname{LT}(I)\rangle$ is a monomial ideal. Proof: It can be easily seen that $\langle\mathrm{LT}(I)\rangle=\langle\mathrm{LM}(I)\rangle$ since $\mathrm{LT}(g)$ is just a multiple of $\operatorname{LM}(g)$ by a non-zero constant.

Lemma 2.4.3 The ideal $\langle\operatorname{LT}(I)\rangle=\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)\right\rangle$ for some $g_{1}, \ldots, g_{s} \in I$.
Proof: By Corollary 2.2.6 we get $\langle\mathrm{LT}(I)\rangle=\langle\mathrm{LM}(I)\rangle=\left\langle\operatorname{LM}\left(g_{1}\right), \ldots, \mathrm{LM}\left(g_{s}\right)\right\rangle$ for some $g_{i} \in I$. Again by the previous observation we have

$$
\left\langle\operatorname{LM}\left(g_{1}\right), \ldots, \operatorname{LM}\left(g_{s}\right)\right\rangle=\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)\right\rangle
$$

Theorem 2.4.4 (Hilbert Basis Theorem) Every ideal $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ is finitely generated.

Proof: Clearly, $I=\{0\}$ is finitely generated. Thus assume that $I \neq\{0\}$. By previous lemma there are $g_{1}, \ldots, g_{s} \in I$ such that $\langle\operatorname{LT}(I)\rangle=\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)\right\rangle$. I claim that $I=$ $\left\langle g_{1}, \ldots, g_{s}\right\rangle$.

Clearly $\left\langle g_{1}, \ldots, g_{s}\right\rangle \subseteq I$. Let $f \in I$. By the division algorithm there are polynomials a_{1}, \ldots, a_{s} and r such that

$$
f=a_{1} g_{1}+\cdots+a_{s} g_{s}+r,
$$

where every term of r is divisible by none of $\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)$. Then $r=f-\left(a_{1} g_{1}+\cdots+\right.$ $a_{s} g_{s}$), i.e. $r \in I$. If $r \neq 0$ then $\mathrm{LT}(r) \in\langle\operatorname{LT}(I)\rangle=\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)\right\rangle$. Thus by Lemma 2.2.5 we have $\operatorname{LT}\left(g_{i}\right) \mid \operatorname{LT}(r)$ for some i (a contradiction with the fact that r is the remainder of f on division by $\left(g_{1}, \ldots, g_{s}\right)$). Consequently, $r=0$ which means that $f \in\left\langle g_{1}, \ldots, g_{s}\right\rangle$.

Corollary 2.4.5 The polynomial ring $k\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian.
Corollary 2.4.6 Let $S \subseteq k\left[X_{1}, \ldots, X_{n}\right]$. Then $\mathbf{V}(S)=\mathbf{V}\left(f_{1}, \ldots, f_{s}\right)$ for some $f_{1}, \ldots, f_{s} \in$ $\langle S\rangle$.

Proof: We have $\mathbf{V}(S)=\mathbf{V}(\langle S\rangle)=\mathbf{V}\left(f_{1}, \ldots, f_{s}\right)$ since $\langle S\rangle$ is finitely generated by Hilbert Basis Theorem.

2.5 Gröbner Bases

Definition 2.5.1 Fix a term order. A finite subset $G=\left\{g_{1}, \ldots, g_{s}\right\}$ of an ideal I is called a Gröbner basis if

$$
\langle\operatorname{LT}(I)\rangle=\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)\right\rangle .
$$

Observe that we have seen in the proof of Hilbert Basis Theorem that for every ideal $I \neq\{0\}$ a Gröbner basis exists and generates I.

Proposition 2.5.2 Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal, $G=\left\{g_{1}, \ldots, g_{s}\right\}$ a Gröbner basis of I w.r.t. a term order, and $f \in k\left[X_{1}, \ldots, X_{n}\right]$. There there is a unique $r \in k\left[X_{1}, \ldots, X_{n}\right]$ with the following two properties:

1. No term of r is divisible by any of $\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)$.
2. There is $g \in I$ such that $f=g+r$.

PROOF: The division algorithm gives $f=\sum a_{i} g_{i}+r$, where r satisfies the first property and $\sum a_{i} g_{i} \in I$. Thus r with the required properties exists.

Now, assume that we can express f as follows:

$$
f=g_{1}+r_{1}=g_{2}+r_{2},
$$

where $g_{1}, g_{2} \in I$ and r_{1}, r_{2} have the required properties. Then $r_{1}-r_{2} \in I$ and no term is divisible by any of $\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)$. This means that $r_{1}-r_{2}=0$ otherwise $\operatorname{LT}\left(r_{1}-r_{2}\right) \in\langle\operatorname{LT}(I)\rangle$
would be divisible by some $\operatorname{LT}\left(g_{i}\right)$ by Lemma 2.2.5.
Observe that the division by a Gröbner basis $G=\left\{g_{1}, \ldots, g_{s}\right\}$ does not depend on the order of g_{i} 's.

Corollary 2.5.3 Gröbner bases solve the ideal membership problem. More precisely, let $I \subseteq$ $k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal, G a Gröbner basis of I, and $f \in k\left[X_{1}, \ldots, X_{n}\right]$. Then $f \in I$ iff the remainder of f after division by G is zero.

PROOF: Let r be the remainder. We saw already that $r=0$ implies $f \in I$. Conversely, assume that $f \in I$. Then by the division algorithm we can write $f=\sum a_{i} g_{i}+r$ where r satisfies the conditions from the previous proposition. At the same time we can write $f=f+0$ where 0 satisfies the same conditions as well. By uniqueness we get $r=0$.

Definition 2.5.4 We will write \bar{f}^{G} for the remainder of f on division by $G=\left(g_{1}, \ldots, g_{s}\right)$.
If we have a basis $\left\{g_{1}, \ldots, g_{s}\right\}$ (i.e. a generating set) of an ideal I, then it may happen that

$$
\operatorname{LT}(I) \neq\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)\right\rangle .
$$

Thus not each generating set for I is necessarily a Gröbner basis. To see this consider for example the ideal $\left\langle f_{1}, f_{2}\right\rangle$ where $f_{1}=X^{3}-2 X Y$ and $f_{2}=X^{2} Y+X-2 Y^{2}$. Let us use the lex term order. Then

$$
X\left(X^{2} Y+X-2 Y^{2}\right)-Y\left(X^{3}-2 X Y\right)=X^{2}
$$

Thus $X^{2} \in\left\langle f_{1}, f_{2}\right\rangle$ and $X^{2}=\operatorname{LT}\left(X^{2}\right) \in\langle\operatorname{LT}(I)\rangle$. However,

$$
X^{2} \notin\left\langle\operatorname{LT}\left(f_{1}\right), \operatorname{LT}\left(f_{2}\right)\right\rangle=\left\langle X^{3}, X^{2} Y\right\rangle .
$$

This is caused by the fact that the leading terms in the combination producing X^{2} cancel.
Let $\alpha, \beta \in \mathbb{N}^{n}$, and let $\gamma=\sup \{\alpha, \beta\}$, i.e. for each i we have $\pi_{i}(\gamma)=\max \left\{\pi_{i}(\alpha), \pi_{i}(\beta)\right\}$. Then we call X^{γ} the least common multiple of X^{α} and X^{β}. It is denoted by $\operatorname{LCM}\left(X^{\alpha}, X^{\beta}\right)$. Fix a term order \preceq. The corresponding strict order will be denoted by \prec.

Definition 2.5.5 Let $f, g \in k\left[X_{1}, \ldots, X_{n}\right]$ be non-zero polynomials and $X^{\gamma}=\operatorname{LCM}(\operatorname{LM}(f), \operatorname{LM}(g))$. Then the S-polynomial of f and g is the combination

$$
S(f, g)=\frac{X^{\gamma}}{\operatorname{LT}(f)} f-\frac{X^{\gamma}}{\operatorname{LT}(g)} g
$$

Observe that the leading terms of $\frac{X^{\gamma}}{\operatorname{LT}(f)} f$ and $\frac{X^{\gamma}}{\operatorname{LT}(g)} g$ cancel in $S(f, g)$. Indeed, as we can write $f=\operatorname{LT}(f)+f^{\prime}$ and $g=\operatorname{LT}(g)+g^{\prime}$ for some $f^{\prime}, g^{\prime} \in k\left[X_{1}, \ldots, X_{n}\right]$ such that $\operatorname{mdeg}\left(f^{\prime}\right) \prec \operatorname{mdeg}(f)$ and $\operatorname{mdeg}\left(g^{\prime}\right) \prec \operatorname{mdeg}(g)$, we get

$$
S(f, g)=\frac{X^{\gamma}}{\operatorname{LT}(f)}\left(\operatorname{LT}(f)+f^{\prime}\right)-\frac{X^{\gamma}}{\operatorname{LT}(g)}\left(\operatorname{LT}(g)+g^{\prime}\right)=\frac{X^{\gamma}}{\operatorname{LT}(f)} f^{\prime}-\frac{X^{\gamma}}{\operatorname{LT}(g)} g^{\prime}
$$

Moreover, since $\operatorname{mdeg}\left(f^{\prime}\right) \prec \operatorname{mdeg}(f)$ and $\operatorname{mdeg}\left(g^{\prime}\right) \prec \operatorname{mdeg}(g)$, we have

$$
\operatorname{mdeg}\left(f^{\prime}\right)+\gamma-\operatorname{mdeg}(f) \prec \gamma, \quad \operatorname{mdeg}\left(g^{\prime}\right)+\gamma-\operatorname{mdeg}(g) \prec \gamma .
$$

Thus $\operatorname{mdeg}(S(f, g)) \prec \gamma$ because

$$
\operatorname{mdeg}(S(f, g)) \preceq \max \left\{\operatorname{mdeg}\left(f^{\prime}\right)+\gamma-\operatorname{mdeg}(f), \operatorname{mdeg}\left(g^{\prime}\right)+\gamma-\operatorname{mdeg}(g)\right\} .
$$

Example 2.5.6 Let $f=X^{3} Y^{2}-X^{2} Y^{3}+X$ and $g=3 X^{4} Y+Y^{2}$, and let \preceq be the lex order. Then $\operatorname{LCM}(\operatorname{LM}(f), \operatorname{LM}(g))=X^{4} Y^{2}$. Thus

$$
S(f, g)=\frac{X^{4} Y^{2}}{X^{3} Y^{2}} f-\frac{X^{4} Y^{2}}{3 X^{4} Y} g=X \cdot f-Y \cdot g=-X^{3} Y^{3}-X^{2}-\frac{1}{3} Y^{3} .
$$

Lemma 2.5.7 Suppose that $f=\sum_{i=1}^{s} c_{i} X^{\alpha(i)} g_{i}$, where $g_{i} \in k\left[X_{1}, \ldots, X_{n}\right], c_{i} \in k \backslash\{0\}$, $\alpha(i) \in \mathbb{N}^{n}$, and $\alpha(i)+\operatorname{mdeg}\left(g_{i}\right)=\delta$. If $\operatorname{mdeg}(f) \prec \delta$, then there are $c_{j k} \in k$ such that

$$
f=\sum_{j, k} c_{j k} X^{\delta-\gamma_{j k}} S\left(g_{j}, g_{k}\right),
$$

where $X^{\gamma_{j k}}=\operatorname{LCM}\left(\operatorname{LM}\left(g_{j}\right), \operatorname{LM}\left(g_{k}\right)\right)$. Furthermore, $\operatorname{mdeg}\left(X^{\delta-\gamma_{j k}} S\left(g_{j}, g_{k}\right)\right) \prec \delta$ for each j, k. Proof: Let $d_{i}=\operatorname{LC}\left(g_{i}\right)$. Thus $c_{i} d_{i}=\operatorname{LC}\left(c_{i} X^{\alpha(i)} g_{i}\right)$. Since $\operatorname{mdeg}\left(c_{i} X^{\alpha(i)} g_{i}\right)=\delta$ for each i and $\operatorname{mdeg}(f) \prec \delta$, we have $\sum_{i=1}^{s} c_{i} d_{i}=0$.

Define $p_{i}=X^{\alpha(i)} g_{i} / d_{i}$ and consider the following telescoping sum:

$$
\begin{aligned}
& f=\sum_{i=1}^{s} c_{i} X^{\alpha(i)} g_{i}=\sum_{i=1}^{s} c_{i} d_{i} p_{i}=c_{1} d_{1}\left(p_{1}-p_{2}\right)+\left(c_{1} d_{1}+c_{2} d_{2}\right)\left(p_{2}-p_{3}\right)+ \\
& \left(c_{1} d_{1}+c_{2} d_{2}+c_{3} d_{3}\right)\left(p_{3}-p_{4}\right)+\cdots+\left(c_{1} d_{1}+\cdots+c_{s-1} d_{s-1}\right)\left(p_{s-1}-p_{s}\right)+\left(c_{1} d_{1}+\cdots+c_{s} d_{s}\right) p_{s}
\end{aligned}
$$

Since $\alpha(i)+\operatorname{mdeg}\left(g_{i}\right)=\delta$ (i.e. $\operatorname{mdeg}\left(g_{i}\right) \leq_{\ell} \delta$) for each i, we have for each pair j, k :

$$
\gamma_{j k}=\sup \left\{\operatorname{mdeg}\left(g_{j}\right), \operatorname{mdeg}\left(g_{k}\right)\right\} \leq_{\ell} \delta .
$$

Thus $X^{\delta-\gamma_{j k}}$ is a monomial and we have

$$
\begin{aligned}
X^{\delta-\gamma_{j k}} S\left(g_{j}, g_{k}\right)=X^{\delta-\gamma_{j k}} & \left(\frac{X^{\gamma_{j k}}}{\operatorname{LT}\left(g_{j}\right)} g_{j}-\frac{X^{\gamma_{j k}}}{\operatorname{LT}\left(g_{k}\right)} g_{k}\right)= \\
& =\frac{X^{\delta}}{d_{j} \mathrm{LM}\left(g_{j}\right)} g_{j}-\frac{X^{\delta}}{d_{k} \mathrm{LM}\left(g_{k}\right)} g_{k}=\frac{X^{\alpha(j)} g_{j}}{d_{j}}-\frac{X^{\alpha(k)} g_{k}}{d_{k}}=p_{j}-p_{k} .
\end{aligned}
$$

Using this and $\sum_{i=1}^{s} c_{i} d_{i}=0$, the telescoping sum can be rewritten as follows:

$$
\begin{aligned}
f=c_{1} d_{1} X^{\delta-\gamma_{12}} S\left(g_{1}, g_{2}\right)+\left(c_{1} d_{1}+c_{2} d_{2}\right) & X^{\delta-\gamma_{23}} S\left(g_{2}, g_{3}\right)+ \\
& +\cdots+\left(c_{1} d_{1}+\cdots+c_{s-1} d_{s-1}\right) X^{\delta-\gamma_{s-1, s}} S\left(g_{s-1}, g_{s}\right)
\end{aligned}
$$

which is a sum of the desired form.
Finally, since $X^{\delta-\gamma_{j k}} S\left(g_{j}, g_{k}\right)=p_{j}-p_{k}$, it suffices to show that $\operatorname{mdeg}\left(p_{j}-p_{k}\right) \prec \delta$. But this is obvious because $\operatorname{mdeg}\left(p_{j}\right)=\operatorname{mdeg}\left(p_{k}\right)=\delta$ and $\operatorname{LC}\left(p_{j}\right)=\operatorname{LC}\left(p_{k}\right)=1$.

Theorem 2.5.8 Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal. Then a basis $G=\left\{g_{1}, \ldots, g_{s}\right\}$ for I is a Gröbner basis for I iff for all pairs $i \neq j$, the remainder of $S\left(g_{i}, g_{j}\right)$ on division by G is zero.
proof: (\Rightarrow) : Since $S\left(g_{i}, g_{j}\right) \in I$, the remainder must be zero because G is a Gröbner basis. (\Leftarrow) : Let $f \in I$ be a non-zero polynomial. We have to show that $\operatorname{LT}(f) \in\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)\right\rangle$. There are some $h_{i} \in k\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
f=\sum_{i=1}^{s} h_{i} g_{i}
$$

By Lemma 2.3.2 we have $\operatorname{mdeg}(f) \preceq \max \left\{\operatorname{mdeg}\left(h_{i} g_{i}\right) \mid 1 \leq i \leq s\right\}$. If we show that we can find the polynomials h_{i} in such a way that $\operatorname{mdeg}(f)=\operatorname{mdeg}\left(h_{i} g_{i}\right)$ for some i, then we are done since $\mathrm{LT}\left(g_{i}\right) \mid \mathrm{LT}(f)$ in that case.

Consider all possible ways that f can be expressed in the form $\sum_{i=1}^{s} h_{i} g_{i}$. Given such expression, let $m(i)=\operatorname{mdeg}\left(h_{i} g_{i}\right)$ and $\delta=\max \{m(1), \ldots, m(s)\}$. Thus $\operatorname{mdeg}(f) \preceq \delta$. For each such expression, we can get a possibly different δ. Since \preceq is a well-ordering, we can choose such expression for which δ is minimal. For this expression we will prove that $\operatorname{mdeg}(f)=\delta$ which is what we want to show.

Suppose that $\operatorname{mdeg}(f) \prec \delta$. We can write f in the following form:

$$
f=\sum_{m(i)=\delta} h_{i} g_{i}+\sum_{m(i) \prec \delta} h_{i} g_{i}=\sum_{m(i)=\delta} \operatorname{LT}\left(h_{i}\right) g_{i}+\sum_{m(i)=\delta}\left(h_{i}-\operatorname{LT}\left(h_{i}\right)\right) g_{i}+\sum_{m(i) \prec \delta} h_{i} g_{i} .
$$

Since monomials appearing in the second and the third summand have multidegree strictly less than δ, the first summand must also have multidegree strictly less than δ (we are assuming $\operatorname{mdeg}(f) \prec \delta)$.

Let $\operatorname{LT}\left(h_{i}\right)=c_{i} X^{\alpha(i)}$. Then $\sum_{m(i)=\delta} \operatorname{LT}\left(h_{i}\right) g_{i}=\sum_{m(i)=\delta} c_{i} X^{\alpha(i)} g_{i}$. Thus we can use Lemma 2.5.7 and express it by means of S-polynomials:

$$
\sum_{m(i)=\delta} \operatorname{LT}\left(h_{i}\right) g_{i}=\sum_{j, k} c_{j k} X^{\delta-\gamma_{j k}} S\left(g_{j}, g_{k}\right) .
$$

Now we can use the assumption that the remainder of $S\left(g_{j}, g_{k}\right)$ after division by G is zero, i.e.

$$
S\left(g_{j}, g_{k}\right)=\sum_{i=1}^{s} a_{i j k} g_{i}
$$

for some $a_{i j k} \in k\left[X_{1}, \ldots, X_{n}\right]$. Moreover, we know that $\operatorname{mdeg}\left(a_{i j k} g_{i}\right) \preceq \operatorname{mdeg}\left(S\left(g_{j}, g_{k}\right)\right)$ (see Theorem 2.3.4). Then

$$
X^{\delta-\gamma_{j k}} S\left(g_{j}, g_{k}\right)=\sum_{i=1}^{s} b_{i j k} g_{i}
$$

where $b_{i j k}=X^{\delta-\gamma_{j k}} a_{i j k}$ and by Lemma 2.5.7

$$
\operatorname{mdeg}\left(b_{i j k} g_{i}\right) \preceq \operatorname{mdeg}\left(X^{\delta-\gamma_{j k}} S\left(g_{j}, g_{k}\right)\right) \prec \delta .
$$

Thus we obtain

$$
\begin{aligned}
& \sum_{m(i)=\delta} \mathrm{LT}\left(h_{i}\right) g_{i}=\sum_{j, k} c_{j k} X^{\delta-\gamma_{j k}} S\left(g_{j}, g_{k}\right)= \\
&=\sum_{j, k} c_{j k}\left(\sum_{i=1}^{s} b_{i j k} g_{i}\right)=\sum_{i}\left(\sum_{j, k} c_{j k} b_{i j k}\right) g_{i}=\sum_{i=1}^{s} h_{i}^{\prime} g_{i},
\end{aligned}
$$

and $\operatorname{mdeg}\left(h_{i}^{\prime} g_{i}\right) \prec \delta$ since $c_{j k}$ are constants. Finally,

$$
f=\sum_{i=1}^{s} h_{i}^{\prime} g_{i}+\sum_{m(i)=\delta}\left(h_{i}-\operatorname{LT}\left(h_{i}\right)\right) g_{i}+\sum_{m(i) \prec \delta} h_{i} g_{i} .
$$

Thus we have expressed f as a polynomial combination of g_{i} 's where the multidegree of all summands is strictly less than δ. But this is a contradiction with the minimality of δ. Hence $\operatorname{mdeg}(f)=\delta$ and we are done.

Example 2.5.9 Prove that $G=\left\{Y-X^{2}, Z-X^{3}\right\}$ is a Gröbner basis for $I=\left\langle Y-X^{2}, Z-X^{3}\right\rangle$ w.r.t. the lex order given by $Y \succ Z \succ X$. We have

$$
S\left(Y-X^{2}, Z-X^{3}\right)=\frac{Y Z}{Y}\left(Y-X^{2}\right)-\frac{Y Z}{Z}\left(Z-X^{3}\right)=Y X^{3}-Z X^{2} .
$$

By the division algorithm we get

$$
Y X^{3}-Z X^{2}=X^{3}\left(Y-X^{2}\right)+\left(-X^{2}\right)\left(Z-X^{3}\right)+0
$$

Thus $\overline{S\left(Y-X^{2}, Z-X^{3}\right)}{ }^{G}=0$ showing that G is a Gröbner basis.
Show that G is not Gröbner basis w.r.t. the lex order given by $X \succ Y \succ Z$. We have

$$
S\left(-X^{3}+Z,-X^{2}+Y\right)=\frac{X^{3}}{X^{3}}\left(-X^{3}+Z\right)-\frac{X^{3}}{X^{2}}\left(-X^{2}+Y\right)=-X Y+Z
$$

The division gets

$$
-X Y+Z=0 \cdot\left(-X^{3}+Z\right)+0 \cdot\left(-X^{2}+Y\right)-X Y+Z
$$

Thus $\overline{S\left(-X^{3}+Z,-X^{2}+Y\right)}{ }^{G}=-X Y+Z$, i.e. G is not a Gröbner basis.

2.6 Buchberger's Algorithm

Now we will present how to construct a Gröbner basis from a generating set for an ideal.
Theorem 2.6.1 Let $I=\left\langle f_{1}, \ldots, f_{t}\right\rangle \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be a non-zero ideal and \preceq a term order. Then a Gröbner basis for I w.r.t. \preceq can be constructed by Algorithm 2.

PROOF: First, observe that $G \subseteq I$ in each step of the algorithm. This is clearly valid in the initial step. Then if $p, q \in I$, then $S(p, q) \in I$ and $\overline{S(p, q)}{ }^{G} \in I$. The algorithm terminates when $\overline{S(p, q)}^{G}=0$ for each pair p, q, i.e. G is a Gröbner basis.

Secondly, if the algorithm does not terminate, then G is expanded at least by one polynomial S, i.e. $G^{\prime} \subsetneq G$. We will show that also $\left\langle\operatorname{LT}\left(G^{\prime}\right)\right\rangle \subsetneq\langle\operatorname{LT}(G)\rangle$. To see this consider $r \in G \backslash G^{\prime}$. Since r is a remainder on division by $G^{\prime}, \operatorname{LT}(r)$ is not divisible by any of the leading terms of elements from G^{\prime}. Thus $\operatorname{LT}(r) \notin\left\langle\mathrm{LT}\left(G^{\prime}\right)\right\rangle$ but $\mathrm{LT}(r) \in\langle\mathrm{LT}(G)\rangle$.

Finally, since the ideals $\left\langle\operatorname{LT}\left(G^{\prime}\right)\right\rangle$ form an ascending chain and $k\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian, the chain must become constant, i.e. $G=G^{\prime}$ at some step and the algorithm terminates.

```
Algorithm 2 Buchberger's Algorithm
Input: \(F=\left\{f_{1}, \ldots, f_{t}\right\}\) and a term order \(\preceq\)
Output: a Gröbner basis \(G=\left\{g_{1}, \ldots, g_{s}\right\}\) for \(\langle F\rangle\) w.r.t. \(\preceq\) such that \(F \subseteq G\)
    \(G:=F\)
    repeat
        \(G^{\prime}:=G\)
        for each \(\{p, q\} \subseteq G^{\prime}, p \neq q\) do
            \(S:=\overline{S(p, q)} \overline{\bar{G}}^{\prime}\)
            if \(S \neq 0\) then
                \(G:=G \cup\{S\}\)
            end if
        end for
    until \(G=G^{\prime}\)
```

Example 2.6.2 Find a Gröbner basis of $\left\langle f_{1}, f_{2}\right\rangle$ w.r.t. the lex order given by $X \succ Y$, where $f_{1}=X^{2}$ and $f_{2}=X Y+Y^{2}$.

Let $F=\left(f_{1}, f_{2}\right)$. We have

$$
\begin{gathered}
S\left(f_{1}, f_{2}\right)=Y X^{2}-X\left(X Y+Y^{2}\right)=-X Y^{2}=0 \cdot X^{2}+(-Y)\left(X Y+Y^{2}\right)+Y^{3} \\
{\overline{S\left(f_{1}, f_{2}\right)}}^{F}=Y^{3}
\end{gathered}
$$

Expand F by $f_{3}=Y^{3}$. Then

$$
\begin{gathered}
S\left(f_{1}, f_{2}\right)=f_{3}, \quad{\overline{S\left(f_{1}, f_{2}\right)}}^{F}=0, \\
S\left(f_{1}, f_{3}\right)=Y^{3} X^{2}-X^{2} Y^{3}=0, \quad{\overline{S\left(f_{1}, f_{3}\right)}}^{F}=0, \\
S\left(f_{2}, f_{3}\right)=Y^{2}\left(X Y+Y^{2}\right)-X Y^{3}=Y^{4}=Y \cdot f_{3}, \quad \overline{S\left(f_{2}, f_{3}\right)}{ }^{F}=0 .
\end{gathered}
$$

Thus $G=\left\{X^{2}, X Y+2 Y^{2}, Y^{3}\right\}$ is a Gröbner basis for $\left\langle f_{1}, f_{2}\right\rangle$.
Lemma 2.6.3 Let G be a Gröbner basis for a non-zero ideal I. If $p \in G$ satisfies $\operatorname{LT}(p) \in$ $\langle\operatorname{LT}(G \backslash\{p\})\rangle$, then $G \backslash\{p\}$ is a Gröbner basis for I as well.

Proof: We know that $\langle\operatorname{LT}(G)\rangle=\langle\operatorname{LT}(I)\rangle$. If $\operatorname{LT}(p) \in\langle\operatorname{LT}(G \backslash\{p\})\rangle$, then $\langle\operatorname{LT}(G \backslash\{p\})\rangle=$ $\langle\operatorname{LT}(G)\rangle$. Thus by definition $G \backslash\{p\}$ is a Gröbner basis.

Definition 2.6.4 A minimal Gröbner basis for a non-zero ideal I is a Gröbner basis G for I such that for all $p \in G$ we have

1. $\mathrm{LC}(p)=1$,
2. $\operatorname{LT}(p) \notin\langle\operatorname{LT}(G \backslash\{p\})\rangle$.

Lemma 2.6.5 Let G, G^{\prime} be two minimal Gröbner bases for an ideal $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ w.r.t. a term order \preceq. Then $\operatorname{LT}(G)=\operatorname{LT}\left(G^{\prime}\right)$. Moreover, G and G^{\prime} have the same number of elements.

Proof: Since G, G^{\prime} are Gröbner basis for I, we have $\langle\operatorname{LT}(G)\rangle=\langle\operatorname{LT}(I)\rangle=\left\langle\operatorname{LT}\left(G^{\prime}\right)\right\rangle$. If G is a minimal Gröbner basis for I, then $\operatorname{LT}(G)$ is a minimal basis for $\langle\operatorname{LT}(G)\rangle$ (i.e. it satisfies the conditions from Definition 2.6.4). Let $\operatorname{LT}(g) \in \operatorname{LT}(G)$ for some $g \in G$. Then $\operatorname{LT}\left(g^{\prime}\right) \mid \operatorname{LT}(g)$ for some $g^{\prime} \in G^{\prime}$. Further, $\operatorname{LT}\left(g^{\prime \prime}\right) \mid \operatorname{LT}\left(g^{\prime}\right)$ for some $g^{\prime \prime} \in G$. Thus $\operatorname{LT}\left(g^{\prime \prime}\right) \mid \operatorname{LT}(g)$ showing that $\operatorname{LT}\left(g^{\prime \prime}\right)=\operatorname{LT}(g)$ since $\operatorname{LT}(G)$ is minimal. Consequently, $\operatorname{LT}(g) \mid \operatorname{LT}\left(g^{\prime}\right)$. But this means that $\mathrm{LT}(g)$ and $\mathrm{LT}\left(g^{\prime}\right)$ may differ only by a unit. Since $\mathrm{LC}(g)=\mathrm{LC}\left(g^{\prime}\right)=1$, they must be equal. Thus $\operatorname{LT}(G) \subseteq \operatorname{LT}\left(G^{\prime}\right)$. The second inclusion is proved analogously.

I claim that $|G|=|\operatorname{LT}(G)|$. If there would be more elements in G, then there would have to be $g, g^{\prime} \in G$ such that $\operatorname{LT}(g)=\operatorname{LT}\left(g^{\prime}\right)$ but this is not possible because G is minimal. Since $\operatorname{LT}(G)$ and $\operatorname{LT}\left(G^{\prime}\right)$ have the same number of elements, we are done.

Example 2.6.6 Let $G(a)=\left\{g_{1}(a), g_{2}, g_{3}\right\}$ where $g_{1}(a)=X^{2}+a X Y, g_{2}=X Y$, and $g_{3}=$ $Y^{2}-X$. Then for any $a \in k, G(a)$ is a minimal Gröbner basis for $\langle G(0)\rangle$ w.r.t. the grlex order.

First, observe that $g_{1}(a)=g_{1}(0)+a \cdot g_{2} \in\langle G(0)\rangle$ for each $a \in k$. Conversely, $g_{1}(0)=$ $g_{1}(a)-a \cdot g_{2} \in\langle G(a)\rangle$ for each $a \in k$. Thus $\langle G(a)\rangle=\langle G(0)\rangle$. We have

$$
\begin{gathered}
S\left(g_{1}, g_{2}\right)=Y\left(X^{2}+a X Y\right)-X(X Y)=a X Y^{2}=a Y \cdot g_{2}, \quad{\overline{S\left(g_{1}, g_{2}\right)}}^{G(0)}=0, \\
S\left(g_{1}, g_{3}\right)=Y^{2}\left(X^{2}+a X Y\right)-X^{2}\left(Y^{2}-X\right)=a X Y^{3}+X^{3}, \quad{\overline{S\left(g_{1}, g_{3}\right)}}^{G(0)}=0, \\
S\left(g_{2}, g_{3}\right)=Y(X Y)-X\left(Y^{2}-X\right)=X^{2}, \quad \overline{S\left(g_{2}, g_{3}\right)}{ }^{G(0)}=0 .
\end{gathered}
$$

Thus $G(a)$ is a Gröbner basis for $\langle G(0)\rangle$. The minimality is obvious.
Definition 2.6.7 A reduced Gröbner basis for a non-zero ideal I is a Gröbner basis G for I such that for all $p \in G$ we have

1. $\operatorname{LC}(p)=1$,
2. no monomial of p lies in $\langle\operatorname{LT}(G \backslash\{p\})\rangle$.

Observe that the Gröbner basis $G(a)$ from Example 2.6.6 is reduced iff $a=0$.
Proposition 2.6.8 Let I be a non-zero ideal. Then, for a given term order, I has a unique reduced Gröbner basis.

Proof: Let G be a minimal Gröbner basis for I. We say that g is reduced for G provided that no monomial of g is in $\langle\operatorname{LT}(G \backslash\{g\})\rangle$. Observe that if g is reduced for G, then g is reduced for any other minimal Gröbner basis G^{\prime} for I such that $\operatorname{LT}\left(G^{\prime}\right)=\operatorname{LT}(G)$ since the definition of reduced involves only the leading terms.

If G is not reduced then there is $g \in G$ containing a monomial divisible by some element of $\operatorname{LT}(G \backslash\{g\})$. Let $g^{\prime}=\bar{g}^{G \backslash\{g\}}$ and $G^{\prime}=(G \backslash\{g\}) \cup\left\{g^{\prime}\right\}$. I claim that G^{\prime} is minimal Gröbner basis for I. Since G is minimal, $\operatorname{LT}(g)$ is not divisible by any of $\operatorname{LT}(G \backslash\{g\})$. Thus $\operatorname{LT}(g)$ must be the leading term of the remainder g^{\prime}, i.e. $\operatorname{LT}(g)=\operatorname{LT}\left(g^{\prime}\right)$. Thus $\operatorname{LT}\left(G^{\prime}\right)=\operatorname{LT}(G)$. Consequently, $\left\langle\operatorname{LT}\left(G^{\prime}\right)\right\rangle=\langle\operatorname{LT}(G)\rangle=\langle\operatorname{LT}(I)\rangle$ showing that G^{\prime} is a Gröbner basis for I. Moreover, it is clearly minimal. In this way we can make all elements of G reduced without changing the set of leading terms $\operatorname{LT}(G)$.

Finally, we prove the uniqueness. Suppose that G, G^{\prime} are reduced Gröbner basis for I. Since G and G^{\prime} are minimal, we have $\operatorname{LT}(G)=\operatorname{LT}\left(G^{\prime}\right)$ by Lemma 2.6.5. Thus, given $g \in G$, there is $g^{\prime} \in G^{\prime}$ such that $\operatorname{LT}(g)=\operatorname{LT}\left(g^{\prime}\right)$. If we can show $g=g^{\prime}$, then $G=G^{\prime}$ and we are done.

Consider $g-g^{\prime} \in I$. We have $\overline{g-g^{\prime}}{ }^{G}=0$. Since $\operatorname{LT}(g)=\operatorname{LT}\left(g^{\prime}\right)$, the leading terms in $g-g^{\prime}$ cancel and the remaining terms are divisible by none of $\operatorname{LT}(G)=\operatorname{LT}\left(G^{\prime}\right)$ since G and G^{\prime} are reduced. This shows $\overline{g-g^{\prime}}{ }^{G}=g-g^{\prime}$ and then $g-g^{\prime}=0$ follows.

2.7 Elimination

Definition 2.7.1 Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal. The r-th elimination ideal $I_{r} \subseteq$ $k\left[X_{r+1}, \ldots, X_{n}\right]$ is an ideal defined by $I_{r}=I \cap k\left[X_{r+1}, \ldots, X_{n}\right]$.

Observe that I_{r} is really an ideal of $k\left[X_{k+1}, \ldots, X_{n}\right]$.
Theorem 2.7.2 Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal, and let G be a Gröbner basis for I w.r.t. the lex order given by $X_{1} \succ \cdots \succ X_{n}$. Then for every $0 \leq r \leq n$ the set $G_{r}=$ $G \cap k\left[X_{r+1}, \ldots, X_{n}\right]$ is a Gröbner basis for the r-th elimination ideal I_{r} w.r.t. the lex order given by $X_{r+1} \succ \cdots \succ X_{n}$.
PROOF: Let $G=\left\{g_{1}, \ldots, g_{s}\right\}$. Relabeling, if necessary, we may assume that $G_{r}=\left\{g_{1}, \ldots, g_{m}\right\}$. We prove that G_{r} is a basis for I_{r}. Clearly $G_{r} \subseteq I_{r}$. Let $f \in I_{r}$. Since G is a Gröbner basis, we have $\bar{f}^{G}=0$ and by the division algorithm

$$
f=a_{1} g_{1}+\cdots+a_{m} g_{m}+a_{m+1} g_{m+1}+\cdots+a_{s} g_{s}
$$

where $\operatorname{mdeg}\left(a_{i} g_{i}\right) \preceq \operatorname{mdeg}(f)$. Thus $a_{i} g_{i} \in k\left[X_{r+1}, \ldots, X_{n}\right]$ because \preceq is the lex order. Consequently, $a_{m+1}=\cdots=a_{s}=0$, i.e. $f \in\left\langle G_{r}\right\rangle$.

Now we prove that G_{r} is a Gröbner basis for I_{r}. Clearly, $\left\langle\operatorname{LT}\left(G_{r}\right)\right\rangle \subseteq\left\langle\operatorname{LT}\left(I_{r}\right)\right\rangle$. Let $\mathrm{LT}(f) \in \operatorname{LT}\left(I_{r}\right) \subseteq k\left[X_{r+1}, \ldots, X_{n}\right]$. Then $\operatorname{LT}(g) \mid \operatorname{LT}(f)$ for some $g \in G$. This is equivalent to $\operatorname{mdeg}(g) \preceq \operatorname{mdeg}(f)$. Thus $g \in G_{r}=G \cap k\left[X_{r+1}, \ldots, X_{n}\right]$ showing that $\operatorname{LT}(f) \in\left\langle\operatorname{LT}\left(G_{r}\right)\right\rangle$.

In fact if one wants to obtain a basis for I_{r}, it suffices to consider a so-called r-elimination term order, i.e. a term order where any monomial containing at least one of the first r variables is greater than all monomials in $k\left[X_{r+1}, \ldots, X_{n}\right]$. This is useful especially in application since the computation of Gröbner basis w.r.t. lex order might be more difficult. For instance one can consider the term order \preceq_{r} defined as follows:

$$
\alpha \preceq_{r} \beta \quad \text { if } \quad \sum_{i=1}^{r} \alpha_{i}<\sum_{i=1}^{r} \beta_{i} \quad \text { or } \quad \sum_{i=1}^{r} \alpha_{i}=\sum_{i=1}^{r} \beta_{i} \text { and } \alpha \preceq_{\text {grevlex }} \beta .
$$

This is in fact a weighted term order for $w=(1, \ldots, 1,0, \ldots, 0)$, where the right-most 1 is at the r-th position, refined by the grevlex term order.

Example 2.7.3 Consider the following system of polynomial equations:

$$
\begin{aligned}
& X^{2}+Y+Z-1=0 \\
& X+Y^{2}+Z-1=0 \\
& X+Y+Z^{2}-1=0
\end{aligned}
$$

and the ideal I generated by the left-hand sides. Then the reduced Gröbner basis for I w.r.t. the lex order given by $X \succ Y \succ Z$ contains the following polynomials:

$$
\begin{aligned}
& g_{1}=Y^{2}-Y-Z^{2}+Z \\
& g_{2}=Y Z^{2}+1 / 2 Z^{4}-1 / 2 Z^{2} \\
& g_{3}=Z^{6}-4 Z^{4}+4 Z^{3}-Z^{2} \\
& g_{4}=X+Y+Z^{2}-1
\end{aligned}
$$

Then $I_{2}=I \cap k[Z]=\left\langle g_{3}\right\rangle$ and $I_{1}=I \cap k[Y, Z]=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$.
We can even solve the system of equations since $g_{3}=Z^{2}(Z-1)^{2}\left(Z^{2}+2 Z-1\right)$. Thus the only possible values of Z 's are 0,1 and $-1 \pm \sqrt{2}$. Substituting these values to g_{1}, g_{2} we can determine possible values of Y 's and finally we obtain the corresponding values for X 's. In this way we can find the following five solutions:

$$
\begin{aligned}
& (1,0,0),(0,1,0),(0,0,1) \\
& (-1+\sqrt{2},-1+\sqrt{2},-1+\sqrt{2}) \\
& (-1-\sqrt{2},-1-\sqrt{2},-1-\sqrt{2}) .
\end{aligned}
$$

Chapter 3

Affine varieties

3.1 Hilbert's Nullstellensatz

Theorem 3.1.1 (The Weak Nullstellensatz) Let k be an algebraically closed field and $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ a proper ideal (i.e. $I \neq k\left[X_{1}, \ldots, X_{n}\right]$). Then $\mathbf{V}(I) \neq \emptyset$.

Corollary 3.1.2 Let k be an algebraically closed field and $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ an ideal. Then $\mathbf{V}(I)=\emptyset$ iff $1 \in I$.

Proof: If $1 \in I$, then $\mathbf{V}(I)=\emptyset$ since 1 never vanish. Conversely, if $1 \notin I, I$ is a proper ideal. Thus $\mathbf{V}(I) \neq \emptyset$ by the Weak Nullstellensatz.

The assumption that k is algebraically closed is necessary. Consider for example an ideal $I=\left\langle X^{2}+1\right\rangle \subseteq \mathbb{R}$. The ideal I is proper and $\mathbf{V}(I)=\emptyset$.

Definition 3.1.3 Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal. The radical of I is the set

$$
\sqrt{I}=\left\{f \mid(\exists m \in \mathbb{N})\left(f^{m} \in I\right)\right\} .
$$

An ideal $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ is called radical if $I=\sqrt{I}$.
Lemma 3.1.4 The radical \sqrt{I} is a radical ideal containing I.
Proof: Clearly $0 \in \sqrt{I}$ because $0^{1}=0 \in I$. Let $f, g \in \sqrt{I}$ and $h \in k\left[X_{1}, \ldots, X_{n}\right]$. Then there are $m, r \in \mathbb{N}$ such that $f^{m} \in I$ and $g^{r} \in I$. Thus $(f h)^{m}=f^{m} h^{m} \in I$, i.e. $f h \in \sqrt{I}$. In the binomial expansion of $(f+g)^{m+r-1}$ every term has a factor $f^{i} g^{j}$ with $i+j=m+r-1$. Since either $i \geq m$ or $j \geq r$, either $f^{i} \in I$ or $g^{j} \in I$, whence $f^{i} g^{j} \in I$. Thus $(f+g)^{m+r-1} \in I$, i.e. $f+g \in \sqrt{I}$.

For each $f \in I$ we have $f^{1} \in I$, hence $f \in \sqrt{I}$ (i.e. $I \subseteq \sqrt{I}$). Finally, we have to show that $\sqrt{\sqrt{I}}=\sqrt{I}$. Clearly, $\sqrt{I} \subseteq \sqrt{\sqrt{I}}$. Assume that $f \in \sqrt{\sqrt{I}}$, i.e. there is $m \in \mathbb{N}$ such that $f^{m} \in \sqrt{I}$. Thus there is $r \in \mathbb{N}$ such that $\left(f^{m}\right)^{r} \in I$. Consequently, $f^{m r} \in I$, i.e. $f \in \sqrt{I}$.

Theorem 3.1.5 (The Strong Nullstellensatz) Let k be an algebraically closed field. If I is an ideal in $k\left[X_{1}, \ldots, X_{n}\right]$, then

$$
\mathbf{I}(\mathbf{V}(I))=\sqrt{I} .
$$

PROOF: To show the inclusion $\sqrt{I} \subseteq \mathbf{I}(\mathbf{V}(I))$, assume that $f \in \sqrt{I}$ such that $f^{m} \in I$. Then $f^{m}\left(a_{1}, \ldots, a_{n}\right)=0$ for each $\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{V}(I)$. Thus we also have $f\left(a_{1}, \ldots, a_{n}\right)=0$ for each $\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{V}(I)$, i.e. $f \in \mathbf{I}(\mathbf{V}(I))$.

To prove the other inclusion, assume that $I \neq\langle 0\rangle$ (for $I=\langle 0\rangle$ the claim is trivial). Let $f \in \mathbf{I}(\mathbf{V}(I))$ and $f \neq 0$. We may suppose by Hilbert Basis Theorem that $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$. Consider an ideal $I^{\prime} \subseteq k\left[X_{1}, \ldots, X_{n}, Y\right]$ defined by

$$
I^{\prime}=\left\langle f_{1}, \ldots, f_{s}, 1-Y \cdot f\right\rangle
$$

For every point $\left(a_{1}, \ldots, a_{n+1}\right) \in \mathbf{V}\left(I^{\prime}\right)$ we have $a_{n+1} f\left(a_{1}, \ldots, a_{n}\right)=1$ and $f_{i}\left(a_{1}, \ldots, a_{n}\right)=0$ for $i=1, \ldots, s$. But then $\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{V}(I)$ and $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$ contradicting the choice of f. Consequently, $\mathbf{V}\left(I^{\prime}\right)=\emptyset$ and the Weak Nullstellensatz yields $1 \in I^{\prime}$.

Hence there are polynomials $h, h_{1}, \ldots, h_{n} \in k\left[X_{1}, \ldots, X_{n}, Y\right]$ such that

$$
1=\sum_{i=1}^{s} h_{i} f_{i}+h(1-Y \cdot f)
$$

In the fraction field $k\left(X_{1}, \ldots, X_{n}, Y\right)$ we may substitute $1 / f$ for Y and we get

$$
1=\sum_{i=1}^{s} h_{i}\left(X_{1}, \ldots, X_{n}, 1 / f\right) f_{i}
$$

Each $h_{i}\left(X_{1}, \ldots, X_{n}, 1 / f\right)$ is a fraction of polynomials where the denominator is f^{m} for some $m \in \mathbb{N}$. Then for suitably large $m \in \mathbb{N}$ all $h_{i}^{\prime}=f^{m} h_{i}\left(X_{1}, \ldots, X_{n}, 1 / f\right) \in k\left[X_{1}, \ldots, X_{n}\right]$. Thus multiplying both sides by f^{m}, we obtain $f^{m}=\sum_{i=1}^{s} h_{i}^{\prime} f_{i}$, i.e. $f \in \sqrt{I}$.

Now, let us discuss several consequences of the Strong Nullstellensatz. The first one tells us how to recognize whether a polynomial belong to a radical ideal.

Proposition 3.1.6 Let k be an arbitrary field and $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal. Then $f \in \sqrt{I}$ iff $1 \in\left\langle f_{1}, \ldots, f_{s}, 1-Y f\right\rangle \subseteq k\left[X_{1}, \ldots, X_{n}, Y\right]$.

Proof: We have seen in the proof of the Strong Nullstellensatz that $1 \in\left\langle f_{1}, \ldots, f_{s}, 1-Y f\right\rangle$ implies $f \in \sqrt{I}$. Conversely, let $f \in \sqrt{I}$, i.e. $f^{m} \in I \subseteq\left\langle f_{1}, \ldots, f_{s}, 1-Y f\right\rangle$ for some $m \in \mathbb{N}$. Thus

$$
1=Y^{m} f^{m}+\left(1-Y^{m} f^{m}\right)=Y^{m} f^{m}+(1-Y f)\left(1+Y f+\cdots+Y^{m-1} f^{m-1}\right)
$$

showing that $1 \in\left\langle f_{1}, \ldots, f_{s}, 1-Y f\right\rangle$.
The second consequence concerns the correspondence between affine varieties and ideals.
Theorem 3.1.7 Let k be an arbitrary field. The maps

$$
\left\{\begin{array}{c}
\text { affine varieties } \\
\text { in } k^{n}
\end{array}\right\} \underset{\stackrel{\mathbf{I}}{\longleftrightarrow}}{\stackrel{\mathrm{v}}{\leftrightarrows}}\left\{\begin{array}{c}
\text { ideals in } \\
k\left[X_{1}, \ldots, X_{n}\right]
\end{array}\right\} .
$$

are inclusion-reversing and $\mathbf{V}(\mathbf{I}(V))=V$ for any variety $V \subseteq k^{n}$ (i.e. \mathbf{I} is always one-to-one).

In addition, if k is algebraically closed, and if we restrict to radical ideals, then the maps

$$
\left\{\begin{array}{c}
\text { affine varieties } \\
\text { in } k^{n}
\end{array}\right\} \stackrel{\mathbf{I}}{\stackrel{\mathbf{V}}{\longleftrightarrow}}\left\{\begin{array}{c}
\text { radical ideals in } \\
k\left[X_{1}, \ldots, X_{n}\right]
\end{array}\right\}
$$

are inclusion-reversing bijections which are inverses of each other.
PROOF: We know already that \mathbf{I} and \mathbf{V} are inclusion-reversing (see Observation 1.7.6 and 1.7.8). We will show that $\mathbf{V}(\mathbf{I}(V))=V$. By Hilbert Basis Theorem we may assume that $V=\mathbf{V}\left(f_{1}, \ldots, f_{s}\right)$. Let $a \in V$. Then every $f \in \mathbf{I}(V)$ vanishes on a. Thus $a \in \mathbf{V}(\mathbf{I}(V))$. Conversely, $f_{1}, \ldots, f_{s} \in \mathbf{I}(V)$, and thus $\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathbf{I}(V)$. Since \mathbf{V} is inclusion-reversing, we get $\mathbf{V}(\mathbf{I}(V)) \subseteq \mathbf{V}\left(\left\langle f_{1}, \ldots, f_{s}\right\rangle\right)=V$.

In addition, if k is algebraically closed, then by the Strong Nullstellensatz we have $\mathbf{I}(\mathbf{V}(I))=\sqrt{I}$. Thus if we restrict the mappings only on radical ideals, then $\mathbf{I}(\mathbf{V}(I))=\sqrt{I}=I$ and we are done.

It follows from the latter theorem that if we have a system of polynomial equations $f_{1}=\cdots=f_{s}$ whose solution set is $\mathbf{V}\left(\left\langle f_{1}, \ldots, f_{s}\right\rangle\right)$, then $\mathbf{V}\left(\left\langle f_{1}, \ldots, f_{s}\right\rangle\right)=\mathbf{V}\left(\sqrt{\left\langle f_{1}, \ldots, f_{s}\right\rangle}\right)$. Indeed, we have

$$
\mathbf{V}\left(\left\langle f_{1}, \ldots, f_{s}\right\rangle\right)=\mathbf{V}\left(\mathbf{I}\left(\mathbf{V}\left(\left\langle f_{1}, \ldots, f_{s}\right\rangle\right)\right)\right)=\mathbf{V}\left(\sqrt{\left\langle f_{1}, \ldots, f_{s}\right\rangle}\right)
$$

Finally, we will prove that there is one-to-one correspondence between points of affine n-space and maximal ideals in $k\left[X_{1}, \ldots, X_{n}\right]$.

Definition 3.1.8 Let R be a ring. A proper ideal $I \subseteq R$ is called maximal if for any ideal $J \supseteq I$ we have $J=I$ or $J=k\left[X_{1}, \ldots, X_{n}\right]$.

Lemma 3.1.9 Let R be a ring. Every maximal ideal $I \subseteq R$ is prime.
Proof: Assume that $I \subseteq R$ is a maximal ideal which is not prime. Then there are polynomials f, g such that $f g \in I, f \notin I$ and $g \notin I$. Since I is maximal, we have $\langle I \cup\{f\}\rangle=R$. Thus $1=c f+h$ for some $c \in R$ and $h \in I$. If we multiply by g, we obtain $g=c f g+h g \in I$ which is a contradiction with the fact that $g \notin I$.

Lemma 3.1.10 Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be a prime ideal. Then I is radical.
PROOF: We have to show that if $f^{m} \in I$ for $m>1$, then also $f \in I$. But it is easy to see since $f^{m}=f \cdot f^{m-1}$.

Theorem 3.1.11 If k is algebraically closed field, then every maximal ideal in $k\left[X_{1}, \ldots, X_{n}\right]$ is of the form $\left\langle X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right\rangle$ for some $a_{1}, \ldots, a_{n} \in k$.

Proof: Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be a maximal ideal. By the Weak Nullstellensatz we have $\mathbf{V}(I) \neq \emptyset$, i.e. there is a point $\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{V}(I)$. Since \mathbf{I} is inclusion-reversing, we get $\mathbf{I}(\mathbf{V}(I)) \subseteq \mathbf{I}\left(\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$. By the Strong Nullstellensatz $\mathbf{I}(\mathbf{V}(I))=\sqrt{I}$. As I is maximal, I is prime hence radical, i.e. $I=\sqrt{I}$. Thus we have $I \subseteq \mathbf{I}\left(\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$. Since $\mathbf{I}\left(\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right) \neq k\left[X_{1}, \ldots, X_{n}\right]$, we get $I=\mathbf{I}\left(\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$ by maximality of I.

Thus it suffices to show that $\mathbf{I}\left(\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)=\left\langle X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right\rangle$. Clearly,

$$
\left\langle X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right\rangle \subseteq \mathbf{I}\left(\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right) .
$$

Assume that there is $f \in \mathbf{I}\left(\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$ such that $f \notin\left\langle X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right\rangle$. Then by the division algorithm we have $f=g_{1}\left(X_{1}-a_{1}\right)+\cdots+g_{n}\left(X_{n}-a_{n}\right)+r$ for some $r \in k$. Moreover $r \neq 0$ because $f \notin\left\langle X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right\rangle$. Since $r \in \mathbf{I}\left(\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$, we get $1=(1 / r) r \in \mathbf{I}\left(\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$ (a contradiction).

3.2 Operations with ideals

Definition 3.2.1 Let I, J be ideals in $k\left[X_{1}, \ldots, X_{n}\right]$. Then we define the following operations:

1. The sum of I and J is the set

$$
I+J=\{f+g \mid f \in I, g \in J\} .
$$

2. The product of I and J is the ideal

$$
I J=\langle\{f g \mid f \in I, g \in J\}\rangle .
$$

Observe that if $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{r}\right\rangle$, then $I J=\left\langle\left\{f_{i} g_{j} \mid 1 \leq i \leq s, 1 \leq j \leq r\right\}\right\rangle$.
Lemma 3.2.2 Let I, J be ideals in $k\left[X_{1}, \ldots, X_{n}\right]$. Then $I+J$ is the smallest ideal containing I and J. Moreover, if $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{r}\right\rangle$, then $I+J=\left\langle f_{1}, \ldots, f_{s}, g_{1}, \ldots, g_{r}\right\rangle$. PROOF: Clearly $0=0+0 \in I+J$. Let $f, g \in I+J$ and $h \in k\left[X_{1}, \ldots, X_{n}\right]$. Then there are $f_{1}, g_{1} \in I$ and $f_{2}, g_{2} \in J$ such that $f=f_{1}+f_{2}$ and $g=g_{1}+g_{2}$. Thus $f+g=$ $\left(f_{1}+g_{1}\right)+\left(f_{2}+g_{2}\right) \in I+J$. Further, $h f=h\left(f_{1}+f_{2}\right)=h f_{1}+h f_{2} \in I+J$.

The fact that $I+J$ is the smallest ideal containing I and J is evident since $I+J$ contains both and each ideal containing both must be closed under addition. Thus also the last statement is obvious.

Theorem 3.2.3 If I, J are ideals in $k\left[X_{1}, \ldots, X_{n}\right]$, then $\mathbf{V}(I+J)=\mathbf{V}(I) \cap \mathbf{V}(J)$ and $\mathbf{V}(I J)=\mathbf{V}(I \cap J)=\mathbf{V}(I) \cup \mathbf{V}(J)$.

PRoof: We saw in Lemma 1.7.9 that $\mathbf{V}(I) \cap \mathbf{V}(J)=\mathbf{V}(I \cup J)$. But $\mathbf{V}(I \cup J)=\mathbf{V}(\langle I \cup J\rangle)=$ $\mathbf{V}(I+J)$ since $I+J$ is the smallest ideal containing I and J.

The fact that $\mathbf{V}(I J)=\mathbf{V}(I) \cup \mathbf{V}(J)$ also follows from Lemma 1.7.9. Note that $I J \subseteq I \cap J$. Thus $\mathbf{V}(I \cap J) \subseteq \mathbf{V}(I J)$. Finally, let $x \in \mathbf{V}(I) \cup \mathbf{V}(J)$. Then $x \in \mathbf{V}(I)$ or $x \in \mathbf{V}(J)$, say that $x \in \mathbf{V}(I)$. Thus $f(x)=0$ for all $f \in I \supseteq I \cap J$, i.e. $x \in \mathbf{V}(I \cap J)$ showing that $\mathbf{V}(I) \cup \mathbf{V}(J) \subseteq \mathbf{V}(I \cap J)$. Summing up, we have

$$
\mathbf{V}(I) \cup \mathbf{V}(J) \subseteq \mathbf{V}(I \cap J) \subseteq \mathbf{V}(I J)=\mathbf{V}(I) \cup \mathbf{V}(J)
$$

So far we have seen operations with ideals corresponding to the set-theoretic union and intersection. In the rest of the section we will concentrate on the set-theoretic difference. Of course affine varieties are not closed under this difference (consider e.g. a line and remove a single point). Thus we will try to find the smallest affine variety containing the difference.

Definition 3.2.4 The Zariski closure of $S \subseteq k^{n}$, denoted \bar{S}, is the smallest affine variety $\mathbf{V}(\mathbf{I}(S))$. It is in fact the closure in Zariski topology.

Proposition 3.2.5 Let $S \subseteq k^{n}$. Then $\mathbf{V}(\mathbf{I}(S))$ is the smallest affine variety containing S. PROOF: If $W \supseteq S$ is an affine variety containing S, then $\mathbf{I}(W) \subseteq \mathbf{I}(S)$. Thus $W=\mathbf{V}(\mathbf{I}(W))=$ $\mathbf{V}(\mathbf{I}(S))$.

Definition 3.2.6 Let I, J be ideals in $k\left[X_{1}, \ldots, X_{n}\right]$, then the ideal quotient (or colon ideal) of I and J is the set

$$
I: J=\left\{f \in k\left[X_{1}, \ldots, X_{n}\right] \mid(\forall g \in J)(f g \in I)\right\}
$$

Proposition 3.2.7 If I, J be ideals in $k\left[X_{1}, \ldots, X_{n}\right]$, then $I: J$ is an ideal containing I. PROOF: Note that $I: J \supseteq I$ because for each $f \in I$ we have $f g \in I$ for all $g \in J$. Thus $0 \in I: J$. Let $f_{1}, f_{2} \in I: J$ and $h \in k\left[X_{1}, \ldots, X_{n}\right]$. Then for all $g \in J$ we have $f_{1} g \in I$ and $f_{2} g \in I$. Consequently, $\left(f_{1}+f_{2}\right) g=f_{1} g+f_{2} g \in I$ for all $g \in J$. Finally, $f_{1} h g \in I$ for all $g \in J$. Thus also $f_{1} h \in I: J$.

Theorem 3.2.8 Let I, J be ideals in $k\left[X_{1}, \ldots, X_{n}\right]$. Then $\mathbf{V}(I: J) \supseteq \overline{\mathbf{V}(I) \backslash \mathbf{V}(J)}$. If, in addition, k is algebraically closed and I is radical, then

$$
\mathbf{V}(I: J)=\overline{\mathbf{V}(I) \backslash \mathbf{V}(J)}
$$

PROOF: First, we will show that $I: J \subseteq \mathbf{I}(\mathbf{V}(I) \backslash \mathbf{V}(J))$. Let $f \in I: J$ and $x \in \mathbf{V}(I) \backslash \mathbf{V}(J)$. Then $f g \in I$ for all $g \in J$. Since $x \in \mathbf{V}(I)$, we have $f(x) g(x)=0$ for all $g \in J$. As $x \notin \mathbf{V}(J)$, there is $g \in J$ such that $g(x) \neq 0$. Hence $f(x)=0$ showing that $I: J \subseteq \mathbf{I}(\mathbf{V}(I) \backslash \mathbf{V}(J))$. Thus $\mathbf{V}(I: J) \supseteq \mathbf{V}(\mathbf{I}(\mathbf{V}(I) \backslash \mathbf{V}(J)))=\overline{\mathbf{V}(I) \backslash \mathbf{V}(J)}$.

Now assume that k is algebraically closed and $I=\sqrt{I}$. Let $x \in \mathbf{V}(I: J)$, i.e. if $f g \in I$ for all $g \in J$, then $f(x)=0$. Suppose that $f \in \mathbf{I}(\mathbf{V}(I) \backslash \mathbf{V}(J))$. Then for each $g \in J$ the polynomial $f g$ vanishes on $\mathbf{V}(I)$ because f vanishes on $\mathbf{V}(I) \backslash \mathbf{V}(J)$ and g on $\mathbf{V}(J)$. Thus $f g \in \mathbf{I}(\mathbf{V}(I))=\sqrt{I}=I$ for each $g \in J$. It follows that $f(x)=0$, i.e. $x \in \mathbf{V}(\mathbf{I}(\mathbf{V}(I) \backslash \mathbf{V}(J)))$.

Example 3.2.9

$$
\begin{aligned}
\langle X Z, Y Z\rangle:\langle Z\rangle & =\{f \in k[X, Y, Z] \mid(\forall h \in k[X, Y, Z])(h Z \cdot f \in\langle X Z, Y Z\rangle)\} \\
& =\{f \in k[X, Y, Z] \mid Z \cdot f \in\langle X Z, Y Z\rangle\} \\
& =\{f \in k[X, Y, Z] \mid Z \cdot f=a X Z+b Y Z\} \\
& =\{f \in k[X, Y, Z] \mid f=a X+b Y\} \\
& =\langle X, Y\rangle .
\end{aligned}
$$

3.3 Irreducible varieties

Definition 3.3.1 An affine variety $V \subseteq k^{n}$ is irreducible if whenever $V=V_{1} \cup V_{2}$ for some affine varieties V_{1}, V_{2}, then either $V_{1}=V$ or $V_{2}=V$.

Proposition 3.3.2 Let $V \subseteq k^{n}$ be an affine variety. Then V is irreducible iff $\mathbf{I}(V)$ is a prime ideal.

Proof: (\Rightarrow) : Let $f g \in \mathbf{I}(V)$. Set $V_{1}=V \cap \mathbf{V}(f)$ and $V_{2}=V \cap \mathbf{V}(g)$. The sets V_{1}, V_{2} are affine varieties because affine varieties are closed under intersections. Then

$$
V_{1} \cup V_{2}=(V \cap \mathbf{V}(f)) \cup(V \cap \mathbf{V}(g))=V \cap(\mathbf{V}(f) \cup \mathbf{V}(g))=V \cap \mathbf{V}(f g)=V
$$

The last equality follows from $\mathbf{V}(f g) \supseteq V$ because $\{f g\} \subseteq \mathbf{I}(V)$. Since V is irreducible, we have either $V=V_{1}$ or $V=V_{2}$, say the former holds. Then $V=V \cap \mathbf{V}(f) \subseteq \mathbf{V}(f)$. Thus f vanishes on V, i.e. $f \in \mathbf{I}(V)$ and $\mathbf{I}(V)$ is prime.
(\Leftarrow) : Let $V=V_{1} \cup V_{2}$. Suppose that $V \neq V_{1}$. We have to show that $V_{2}=V$. First, $V_{2} \subseteq V$ and thus $\mathbf{I}(V) \subseteq \mathbf{I}\left(V_{2}\right)$. Second, since $V_{1} \subsetneq V$, we have $\mathbf{I}(V) \subsetneq \mathbf{I}\left(V_{1}\right)$ (otherwise $\left.V=\mathbf{V}(\mathbf{I}(V))=\mathbf{V}\left(\mathbf{I}\left(V_{1}\right)\right)=V_{1}\right)$. Take $f \in \mathbf{I}\left(V_{1}\right) \backslash \mathbf{I}(V)$ and any $g \in \mathbf{I}\left(V_{2}\right)$. Then $f g$ vanishes on $V=V_{1} \cup V_{2}$, i.e. $f g \in \mathbf{I}(V)$. Since $\mathbf{I}(V)$ is prime, g belongs to $\mathbf{I}(V)$ because $f \notin \mathbf{I}(V)$. Thus $\mathbf{I}(V)=\mathbf{I}\left(V_{2}\right)$. Since \mathbf{I} is one-to-one, we get $V=V_{2}$.

Proposition 3.3.3 Let $V_{1} \supseteq V_{2} \supseteq V_{3} \supseteq \cdots$ be a descending sequence of affine varieties. Then there is $n \in \mathbb{N}$ such that $V_{n}=V_{n+1}=\cdots$.

PROOF: Applying the mapping I, we get an ascending sequence of ideals:

$$
\mathbf{I}\left(V_{1}\right) \subseteq \mathbf{I}\left(V_{2}\right) \subseteq \mathbf{I}\left(V_{3}\right) \subseteq \cdots
$$

Since $k\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian, there is $n \in \mathbb{N}$ such that $\mathbf{I}\left(V_{n}\right)=\mathbf{I}\left(V_{n+1}\right)=\cdots$. But this means that $V_{n}=V_{n+1}=\cdots$ because $\mathbf{V}\left(\mathbf{I}\left(V_{i}\right)\right)=V_{i}$.

Definition 3.3.4 Let $V \subseteq k^{n}$ be an affine variety. A decomposition $V=V_{1} \cup \cdots \cup V_{m}$, where each V_{i} is irreducible, is called a minimal decomposition if $V_{i} \nsubseteq V_{j}$ for $i \neq j$.

Theorem 3.3.5 Let $V \subseteq k^{n}$ be an affine variety. Then V has a minimal decomposition $V=V_{1} \cup \cdots \cup V_{m}$ unique up to order of V_{i} 's.

PROOF: The existence of the minimal decomposition $V=V_{1} \cup \cdots \cup V_{m}$ follows from Proposition 3.3.3.

To show that the decomposition is unique, assume that $V=V_{1}^{\prime} \cup \cdots V_{s}^{\prime}$ is another minimal decomposition. Then for each i we have

$$
V_{i}=V_{i} \cap V=V_{i} \cap\left(V_{1}^{\prime} \cup \cdots V_{s}^{\prime}\right)=\left(V_{i} \cap V_{1}^{\prime}\right) \cup \cdots \cup\left(V_{i} \cap V_{s}^{\prime}\right)
$$

Since V_{i} is irreducible, we have $V_{i}=V_{i} \cap V_{j}^{\prime}$ for some j, i.e. $V_{i} \subseteq V_{j}^{\prime}$. Applying the same argument also for V_{j}^{\prime} (using V_{i} 's to decompose V), there is k such that $V_{j}^{\prime} \subseteq V_{k}$. Since the decomposition into V_{i} 's is minimal, we get $V_{i}=V_{j}^{\prime}$. Thus all V_{i} 's must appear between $V_{1}^{\prime}, \ldots, V_{s}^{\prime}$. A symmetric argument finishes the proof.

Corollary 3.3.6 Let k be an algebraically closed field. Then every radical ideal $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ can be written uniquely as a finite intersection of prime ideals, $I=\bigcap_{i=1}^{s} P_{i}$, where $P_{i} \nsubseteq P_{j}$ for $i \neq j$.

PRoof: First, observe that $\mathbf{I}\left(V_{1} \cup V_{2}\right)=\mathbf{I}\left(V_{1}\right) \cap \mathbf{I}\left(V_{2}\right)$. Indeed, let $f \in k\left[X_{1}, \ldots, X_{n}\right]$. Then $f \in \mathbf{I}\left(V_{1} \cup V_{2}\right)$ iff f vanishes on V_{1} and V_{2} iff $f \in \mathbf{I}\left(V_{1}\right)$ and $f \in \mathbf{I}\left(V_{2}\right)$. Thus we have

$$
I=\sqrt{I}=\mathbf{I}(\mathbf{V}(I))=\mathbf{I}\left(V_{1} \cup \cdots \cup V_{m}\right)=\bigcap_{i=1}^{m} \mathbf{I}\left(V_{i}\right),
$$

where $\mathbf{V}(I)=V_{1} \cup \cdots \cup V_{m}$ is the unique minimal decomposition. Since V_{i} 's are irreducible, the ideals $\mathbf{I}\left(V_{i}\right)$ are prime.

3.4 Varieties corresponding to principal ideals

Proposition 3.4.1 Let $f \in k\left[X_{1}, \ldots, X_{n}\right]$ and $I=\langle f\rangle$. If $f=u f_{1}^{a_{1}} \cdots f_{s}^{a_{s}}$ is the unique factorization into irreducibles, then

$$
\sqrt{I}=\left\langle f_{1} \cdots f_{s}\right\rangle
$$

PROOF: Let $N=\max \left\{a_{1}, \ldots, a_{r}\right\}$. Then

$$
\left(f_{1} \cdots f_{s}\right)^{N}=f_{1}^{N-a_{1}} \cdots f_{s}^{N-a_{s}} \cdot f
$$

Thus $\left(f_{1} \cdots f_{s}\right)^{N} \in I$ and $f_{1} \cdots f_{s} \in \sqrt{I}$.
Conversely, let $g \in \sqrt{I}$, i.e. $g^{M} \in I$ for some $M \in \mathbb{N}$. Thus there is a polynomial h such that $g^{M}=h \cdot f$. Consider the unique factorization of $g=v g_{1}^{b_{1}} \cdots g_{r}^{b_{r}}$ into irreducibles. Then

$$
g^{M}=v^{M} g_{1}^{M b_{1}} \cdots g_{r}^{M b_{r}}=h \cdot u f_{1}^{a_{1}} \cdots f_{s}^{a_{s}} .
$$

Since $k\left[X_{1}, \ldots, X_{n}\right]$ is a UFD, the irreducible polynomials on both sides must be the same up to units. Thus each f_{i} equals (up to a unit) to some g_{j}. Consequently, g is a polynomial multiple of $f_{1} \cdots f_{s}$, i.e. $g \in\left\langle f_{1} \cdots f_{s}\right\rangle$.

Definition 3.4.2 Let $f \in k\left[X_{1}, \ldots, X_{n}\right]$. The reduction of f is the polynomial $f_{\text {red }}$ such that $\left\langle f_{\text {red }}\right\rangle=\sqrt{\langle f\rangle}$. A polynomial f is called reduced (or square-free) if $f=f_{\text {red }}$.

Let $f=\left(X+Y^{2}\right)(X-Y)^{2}(Y-3)^{5}$. Then $f_{\text {red }}=\left(X+Y^{2}\right)(X-Y)(Y-3)$. Observe also that each irreducible polynomial is reduced.

Proposition 3.4.3 Let $f \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ and let $f=u f_{1}^{a_{1}} \cdots f_{s}^{a_{s}}$ be its decomposition into irreducible factors (u is a unit). Then

$$
\mathbf{V}(f)=\mathbf{V}\left(f_{1}\right) \cup \cdots \cup \mathbf{V}\left(f_{s}\right)
$$

is the minimal decomposition into irreducible components.

PROOF: Let $a \in \mathbf{V}(f)$. Then $0=f(a)=u f_{1}^{a_{1}}(a) \cdots f_{s}^{a_{s}}(a)$. Thus at least for one i we have $f_{i}(a)=0$, i.e. $a \in \mathbf{V}\left(f_{i}\right)$. Consequently, $\mathbf{V}(f) \subseteq \mathbf{V}\left(f_{1}\right) \cup \cdots \cup \mathbf{V}\left(f_{s}\right)$. To see the second inclusion, note that $\left\langle f_{1} \cdots f_{s}\right\rangle \subseteq\left\langle f_{i}\right\rangle$ for each i. Thus $\left\langle f_{1} \cdots f_{s}\right\rangle \subseteq \bigcap_{i=1}^{s}\left\langle f_{i}\right\rangle$. Consequently,

$$
\mathbf{I}(\mathbf{V}(f))=\sqrt{\langle f\rangle}=\left\langle f_{1} \cdots f_{s}\right\rangle \subseteq \bigcap_{i=1}^{s}\left\langle f_{i}\right\rangle=\bigcap_{i=1}^{s} \mathbf{I}\left(\mathbf{V}\left(f_{i}\right)\right)=\mathbf{I}\left(\bigcup_{i=1}^{s} \mathbf{V}\left(f_{i}\right)\right) .
$$

Applying the mapping \mathbf{V} to both sides, we get

$$
\bigcup_{i=1}^{s} \mathbf{V}\left(f_{i}\right) \subseteq \mathbf{V}(f)
$$

since \mathbf{V} is inclusion-reversing and $\bigcup_{i=1}^{s} \mathbf{V}\left(f_{i}\right)$ is a variety because affine varieties are closed under finite unions.

Now we have to show that $\mathbf{V}\left(f_{i}\right)$ is irreducible, i.e. $\mathbf{I}\left(\mathbf{V}\left(f_{i}\right)\right)=\sqrt{\left\langle f_{i}\right\rangle}=\left\langle f_{i}\right\rangle$ is prime. Since f_{i} is irreducible, f_{i} is a prime element because $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a UFD. Thus $\left\langle f_{i}\right\rangle$ is a prime ideal. Finally, $\mathbf{V}\left(f_{i}\right) \nsubseteq \mathbf{V}\left(f_{j}\right)$ for $i \neq j$. Assume not. Then

$$
\left\langle f_{i}\right\rangle=\mathbf{I}\left(\mathbf{V}\left(f_{i}\right)\right) \supseteq \mathbf{I}\left(\mathbf{V}\left(f_{j}\right)\right)=\left\langle f_{j}\right\rangle .
$$

Thus $f_{j} \mid f_{i}$ which is not possible.

3.5 Polynomial mapping on a variety

Definition 3.5.1 Let $V \subseteq k^{m}$ and $W \subseteq k^{n}$ be affine varieties. A function $\phi: V \rightarrow W$ is a polynomial mapping if there exist polynomials $f_{1}, \ldots, f_{n} \in k\left[X_{1}, \ldots, X_{m}\right]$ such that

$$
\phi\left(a_{1}, \ldots, a_{m}\right)=\left(f_{1}\left(a_{1}, \ldots, a_{m}\right), \ldots, f_{n}\left(a_{1}, \ldots, a_{m}\right)\right)
$$

for all $\left(a_{1}, \ldots, a_{m}\right) \in V$. We say that $\left(f_{1}, \ldots, f_{n}\right)$ represents ϕ.
Now we will be interested mainly in the case when $W=k$. Thus ϕ is represented by a single polynomial. Given a polynomial mapping $\phi: V \rightarrow k$, the polynomial which represents ϕ is usually not unique. Consider e.g. $V=\mathbf{V}\left(Y-X^{2}\right) \subseteq \mathbb{R}^{2}$. Then polynomial $f=X^{3}+Y^{3}$ represents a polynomial mapping ϕ from V to \mathbb{R}. However, for any $h \in \mathbf{I}(V)$ the polynomial $g=X^{3}+Y^{3}+h(X, Y)$ represents the same polynomial mapping since for all $(a, b) \in V$ we have

$$
\phi(a, b)=a^{3}+b^{3}=a^{3}+b^{3}+0=a^{3}+b^{3}+h(a, b) .
$$

Proposition 3.5.2 Let $V \subseteq k^{m}$ be an affine variety. Then $f, g \in k\left[X_{1}, \ldots, X_{m}\right]$ represent the same polynomial mapping $\phi: V \rightarrow k$ iff $f-g \in \mathbf{I}(V)$.
PROOF: If $f-g \in \mathbf{I}(V)$, then for any point $a=\left(a_{1}, \ldots, a_{m}\right) \in V$, we have $f(a)-g(a)=0$. Thus f, g represent the same polynomial mapping $\phi: V \rightarrow k$. Conversely, if f, g represent the same polynomial mapping $\phi: V \rightarrow k$, then at every point $a \in V$ we have $f(a)-g(a)=0$. Thus $f-g \in \mathbf{I}(V)$.

Definition 3.5.3 Let $V \subseteq k^{n}$ be an affine variety. We denote by $k[V]$ the set of all polynomial mappings from V to k.

The set $k[V]$ forms a ring under the point-wise operations, i.e. if $\phi, \psi \in k[V]$, then

$$
\begin{aligned}
(\phi+\psi)(a) & =\phi(a)+\psi(a) \\
(\phi \cdot \psi)(a) & =\phi(a) \cdot \psi(a) .
\end{aligned}
$$

Additive and multiplicative identity of $k[V]$ are represented respectively by constant polynomials 0 and 1 .

Observe that if f represents $\phi \in k[V]$ and g represents $\psi \in k[V]$, then $f+g$ represents $\phi+\psi$. Indeed, for all $a \in V$ we have

$$
(\phi+\psi)(a)=\phi(a)+\psi(a)=f(a)+g(a)=(f+g)(a) .
$$

Similarly, $f \cdot g$ represents $\phi \cdot \psi$.
Theorem 3.5.4 Let $V \subseteq k^{n}$ be an affine variety. Then the ring $k[V]$ is isomorphic to $k\left[X_{1}, \ldots, X_{n}\right] / \mathbf{I}(V)$.

Proof: Let us define a mapping $\Psi: k\left[X_{1}, \ldots, X_{n}\right] / \mathbf{I}(V)$ by $\Psi([f])=\phi$ where $\phi: V \rightarrow k$ is the polynomial mapping represented by f. By Proposition 3.5.2 Ψ is a well-defined function since if $[f]=\left[f^{\prime}\right]$, then $f-f^{\prime} \in \mathbf{I}(V)$, i.e. f, f^{\prime} represent the same polynomial mapping. Since every polynomial mapping $\phi \in k[V]$ can be represented by a polynomial in $k\left[X_{1}, \ldots, X_{n}\right]$, Ψ is onto. To see that Ψ is injective, assume that $[f] \neq[g]$. Then $f-g \notin \mathbf{I}(V)$, i.e. they represent different polynomial mappings from $k[V]$. Thus $\Psi([f]) \neq \Psi([g])$.

Let $[f],[g] \in k\left[X_{1}, \ldots, X_{n}\right] / \mathbf{I}(V)$. Then $\Psi([f])$ and $\Psi([g])$ are represented by f and g respectively. Thus $\Psi([f])+\Psi([g])$ is represented by $f+g$. Hence

$$
\Psi([f]+[g])=\Psi([f+g])=\Psi([f])+\Psi([g]) .
$$

Similarly, we have

$$
\Psi([f] \cdot[g])=\Psi([f \cdot g])=\Psi([f]) \cdot \Psi([g]) .
$$

Finally, $\Psi([1])$ is the polynomial mapping in $k[V]$ which is represented by the constant polynomial 1, i.e. $\Psi([1])$ is the multiplicative identity in $k[V]$.

Corollary 3.5.5 Let $V \subseteq k^{n}$ be an affine variety. Then $k[V]$ is an integral domain iff V is irreducible. In addition, if k is algebraically closed, then $k[V]$ is a field iff $V=\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}$. In fact, in this case $k[V]$ is isomorphic to k.

PROOF: Since $k\left[X_{1}, \ldots, X_{n}\right] / \mathbf{I}(V)$ is an integral domain $\operatorname{iff} \mathbf{I}(V)$ is a prime filter, the statement follows from the previous theorem. Assume that k is algebraically closed. Then $k\left[X_{1}, \ldots, X_{n}\right] / \mathbf{I}(V)$ is a field iff $\mathbf{I}(V)$ is a maximal filter iff $\mathbf{I}(V)=\left\langle X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right\rangle$ for some $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$. Concerning the last statement, it can be easily seen that $k[V]$, where $V=\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}$, is isomorphic to k since each function in $k[V]$ can be represented by a constant polynomial.

Observe that if $V=\mathbf{V}(I)$, then $k[V]$ need not be isomorphic to $k\left[X_{1}, \ldots, X_{n}\right] / I$. We proved this only for the case when $I=\mathbf{I}(V)$. To see this, consider an affine variety $V=$ $\{(0,0)\} \subseteq \mathbb{C}^{2}$. Then $\mathbf{I}(V)=\langle X, Y\rangle$ and $\mathbb{C}[V] \cong \mathbb{C}[X, Y] / \mathbf{I}(V)$ is a field. However, if we take a different defining ideal for V, e.g. $I=\left\langle X^{2}, Y\right\rangle$, then $\mathbb{C}[X, Y] / I$ is not a field since $\left\langle X^{2}, Y\right\rangle$ is not a maximal ideal.

3.6 Zero-dimensional ideals

Lemma 3.6.1 Fix a term order on $k\left[X_{1}, \ldots, X_{n}\right]$ and let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal. Then every $f \in k\left[X_{1}, \ldots, X_{n}\right]$ is congruent w.r.t. I to a unique polynomial r which is a k-linear combination of the monomials in the complement of $\langle\mathrm{LT}(I)\rangle$.
Proof: Let G be a Gröbner basis for I w.r.t. the fixed term order and $f \in k\left[X_{1}, \ldots, X_{n}\right]$. Set $r=\bar{f}^{G}$. Then r is unique and it is a k-linear combination of monomials from the complement of $\langle\operatorname{LT}(I)\rangle$. Further, $f=q+r$ for some $q \in I$. Thus $f-r=q \in I$, i.e. $f \sim_{I} r$.

Observe, that $k\left[X_{1}, \ldots, X_{n}\right] / I$ can be viewed also as a k-vector space since we can define the scalar multiplication by $c \cdot[f]=[c \cdot f]$ for $c \in k$. It can be easily checked that this definition satisfies all the axioms of a k-vector space. For instance

$$
(c+d) \cdot[f]=[(c+d) \cdot f]=[c f+d f]=[c f]+[d f]=c \cdot[f]+d \cdot[f] .
$$

Theorem 3.6.2 Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal. Then $k\left[X_{1}, \ldots, X_{n}\right] / I$ is isomorphic as a k-vector space to $S=\operatorname{Span}\left(X^{\alpha} \mid X^{\alpha} \notin\langle\operatorname{LT}(I)\rangle\right)$.
Proof: By the previous lemma the mapping $\Phi([f])=\bar{f}^{G}$ is a bijection. Indeed, let $[f],[g] \in$ $k\left[X_{1}, \ldots, X_{n}\right] / I$. Then $r=\bar{f}^{G} \sim_{I} f$ and $r^{\prime}=\bar{g}^{G} \sim_{I} g$. If $r=r^{\prime}$, then $f \sim_{I} r=r^{\prime} \sim_{I} g$, i.e. $[f]=[g]$. To see that Φ is onto, consider $r \in S$. Then $\bar{r}^{G}=r$ since any monomial in r is not divisible by any of $\operatorname{LT}(I)$. Thus $\Phi([r])=r$.

Now, it suffices to check that Φ is a linear mapping. First, we will show that $\overline{f+g}^{G}=$ $\bar{f}^{G}+\bar{g}^{G}$ and $\overline{c \cdot f}{ }^{G}=c \cdot \bar{f}^{G}$. We have $f=q+\bar{f}^{G}$ and $g=h+\bar{g}^{G}$ for some $q, h \in I$. Thus $f+g=(q+h)+\left(\bar{f}^{G}+\bar{g}^{G}\right)$. Since none of the monomials in $\bar{f}^{G}+\bar{g}^{G}$ is divisible by any of $\operatorname{LT}(I)$, we get $\bar{f}^{G}+\bar{g}^{G}=\overline{f+g}^{G}$ by Proposition 2.5.2. Similarly, $c \cdot f=c \cdot q+c \cdot \bar{f}^{G}$, i.e. $\overline{c \cdot f}{ }^{G}=c \cdot \bar{f}^{G}$. Hence we get

$$
\begin{gathered}
\Phi([f]+[g])=\Phi([f+g])=\overline{f+g}^{G}=\bar{f}^{G}+\bar{g}^{G}=\Phi([f])+\Phi([g]), \\
\Phi(c \cdot[f])=\Phi([c \cdot f])=\overline{c \cdot f}=c \cdot \bar{f}^{G}=c \cdot \Phi([f]) .
\end{gathered}
$$

Observe that $B=\left\{X^{\alpha} \mid X^{\alpha} \notin\langle\mathrm{LT}(I)\rangle\right\}$ is a basis for S. Thus, if B is finite, we have

$$
\operatorname{dim} S=\operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] / I=|B| .
$$

Theorem 3.6.3 Let k be an algebraically closed field and $V=\mathbf{V}(I) \subseteq k^{n}$ an affine variety. Then V is finite iff $k\left[X_{1}, \ldots, X_{n}\right] / I$ is finite-dimensional.

PROOF: (\Leftarrow) : To show that V is finite, it suffices to prove that for each i there can be only finitely many distinct i-th components of the points of V. Fix i and consider the classes $\left[X_{i}^{j}\right] \in k\left[X_{1}, \ldots, X_{n}\right] / I$, where $j \in \mathbb{N}$. Since $k\left[X_{1}, \ldots, X_{n}\right] / I$ is finite-dimensional, $\left[X_{i}^{j}\right]$ must be linearly dependent. Thus for some $c_{j} \in k$ we have

$$
[0]=\sum c_{j}\left[X_{i}^{j}\right]=\left[\sum c_{j} X_{i}^{j}\right]
$$

Thus $\sum c_{j} X_{i}^{j} \in I$. Since $\sum c_{j} X_{i}^{j}$ can have only finitely many roots in k, there are only finitely many distinct i-th components of the points of V.
(\Rightarrow) : For this it suffices to show that $\operatorname{dim} S$ is finite. If $V=\emptyset$, then by the Weak Nullstellensatz $I=k\left[X_{1}, \ldots, X_{n}\right]$. Thus $k\left[X_{1}, \ldots, X_{n}\right] / I$ is the trivial k-vector space. If V is nonempty, then for a fixed i, let $a_{j}, j=1, \ldots, t$ be the distinct i-th components of the points of V. Let

$$
f\left(X_{i}\right)=\prod_{j=1}^{t}\left(X_{i}-a_{j}\right)
$$

By construction f vanishes at every point of V, so $f \in \mathbf{I}(V)=\mathbf{I}(\mathbf{V}(I))=\sqrt{I}$. Thus there is $m \in \mathbb{N}$ such that $f^{m} \in I$. This means that $X_{i}^{t m}=\operatorname{LT}\left(f^{m}\right) \in\langle\operatorname{LT}(I)\rangle$.

Now we know that for each i there is $m_{i} \in \mathbb{N}$ such that $X_{i}^{m_{i}} \in\langle\operatorname{LT}(I)\rangle$. Thus any monomial $X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}$ such that $m_{i} \leq \alpha_{i}$ (for at least one i) must belong to $\langle\mathrm{LT}(I)\rangle$ as well. Consequently, the monomials in the complement of $\langle\mathrm{LT}(I)\rangle$ must have $\alpha_{i} \leq m_{i}-1$ for all i. As a result, there can be at most $m_{1} \cdots m_{n}$ many monomials in the complement showing that $\operatorname{dim} S$ is finite.

Corollary 3.6.4 Let k be an algebraically closed field and $V=\mathbf{V}(I) \subseteq k^{n}$ an affine variety. Then V is finite iff $I \cap k\left[X_{i}\right] \neq\langle 0\rangle$ for each $i \in\{1, \ldots, n\}$.

PROOF: The right-to-left direction is trivial. For the other observe that in the first part of previous proof we have constructed for arbitrary i a polynomial $\sum c_{j} X_{i}^{j}$ from $k\left[X_{i}\right]$ which belongs to I.

Definition 3.6.5 Let V_{1}, \ldots, V_{t} be k-vector spaces. The direct product $\prod_{i=1}^{t} V_{i}$ of V_{1}, \ldots, V_{t} is the k-vector space defined on $V_{1} \times \cdots \times V_{t}$ componentwise.

Lemma 3.6.6 (Chinese Remainder Theorem) Let $I_{1}, \ldots, I_{t} \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be ideals. Set $I=\bigcap_{i=1}^{t} I_{i}$. Then we have the following:

1. The $\operatorname{map} \Phi: k\left[X_{1}, \ldots, X_{n}\right] / I \rightarrow \prod_{i=1}^{t} k\left[X_{1}, \ldots, X_{n}\right] / I_{i}$ defined by

$$
\Phi\left([f]_{I}\right)=\left([f]_{I_{1}}, \ldots,[f]_{I_{t}}\right)
$$

is an injective linear mapping.
2. If the ideals I_{1}, \ldots, I_{t} are pairwise comaximal, i.e. $I_{i}+I_{j}=k\left[X_{1}, \ldots, X_{n}\right]$ for $i \neq j$, then Φ is an isomorphism of k-vector spaces.

PROOF:

1. The mapping Φ is well-defined since if $[f]_{I}=\left[f^{\prime}\right]_{I}$, then $[f]_{I_{i}}=\left[f^{\prime}\right]_{I_{i}}$ for all i because $I \subseteq I_{i}$ for each i. Let $f, g \in k\left[X_{1}, \ldots, X_{n}\right]$ and $c \in k$. Then

$$
\begin{array}{r}
\Phi\left([f]_{I}+[g]_{I}\right)=\Phi\left([f+g]_{I}\right)=\left([f+g]_{I_{1}}, \ldots,[f+g]_{I_{t}}\right)=\left([f]_{I_{1}}+[g]_{I_{1}}, \ldots,[f]_{I_{t}}+[g]_{I_{t}}\right)= \\
=\left([f]_{I_{1}}, \ldots,[f]_{I_{t}}\right)+\left([g]_{I_{1}}, \ldots,[g]_{I_{t}}\right)=\Phi\left([f]_{I}\right)+\Phi\left([g]_{I}\right), \\
\Phi\left(c \cdot[f f]_{I}\right)=\Phi\left([c f]_{I}\right)=\left([c f]_{I_{1}}, \ldots,[c f]_{I_{t}}\right)=\left(c[f]_{I_{1}}, \ldots, c[f]_{I_{t}}\right)= \\
=c\left([f]_{I_{1}}, \ldots,[f]_{I_{t}}\right)=c \cdot \Phi\left([f]_{I}\right) .
\end{array}
$$

Thus Φ is a linear mapping. To see that it is one-to-one, assume that $[f]_{I} \neq[g]_{I}$. Then $f-g \notin I=\bigcap_{i=1}^{t} I_{i}$, i.e. $f-g$ does not belong to at least one of I_{i} 's, say to I_{j}. Hence $[f]_{I_{j}} \neq[g]_{I_{j}}$ showing that $\Phi\left([f]_{I}\right) \neq \Phi\left([g]_{I}\right)$.
2. Fix a number $i \in\{1, \ldots, t\}$ and let $J_{i}=\bigcap_{j \neq i} I_{j}$. Since I_{i} and I_{j} are comaximal for all $j \neq i$, there are elements $a_{j} \in I_{i}$ and $b_{j} \in I_{j}$ such that $a_{j}+b_{j}=1$. Then $1=\prod_{j \neq i}\left(a_{j}+b_{j}\right) \in I_{i}+\prod_{j \neq i} I_{j} \subseteq I_{i}+J_{i}$. Thus I_{i} and J_{i} are comaximal. Thus there are elements $p_{i} \in I_{i}$ and $q_{i} \in J_{i}$ such that $p_{i}+q_{i}=1$. Let $\left(\left[r_{1}\right]_{I_{1}}, \ldots,\left[r_{t}\right]_{I_{t}}\right) \in$ $\prod_{i=1}^{t} k\left[X_{1}, \ldots, X_{n}\right] / I_{i}$. I claim that $\Phi\left(\left[q_{1} r_{1}+\cdots+q_{t} r_{t}\right]_{I}\right)=\left(\left[r_{1}\right]_{I_{1}}, \ldots,\left[r_{t}\right]_{I_{t}}\right)$. To prove this we have to show that for each i we have $\left[q_{1} r_{1}+\cdots+q_{t} r_{t}\right]_{I_{i}}=\left[r_{i}\right]_{I_{i}}$. Observe that for each $j \neq i$ we have $q_{j} \in J_{j}=\bigcap_{l \neq j} I_{l} \subseteq I_{i}$. Thus $\sum_{j \neq i} q_{j} r_{j} \in I_{i}$ showing that $\left[q_{1} r_{1}+\cdots+q_{t} r_{t}\right]_{I_{i}}=\left[q_{i} r_{i}\right]_{I_{i}}$. But $\left[q_{i} r_{i}\right]_{I_{i}}=\left[\left(1-p_{i}\right) r_{i}\right]_{I_{i}}=\left[r_{i}\right]_{I_{i}}$.

Theorem 3.6.7 Let k be an algebraically closed field and $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ such that $\mathbf{V}(I)$ is finite. Then

$$
|\mathbf{V}(I)| \leq \operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] / I .
$$

If, in addition, I is radical, then

$$
|\mathbf{V}(I)|=\operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] / I .
$$

PROOF: Let $\mathbf{V}(I)=\left\{p_{1}, \ldots, p_{t}\right\}$. To each point $p_{i}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{V}(I)$ we can assign the maximal ideal $M_{i}=\left\langle X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right\rangle$. Clearly, $I \subseteq M_{i}$ for each i. Indeed, let $f \in I$. Then $f\left(p_{i}\right)=0$. Since M_{i} is maximal, hence radical, we have $M_{i}=\sqrt{M_{i}}=\mathbf{I}\left(\mathbf{V}\left(M_{i}\right)\right)=$ $\mathbf{I}\left(\left\{p_{i}\right\}\right)$, i.e. $f \in M_{i}$. Consequently, $I \subseteq \bigcap_{i=1}^{t} M_{i}$. Since $\langle\operatorname{LT}(I)\rangle \subseteq\left\langle\operatorname{LT}\left(\bigcap_{i=1}^{t} M_{i}\right)\right\rangle$, we get $\operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] / I \geq \operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] / \bigcap_{i=1}^{t} M_{i}$. It follows from Chinese Remainder Theorem that $k\left[X_{1}, \ldots, X_{n}\right] / \bigcap_{i=1}^{t} M_{i} \cong \prod_{i=1}^{t} k\left[X_{1}, \ldots, X_{n}\right] / M_{i}$. Further, $k\left[X_{1}, \ldots, X_{n}\right] / M_{i}$ is a field isomorphic to k (see Corollary 3.5.5), i.e. $\prod_{i=1}^{t} k\left[X_{1}, \ldots, X_{n}\right] / M_{i} \cong k^{t}$. Thus we have

$$
t=\operatorname{dim} \prod_{i=1}^{t} k\left[X_{1}, \ldots, X_{n}\right] / M_{i}=\operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] / \bigcap_{i=1}^{t} M_{i} \leq \operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] / I
$$

Now assume that I is radical. We will prove that instead of inclusion $I \subseteq \bigcap_{i=1}^{t} M_{i}$ we have in fact equality $I=\bigcap_{i=1}^{t} M_{i}$. Let $f \in \bigcap_{i=1}^{t} M_{i}$. Then for each i we have $f\left(p_{i}\right)=0$. Thus we get

$$
f \in \mathbf{I}\left(p_{1}, \ldots, p_{t}\right)=\mathbf{I}(\mathbf{V}(I))=\sqrt{I}=I .
$$

The rest of the proof is a trivial modification of the previous method.

Lemma 3.6.8 Let k be a field containing \mathbb{Q} and $f \in k[X]$ a non-constant polynomial. Then f is square-free iff $\operatorname{gcd}\left(f, f^{\prime}\right)=1$. Moreover, $f_{\text {red }}=f / \operatorname{gcd}\left(f, f^{\prime}\right)$.

Proof: (\Leftarrow) : We will prove it contra-positively. Assume that f is not square-free. Then we can write $f=f_{1}^{2} f_{2}$ for some $f_{1}, f_{2} \in k[X]$ such that f_{1} is non-constant. The derivative of f is $f^{\prime}=2 f_{1} f_{1}^{\prime} f_{2}+f_{1}^{2} f_{2}^{\prime}$. Thus $f_{1} \mid \operatorname{gcd}\left(f, f^{\prime}\right)$ showing that f_{1} must be a constant polynomial (a contradiction).
(\Rightarrow) : Let $f=f_{1} \cdots f_{t}$ be the decomposition into irreducible polynomials. Then

$$
f^{\prime}=\sum_{i=1}^{t} f_{1} \cdots f_{i-1} \cdot f_{i}^{\prime} \cdot f_{i+1} \cdots f_{t}=\sum_{i=1}^{t} g_{i} f_{i}^{\prime}
$$

where $g_{i}=f_{1} \cdots f_{i-1} \cdot f_{i+1} \cdots f_{t}$. Since k contains \mathbb{Q} and $f_{i}^{\prime} s$ are non-constant, we have $f_{i}^{\prime} \neq 0$ for each $i .{ }^{1}$

Let $j \in\{1, \ldots, t\}$. I claim that $\operatorname{gcd}\left(f_{j}, f^{\prime}\right)=1$. We will prove that f_{j} cannot be the greatest common divisor of f_{j} and f^{\prime}. Suppose that $f_{j} \mid f^{\prime}$. Then we have

$$
f^{\prime}=a f_{j}=\sum_{i=1}^{t} g_{i} f_{i}^{\prime}=\sum_{i \neq j} f_{j} h_{i} f_{i}^{\prime}+g_{j} f_{j}^{\prime} .
$$

Thus

$$
g_{j} f_{j}^{\prime}=f_{j}\left(a-\sum_{i \neq j} h_{i} f_{i}^{\prime}\right)
$$

Since g_{j} does not contain f_{j}, f_{j}^{\prime} must be divisible by f_{j} but it is a contradiction with the fact that $f_{j}^{\prime} \neq 0$ and $\operatorname{deg} f_{j}^{\prime}<\operatorname{deg} f_{j}$.

Finally, we show that $\operatorname{gcd}\left(f, f^{\prime}\right)=1$. Assume that some irreducible c divides f and f^{\prime}. Since $f=f_{1} \cdots f_{t}, c$ is (up to units) either 1 or one of the irreducible factors. Suppose that $c=f_{j}$. Then $c \mid \operatorname{gcd}\left(f_{j}, f^{\prime}\right)$ but $\operatorname{gcd}\left(f_{j}, f^{\prime}\right)=1$ which is a contradiction (i.e. c must be 1).

To prove the last statement observe that $\operatorname{gcd}\left(f, f^{\prime}\right)=f_{1}^{a_{1}-1} \cdots f_{t}^{a_{t}-1}$ where $f=u f_{1}^{a_{1}} \cdots f_{t}^{a_{t}}$ is the factorization into irreducibles. Thus $f_{\text {red }}=f / \operatorname{gcd}\left(f, f^{\prime}\right)=u f_{1} \cdots f_{t}$.

Lemma 3.6.9 Let I, J be ideals. Then $\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$.
Proof: Let $f \in \sqrt{I \cap J}$. Then $f^{m} \in I \cap J$ for some $m \in \mathbb{N}$. Thus $f \in \sqrt{I}$ and $f \in \sqrt{J}$. Conversely, let $f \in \sqrt{I} \cap \sqrt{J}$. Then there are $m, p \in \mathbb{N}$ such that $f^{m} \in I$ and $f^{p} \in J$. Thus $f^{m} f^{p}=f^{m+p} \in I \cap J$, i.e. $f \in \sqrt{I \cap J}$.

Proposition 3.6.10 (Seidenberg's Lemma) Let k be an algebraically closed field and let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal. If there exists a non-zero polynomials $g_{i} \in I \cap k\left[X_{i}\right]$ for each $i \in\{1, \ldots, n\}$ such that $\operatorname{gcd}\left(g_{i}, g_{i}^{\prime}\right)=1$, then I is radical.

[^0]Proof: By Lemma 3.6.8 the polynomials g_{1}, \ldots, g_{n} are square-free. We proceed by induction on n. For $n=1$, the principal ideal $I \subseteq k\left[X_{1}\right]$ contains a square-free polynomial. Therefore it is generated by a square-free polynomial, i.e. it is a radical ideal.

Let $n>1$. We write $g_{1}=h_{1} \cdots h_{t}$ with irreducible polynomials $h_{1}, \ldots, h_{t} \in k\left[X_{1}\right]$. We claim that $I=\bigcap_{i=1}^{t}\left(I+\left\langle h_{i}\right\rangle\right)$. For every $f \in \bigcap_{i=1}^{t}\left(I+\left\langle h_{i}\right\rangle\right)$ there are $r_{i} \in I$ and $q_{i} \in k\left[X_{1}, \ldots, X_{n}\right]$ such that $f=r_{i}+q_{i} h_{i}, i \in\{1, \ldots, t\}$. Thus we have

$$
f \cdot \prod_{j \neq i} h_{j}=\left(r_{i}+q_{i} h_{i}\right) \cdot \prod_{j \neq i} h_{j}=r_{i} \cdot \prod_{j \neq i} h_{j}+q_{i} g_{1} \in I .
$$

Since

$$
\operatorname{gcd}\left(\prod_{j \neq 1} h_{j}, \prod_{j \neq 2} h_{j}, \ldots, \prod_{j \neq t} h_{j}\right)=1
$$

there are $p_{1}, \ldots, p_{t} \in k\left[X_{1}\right]$ such that

$$
p_{1} \cdot \prod_{j \neq 1} h_{j}+p_{2} \cdot \prod_{j \neq 2} h_{j}+\cdots+p_{t} \cdot \prod_{j \neq t} h_{j}=1
$$

(see Lemma 1.3.7 and note that $k\left[X_{1}\right]$ is a PID). Thus

$$
f=p_{1} \cdot f \cdot \prod_{j \neq 1} h_{j}+p_{2} \cdot f \cdot \prod_{j \neq 2} h_{j}+\cdots+p_{t} \cdot f \cdot \prod_{j \neq t} h_{j} \in I,
$$

which proves the claim.
Because of this claim and by Lemma 3.6.9 it is sufficient to show that $I+\left\langle h_{i}\right\rangle$ is radical for each $i=1, \ldots, t$. Thus we may assume that g_{1} is irreducible. Then $g_{1}=X_{1}-a$ for some $a \in k$ since k is an algebraically closed field. Let us define the following ideal

$$
J=\left\{f\left(a, X_{2}, \ldots, X_{n}\right) \in k\left[X_{2}, \ldots, X_{n}\right] \mid f \in I\right\} .
$$

Observe that $f\left(X_{1}, X_{2}, \ldots, X_{n}\right) \in I$ if, and only if, $f\left(a, X_{2}, \ldots, X_{n}\right) \in J$. If f does not contain X_{1} then it is clear. Assume that $f\left(a, X_{2}, \ldots, X_{n}\right) \in J$ and f contains X_{1}. Then by division algorithm we can write $f=h_{1}\left(X_{1}-a\right)+h_{2}$ where $h_{2} \in k\left[X_{2}, \ldots, X_{n}\right]$. If we substitute for X_{1} the value a we get

$$
f\left(a, X_{2}, \ldots, X_{n}\right)=h_{1}(a-a)+h_{2}\left(X_{2}, \ldots, X_{n}\right)=h_{2}\left(X_{2}, \ldots, X_{n}\right) .
$$

Hence $h_{2}=f\left(a, X_{2}, \ldots, X_{n}\right) \in J$. Since h_{2} does not contain X_{1}, we have $h_{2} \in I$. Thus $f \in I$.
Note that g_{2}, \ldots, g_{n} belongs to J and still satisfy $\operatorname{gcd}\left(g_{i}, g_{i}^{\prime}\right)=1$ for $i \in\{2, \ldots, n\}$. Thus by induction assumption $J \subseteq k\left[X_{2}, \ldots, X_{n}\right]$ is a radical ideal. Let $f^{m} \in I$ for some $m \in \mathbb{N}$. Then $f\left(a, X_{2}, \ldots, X_{n}\right)^{m} \in J$ and since J is radical we have $f\left(a, X_{2}, \ldots, X_{n}\right) \in J$. Finally, by the above observation we get $f \in I$.

Corollary 3.6.11 Let k be an algebraically closed field. Then the following algorithm computes the radical of an ideal $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ such that $\mathbf{V}(I)$ is finite.

1. For $i=1, \ldots, n$ compute a generator $g_{i} \in k\left[X_{i}\right]$ of the elimination ideal $I \cap k\left[X_{i}\right]$.
2. Compute the reduction $\left(g_{i}\right)_{\text {red }}$ of g_{i} 's and return the ideal $I+\left\langle\left(g_{1}\right)_{\text {red }}, \ldots,\left(g_{n}\right)_{\text {red }}\right\rangle$.

Proof: By Corollary 3.6.4 the generators g_{i} exist. By Lemma 3.6 .8 we can compute $\left(g_{i}\right)_{\text {red }}$ for each i. Since the ideal $J=I+\left\langle\left(g_{1}\right)_{r e d}, \ldots,\left(g_{n}\right)_{r e d}\right\rangle$ satisfies $I \subseteq J \subseteq \sqrt{I}$, we have $\sqrt{I}=\sqrt{J}$. Indeed, we have $\sqrt{I} \subseteq \sqrt{J}$ since the operation assigning to an ideal its radical is monotone w.r.t. inclusion and $\sqrt{I} \supseteq \sqrt{J}$ follows from $\sqrt{J} \subseteq \sqrt{\sqrt{I}}=\sqrt{I}$. Let $h_{i}=\left(g_{i}\right)_{\text {red }}$ for each i. By Lemma 3.6.8 the polynomials $h_{i} \operatorname{satisfy} \operatorname{gcd}\left(h_{i}, h_{i}^{\prime}\right)=1$. Thus by Seidenberg's Lemma yields the claim.

3.7 Systems of polynomial equations

In this section, let k be an algebraically closed field.

Definition 3.7.1 Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal such that $\mathbf{V}(I)$ is finite and $i \in\{1, \ldots, n\}$. We say that I is in normal X_{i}-position if any two points $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) \in \mathbf{V}(I)$ satisfy $a_{i} \neq b_{i}$.

Lemma 3.7.2 Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal such that $\mathbf{V}(I)$ is finite. Then there exists a tuple $\left(c_{1}, \ldots, c_{n-1}\right) \in k^{n-1}$ such that

$$
c_{1} a_{1}+\cdots+c_{n-1} a_{n-1}+a_{n} \neq c_{1} b_{1}+\cdots+c_{n-1} b_{n-1}+b_{n}
$$

for all pairs of points $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) \in \mathbf{V}(I)$.
PROOF: Let $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) \in \mathbf{V}(I)$ be two distinct points in the variety given by I. In choosing the tuple $\left(c_{1}, \ldots, c_{n-1}\right) \in k^{n-1}$, we have to avoid the solutions of the linear equation

$$
\left(a_{1}-b_{1}\right) \xi_{1}+\cdots+\left(a_{n-1}-b_{n-1}\right) \xi_{n-1}=b_{n}-a_{n} .
$$

Every such equation determines a hyperplane in k^{n-1}. Since there are only finitely many of them, we can choose a point $\left(c_{1}, \ldots, c_{n-1}\right) \in k^{n-1}$ which is not contained in any of these hyperplanes.

Consequently, we can transform the ideal I into an ideal in normal X_{n}-position. More precisely, let

$$
\mathbb{A}=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & -c_{1} \\
0 & 1 & \cdots & 0 & -c_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -c_{n-1} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

be the matrix of linear transformation assigning to an n-tuple $\left(X_{1}, \ldots, X_{n}\right)$ the n-tuple

$$
\left(X_{1}, \ldots, X_{n}\right) \cdot \mathbb{A}=\left(X_{1}, \ldots, X_{n-1}, X_{n}-c_{1} X_{1}-\cdots-c_{n-1} X_{n-1}\right) .
$$

The matrix \mathbb{A} is clearly invertible and

$$
\mathbb{A}^{-1}=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & c_{1} \\
0 & 1 & \cdots & 0 & c_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & c_{n-1} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

We denote the n-tuple $\left(X_{1}, \ldots, X_{n}\right)$ by X. Let us define the set

$$
J=\{f(X \cdot \mathbb{A}) \mid f \in I\}
$$

Observe that $f(X) \in J$ iff $f\left(X \cdot \mathbb{A}^{-1}\right)$ is in I, Indeed, if $f(X) \in J$, then there is $g(X) \in I$ such that $g(X \cdot \mathbb{A})=f(X)$. Thus $f\left(X \cdot \mathbb{A}^{-1}\right)=g\left(\left(X \cdot \mathbb{A}^{-1}\right) \cdot \mathbb{A}\right)=g(X)$.

Now we can prove that J is an ideal. Zero polynomial is clearly in J. Let $f(X), g(X) \in J$ and $h(X) \in k\left[X_{1}, \ldots, X_{n}\right]$. Then $f\left(X \cdot \mathbb{A}^{-1}\right) \in I$ and $g\left(X \cdot \mathbb{A}^{-1}\right) \in I$. Thus

$$
f\left(X \cdot \mathbb{A}^{-1}\right)+g\left(X \cdot \mathbb{A}^{-1}\right) \in I .
$$

i.e.

$$
f(X)+g(X)=f\left((X \cdot \mathbb{A}) \cdot \mathbb{A}^{-1}\right)+g\left((X \cdot \mathbb{A}) \cdot \mathbb{A}^{-1}\right) \in J
$$

by definition of J. Similarly $f\left(X \cdot \mathbb{A}^{-1}\right) \cdot h\left(X \cdot \mathbb{A}^{-1}\right) \in I$. Thus

$$
f(X) \cdot h(X)=f\left((X \cdot \mathbb{A}) \cdot \mathbb{A}^{-1}\right) \cdot h\left((X \cdot \mathbb{A}) \cdot \mathbb{A}^{-1}\right) \in J
$$

Moreover, there is a correspondence between points of $\mathbf{V}(I)$ and points of $\mathbf{V}(J)$. We have $\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{V}(I)$ iff $\left(a_{1}, \ldots, a_{n}+c_{1} a_{1}+\cdots+c_{n-1} a_{n-1}\right) \in \mathbf{V}(J)$. Indeed, let $f(X) \in J$. Then $f\left(X \cdot \mathbb{A}^{-1}\right) \in I$, i.e.

$$
f\left(\left(a_{1}, \ldots, a_{n}\right) \cdot \mathbb{A}^{-1}\right)=f\left(a_{1}, \ldots, a_{n-1}, a_{n}+c_{1} a_{1}+\cdots+c_{n-1} a_{n-1}\right)=0 .
$$

Since we chose f arbitrarily, $\left(a_{1}, \ldots, a_{n-1}, a_{n}+c_{1} a_{1}+\cdots+c_{n-1} a_{n-1}\right) \in \mathbf{V}(J)$. Conversely, if $f(X) \in I$, then $f(X \cdot \mathbb{A}) \in J$. Thus
$0=f\left(\left(a_{1}, \ldots, a_{n-1}, a_{n}+c_{1} a_{1}+\cdots+c_{n-1} a_{n-1}\right) \cdot \mathbb{A}\right)=f\left(\left(\left(a_{1}, \ldots, a_{n}\right) \cdot \mathbb{A}^{-1}\right) \cdot \mathbb{A}\right)=f\left(a_{1}, \ldots, a_{n}\right)$.
Finally, it can be easily seen that if c_{1}, \ldots, c_{n-1} are chosen according to Lemma 3.7.2, then J is in normal X_{n}-position. Although Lemma 3.7.2 does not give us a deterministic algorithm how to find the numbers c_{1}, \ldots, c_{n-1}, we can still construct a probabilistic algorithm choosing c_{1}, \ldots, c_{n-1} randomly and then checking whether J is in normal X_{n}-position. For that we need a criterion how to recognize whether an ideal in normal X_{n}-position. Before we formulate the promised criterion, we have to prove several technical statements.

Proposition 3.7.3 Let R be a ring and $I \subseteq R$ an ideal. Then there is a one-to-one correspondence between set of ideals in R containing I and set of ideals in R / I. More precisely, let $J \supseteq I$ be an ideal in R and \tilde{J} an ideal in R / I. Then the following mappings Φ and Ψ are inverses of each other:

$$
\begin{array}{rll}
J & \xrightarrow{\Phi}\left\{[j]_{I} \in R / I \mid j \in J\right\} \\
\left\{j \in R \mid[j]_{I} \in \tilde{J}\right\} & \stackrel{\Psi}{\longleftrightarrow} & \tilde{J}
\end{array}
$$

Moreover, Φ and Ψ preserve inclusions, i.e. $J_{1} \subseteq J_{2}$ implies $\Phi\left(J_{1}\right) \subseteq \Phi\left(J_{2}\right)$ and similarly for Ψ. We also have $\Phi(R)=R / I$ and $\Psi(R / I)=R$.

Proof: Let $J \supseteq I$ be an ideal in R. We have to check that $\Phi(J)$ is an ideal in R / I. Let $[a]_{I},[b]_{I} \in \Phi(J)$ and $[c]_{I} \in R / I$. Then $a, b \in J$ and $[a]_{I}+[b]_{I}=[a+b]_{I}$. Since $a+b \in J$, we get $[a+b]_{I} \in \Phi(J)$. Analogously $[a]_{I} \cdot[c]_{I}=[a \cdot c]_{I} \in \Phi(J)$. Clearly, $[0]_{I} \in \Phi(J)$. Similarly, we can check for an ideal \tilde{J} in R / I that $\Psi(\tilde{J})$ is an ideal in R containing I. Indeed, let $a \in I$. Then $a \in \Psi(\tilde{J})$ since $I=[0]_{I} \in \tilde{J}$.

Further, we have to show that $\Psi \circ \Phi$ is an identity on the set of ideals in R and $\Phi \circ \Psi$ an identity on the set of ideals in R / I. Let J be an ideal in R containing I. Then $j \in J$ iff $[j]_{I} \in \Phi(J)$ iff $j \in \Psi(\Phi(J))$. Similarly, let \tilde{J} be an ideal in R / I. Then $[j]_{I} \in \tilde{J}$ iff $j \in \Psi(\tilde{J})$ iff $[j]_{I} \in \Phi(\Psi(\tilde{J}))$.

Finally, it can easily seen that Φ and Ψ are inclusion preserving and $\Phi(R)=R / I$, $\Psi(R / I)=R$.

Observe that if J is a maximal ideal in R containing an ideal I, then $\Phi(J)$ is a maximal ideal in R / I. Similarly $\Psi(\tilde{J})$ is maximal for a maximal ideal \tilde{J} in R / I.

Lemma 3.7.4 Let R, S be rings and $\Phi: R \rightarrow S$ be a ring isomorphism and let $I \subseteq R$ be an ideal. Then $\Phi(I)$ is an ideal in S. Moreover, if I is maximal, then $\Phi(I)$ is maximal.
PROOF: Recall that $\Phi(I)=\{b \in S \mid(\exists a \in R)(b=\Phi(a))\}$. Let $b_{1}, b_{2} \in \Phi(I)$ and $c \in S$. Then there are $a_{1}, a_{2} \in I$ such that $\Phi\left(a_{1}\right)=b_{1}$ and $\Phi\left(a_{2}\right)=b_{2}$. Thus

$$
b_{1}+b_{2}=\Phi\left(a_{1}\right)+\Phi\left(a_{2}\right)=\Phi\left(a_{1}+a_{2}\right) .
$$

Since $a_{1}+a_{2} \in I$, we get $b_{1}+b_{2} \in \Phi(I)$. As Φ is an isomorphism, there is $c^{\prime} \in R$ such that $\Phi\left(c^{\prime}\right)=c$. Consequently,

$$
b_{1} c=\Phi\left(a_{1}\right) \cdot \Phi\left(c^{\prime}\right)=\Phi\left(a_{1} c^{\prime}\right) .
$$

Thus $b_{1} c \in \Phi(I)$. Finally, $0 \in \Phi(I)$ because $0=\Phi(0)$.
Now assume that I is maximal. Let $J \supsetneq \Phi(I)$. Then using the inverse of Φ (which a ring isomorphism as well) we get $\Phi^{-1}(J) \supsetneq \Phi^{-1}(\Phi(I))=I$. By maximality of I the ideal $\Phi^{-1}(J)=R$. But this means that $J=\Phi(R)=S$.

Theorem 3.7.5 Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be a radical ideal such that $\mathbf{V}(I)$ is finite and g_{n} the monic generator of $I \cap k\left[X_{n}\right]$. Then the following conditions are equivalent:

1. The ideal I is in normal X_{n}-position.
2. $\operatorname{deg}\left(g_{n}\right)=\operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] / I$.
3. The mapping $\Phi: k\left[X_{n}\right] /\left\langle g_{n}\right\rangle \rightarrow k\left[X_{1}, \ldots, X_{n}\right] / I$ defined by

$$
\Phi\left([f]_{\left\langle g_{n}\right\rangle}\right)=[f]_{I},
$$

is a ring isomorphism, i.e. the rings $k\left[X_{n}\right] /\left\langle g_{n}\right\rangle$ and $k\left[X_{1}, \ldots, X_{n}\right] / I$ are isomorphic.
PROOF: First, I claim that the mapping $\Phi: k\left[X_{n}\right] /\left\langle g_{n}\right\rangle \rightarrow k\left[X_{1}, \ldots, X_{n}\right] / I$ defined by

$$
\Phi\left([f]_{\left\langle g_{n}\right\rangle}\right)=[f]_{I},
$$

is always an injective ring homomorphism. The mapping Φ is well-defined since $\left\langle g_{n}\right\rangle \subseteq I$. Thus whenever $[f]_{\left\langle g_{n}\right\rangle}=\left[f^{\prime}\right\}_{\left\langle g_{n}\right\rangle}$, then $[f]_{I}=\left[f^{\prime}\right]_{I}$. The fact that Φ is a homomorphism can be
easily checked. Finally, let $[f]_{\left\langle g_{n}\right\rangle} \neq[g]_{\left\langle g_{n}\right\rangle}$. Assume that $[f]_{I}=[g]_{I}$. Then $f-g \in I \cap k\left[X_{n}\right]=$ $\left\langle g_{n}\right\rangle$ which is not possible. Thus $[f]_{I} \neq[g]_{I}$.

Second, note that $\left\langle g_{n}\right\rangle$ is radical. If $f^{m} \in\left\langle g_{n}\right\rangle \subseteq I$, then $f \in k\left[X_{n}\right] \cap I=\left\langle g_{n}\right\rangle$. Thus we have by Theorem 3.6.7

$$
\operatorname{deg}\left(g_{n}\right)=\operatorname{dim} k\left[X_{n}\right] /\left\langle g_{n}\right\rangle \leq \operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] / I
$$

The inequality follows from the fact that Φ transforms a basis of $k\left[X_{n}\right] /\left\langle g_{n}\right\rangle$ into a linearly independent subset of $k\left[X_{1}, \ldots, X_{n}\right] / I$.
$(1 \Rightarrow 2)$: If I is in normal X_{n}-position, then g_{n} has at least $\operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] / I$ many roots, i.e. $\operatorname{deg}\left(g_{n}\right) \geq \operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] / I$.
$(2 \Rightarrow 3):$ If $\operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] / I=\operatorname{deg}\left(g_{n}\right)=\operatorname{dim} k\left[X_{n}\right] /\left\langle g_{n}\right\rangle$, then the rings $k\left[X_{n}\right] /\left\langle g_{n}\right\rangle$ and $k\left[X_{1}, \ldots, X_{n}\right] / I$ are isomorphic as k-vector spaces. Since Φ is also an injective linear mapping, it must be onto. Thus Φ is a ring isomorphism.
$(3 \Rightarrow 1)$: If the rings $k\left[X_{n}\right] /\left\langle g_{n}\right\rangle$ and $k\left[X_{1}, \ldots, X_{n}\right] / I$ are isomorphic, then $d=\operatorname{deg}\left(g_{n}\right)$ is exactly the number of points in $\mathbf{V}(I)$. Let $a_{1}, \ldots, a_{d} \in k$ be the roots of g_{n} (the roots are pairwise distinct because g_{n} is square-free). Then $g_{n}=\prod_{i=1}^{d}\left(X_{n}-a_{i}\right)$. Thus the maximal ideals in $k\left[X_{n}\right]$ containing $\left\langle g_{n}\right\rangle$ are of the form $\left\langle X_{n}-a_{i}\right\rangle$. Then $\left\langle\left[X_{n}-a_{i}\right]_{\left\langle g_{n}\right\rangle}\right\rangle$ is a maximal ideal in $k\left[X_{n}\right] /\left\langle g_{n}\right\rangle$. By Lemma 3.7.4 we have $\Phi\left(\left\langle\left[X_{n}-a_{i}\right]_{\left\langle g_{n}\right\rangle}\right\rangle\right)$ is a maximal ideal in $k\left[X_{1}, \ldots, X_{n}\right] / I$. Thus this ideal corresponds to a maximal ideal M_{i} in $k\left[X_{1}, \ldots, X_{n}\right]$ by Proposition 3.7.3. The ideal M_{i} has to be of this form $\left\langle X_{1}-\alpha_{1 i}, \ldots, X_{n}-\alpha_{n i}\right\rangle$ for some $\alpha_{1 i}, \ldots, \alpha_{n i} \in k$ by Theorem 3.1.11. Observe that

$$
\Phi\left(\left\langle\left[X_{n}-a_{i}\right]_{\left\langle g_{n}\right\rangle}\right\rangle\right)=\left\langle\Phi\left(\left[X_{n}-a_{i}\right]_{\left\langle g_{n}\right\rangle}\right)\right\rangle=\left\langle\left[X_{n}-a_{i}\right]_{I}\right\rangle .
$$

Thus $X_{n}-a_{i} \in M_{i}$. Since $X_{n}-a_{i} \in M_{i}$, we get that $\alpha_{n i}=a_{i}$. Now for different roots $a_{i} \neq a_{j}$ we obtain different maximal ideals M_{i} and M_{j}, i.e. different points ($\alpha_{1 i}, \ldots, a_{i}$) and $\left(\alpha_{1 j}, \ldots, a_{j}\right)$ in $\mathbf{V}(I)$. Since there are exactly d points in $\mathbf{V}(I)$, all of them have pairwise different the last component.

Theorem 3.7.6 (The Shape Lemma) Let $I \subseteq k\left[X_{1}, \ldots, X_{n}\right]$ be a radical ideal in normal X_{n}-position such that $\mathbf{V}(I)$ is finite, g_{n} the monic generator of $I \cap k\left[X_{n}\right]$, and $d=\operatorname{deg}\left(g_{n}\right)$.

1. The reduced Gröbner basis of I w.r.t. lex term order is of the form

$$
\left\{X_{1}-g_{1}, \ldots, X_{n-1}-g_{n-1}, g_{n}\right\}
$$

where $g_{1}, \ldots, g_{n-1} \in k\left[X_{n}\right]$.
2. The polynomial g_{n} has d distinct roots $a_{1}, \ldots, a_{d} \in k$, and

$$
\mathbf{V}(I)=\left\{\left(g_{1}\left(a_{i}\right), \ldots, g_{n-1}\left(a_{i}\right), a_{i}\right) \mid i=1, \ldots, d\right\} .
$$

PROOF: By Theorem 3.7.5 using the isomorphism $\Phi: k\left[X_{n}\right] /\left\langle g_{n}\right\rangle \rightarrow k\left[X_{1}, \ldots, X_{n}\right] / I$, each polynomial $f \in k\left[X_{1}, \ldots, X_{n}\right]$ is congruent w.r.t. I to a polynomial $g \in k\left[X_{n}\right]$. Indeed, since Φ is onto there is $[g]_{\left\langle g_{n}\right\rangle} \in k\left[X_{n}\right] /\left\langle g_{n}\right\rangle$ such that

$$
[f]_{I}=\Phi\left([g]_{\langle g n\rangle}\right)=[g]_{I} .
$$

Thus for each $X_{i} \in k\left[X_{1}, \ldots, X_{n}\right]$ there is a polynomial $g_{i} \in k\left[X_{n}\right]$ such that $X_{i}-g_{i} \in I$. We show that $G=\left\{X_{1}-g_{1}, \ldots, X_{n-1}-g_{n-1}, g_{n}\right\}$ is a Gröbner basis w.r.t. the lex term order. Clearly $\operatorname{LT}(G)=\left\{X_{1}, \ldots, X_{n-1}, X_{n}^{d}\right\}$. Let $f \in I$. If $\operatorname{LT}(f)$ contains at least one of X_{1}, \ldots, X_{n-1}, then $\operatorname{LT}(f) \in\langle\operatorname{LT}(G)\rangle$. If $\operatorname{LT}(f)$ contains only X_{n}, then $f \in I \cap k\left[X_{n}\right]$, i.e. $\operatorname{LT}\left(g_{n}\right) \mid \operatorname{LT}(f)$. Thus G is a Gröbner basis. Moreover, it is obvious that G is a reduced Gröbner basis.

Finally, since g_{n} is square-free, it has d distinct roots. It is also clear that the solutions of a system of polynomial equations $X_{1}-g_{1}=\cdots=X_{n-1}-g_{n-1}=g_{n}=0$ has solutions of the form $\left(g_{1}\left(a_{i}\right), \ldots, g_{n-1}\left(a_{i}\right), a_{i}\right)$ for a root a_{i} of g_{n}.

Corollary 3.7.7 (Solving a system of polynomial equations) Let k be an algebraically closed field, $f_{1}, \ldots, f_{s} \in k\left[X_{1}, \ldots, X_{n}\right]$, and $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$. Consider the following sequence of instructions:

1. For $i=1, \ldots, n$ compute a generator g_{i} of $I \cap k\left[X_{i}\right]$. If $g_{i}=0$ for some i, then return "Infinite number of solutions" and stop.
2. By Lemma 3.6.8 compute $h_{i}=\left(g_{i}\right)_{\text {red }}$ for each i. Then replace I by $I+\left\langle h_{1}, \ldots, h_{n}\right\rangle$.
3. Compute number d of monomials in the complement of $\langle\mathrm{LT}(I)\rangle$, i.e.

$$
d=\left|\left\{X^{\alpha} \mid X^{\alpha} \notin\langle\operatorname{LT}(I)\rangle\right\}\right| .
$$

4. Check if $\operatorname{deg}\left(h_{n}\right)=d$. In this case, let $\left(c_{1}, \ldots, c_{n-1}\right)=(0, \ldots, 0)$ and continue with step 7.
5. Choose randomly $\left(c_{1}, \ldots, c_{n-1}\right) \in k^{n-1}$. Apply the coordinate transformation

$$
X_{1} \mapsto X_{1}, \ldots, \quad X_{n-1} \mapsto X_{n-1}, \quad X_{n} \mapsto X_{n}-c_{1} X_{1}-\cdots-c_{n-1} X_{n-1}
$$

to I and get an ideal J.
6. Compute a generator of $J \cap k\left[X_{n}\right]$ and check if it has degree d. If not, repeat steps 5 and 6 until this is the case. Then rename J and call it I.
7. Compute the reduced Gröbner basis of I w.r.t. the lex term order. It has shape

$$
\left\{X_{1}-g_{1}, \ldots, X_{n-1}-g_{n-1}, g_{n}\right\}
$$

with polynomials $g_{1}, \ldots, g_{n} \in k\left[X_{n}\right]$ and with $\operatorname{deg} g_{n}=d$. Return the tuples $\left(c_{1}, \ldots, c_{n-1}\right)$ and $\left(g_{1}, \ldots, g_{n}\right)$ and stop.

This is an algorithm which decides whether the system of polynomial equations $f_{1}=\cdots=$ $f_{s}=0$ has finitely many solutions. In that case, it returns tuples $\left(c_{1}, \ldots, c_{n-1}\right) \in k^{n-1}$ and $\left(g_{1}, \ldots, g_{n}\right) \in k\left[X_{n}\right]$ such that, after we perform the linear change of coordinates

$$
X_{1} \mapsto X_{1}, \ldots, X_{n-1} \mapsto X_{n-1}, \quad X_{n} \mapsto X_{n}-c_{1} X_{1}-\cdots-c_{n-1} X_{n-1},
$$

the transformed system of equations has the set of solutions

$$
\left\{\left(g_{1}\left(a_{i}\right), \ldots, g_{n-1}\left(a_{i}\right), a_{i}\right) \mid i=1, \ldots, d\right\},
$$

where $a_{1}, \ldots, a_{n} \in k$ are roots of g_{n}.
In other words, the original system of equations has the set of solutions

$$
\left\{\left(g_{1}\left(a_{i}\right), \ldots, g_{n-1}\left(a_{i}\right), a_{i}-c_{1} g_{1}\left(a_{i}\right)-\cdots-c_{n-1} g_{n-1}\left(a_{i}\right)\right) \mid i=1, \ldots, d\right\} .
$$

PROOF: The correctness of the first step follows from Corollary 3.6.4. By Corollary 3.6.11 the ideal I is replaced by radical \sqrt{I} in step 2 . By Theorem 3.6.7 the number d computed in step 3 is exact number of solutions. If $\operatorname{deg}\left(g_{n}\right)=d$, then I is in normal X_{n}-position by Theorem 3.7.5. If not there is $\left(c_{1}, \ldots, c_{n-1}\right) \in k^{n-1}$ by Lemma 3.7.2 such that, after the linear change of coordinates, the transformed ideal J is in normal X_{n}-position. Thus by the Shape Lemma the transformed system of equations has the solution set

$$
\left\{\left(g_{1}\left(a_{i}\right), \ldots, g_{n-1}\left(a_{i}\right), a_{i}\right) \mid i=1, \ldots, d\right\} .
$$

Let \mathbb{A} be the matrix representing the linear change of coordinates. Since we proved that $\left(b_{1}, \ldots, b_{n}\right) \in \mathbf{V}(I)$ iff $\left(b_{1}, \ldots, b_{n}\right) \cdot \mathbb{A}^{-1} \in \mathbf{V}(J)$, we get $\left(g_{1}\left(a_{i}\right), \ldots, g_{n-1}\left(a_{i}\right), a_{i}\right) \cdot \mathbb{A} \in \mathbf{V}(I)$ because

$$
\left(g_{1}\left(a_{i}\right), \ldots, g_{n-1}\left(a_{i}\right), a_{i}\right)=\left(g_{1}\left(a_{i}\right), \ldots, g_{n-1}\left(a_{i}\right), a_{i}\right) \cdot \mathbb{A} \cdot \mathbb{A}^{-1} .
$$

[^0]: ${ }^{1}$ If k is finite then this step does not work. Consider e.g. $f=X^{3}-2$ over the three-element field $\mathbb{Z} /\langle 3\rangle$. Then $f^{\prime}=3 X^{2}=0 X^{2}=0$.

