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Kleene algebra

Definition
A Kleene algebra [Koz94] is a structure K = (K,∨, ·, ∗, 1, 0) such that

(K,∨, ·, 1, 0) is an idempotent semiring, i.e.,
(K, ·, 1) is a monoid,
(K,∨, 0) is an idempotent commutative monoid (hence, a join-semilattice),
x(y ∨ z) = xy ∨ xz, (y ∨ z)x = yx ∨ zx, and
x0 = 0 = 0x, and

∗ : K → K such that
1 ∨ a ∨ a∗a∗ ≤ a∗ ax ≤ x ⇒ a∗x ≤ x xa ≤ x ⇒ xa∗ ≤ x

Examples: Kleene algebras of regular languages, Kleene algebra of paths...
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Examples

Example
The relational Kleene algebra over a set X is R(X) = (2X×X ,∪, ◦,∗ , id, ∅);
◦ denotes composition, and
R∗ =

⋃
i≥0R

i, where R0 = id and Ri+1 = R ◦Ri.

Example
The tropical Kleene algebra is defined over 0 > −1 > −2 > · · · > −ω, where

+ is multiplication,
0 is the multiplicative unit, and
−ω the ∨ unit.
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Kleene algebra with tests

Definition
A Kleene algebra with tests [Koz97] is B = (K,B,∨, ·,∗ , 1, 0, )̄ where

(K,∨, ·,∗ , 1, 0) is a Kleene algebra
B ⊆ K
(B,∨, ·, ,̄ 1, 0) is a Boolean algebra.

Prop. Every KA is a KAT, where the test subalgebra is B = {0, 1}.
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Examples

Example
The relational KAT over a set X is R(X) together with the Boolean test
subalgebra 2id.

Prop. [KS97] The equational theory of KAT is identical with the equational
theory of rKAT.

Example
The only possible test subalgebra of the tropical Kleene algebra is {−ω, 0}.
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Propositional while programs

Tests β := b | β̄ | β ∧ β | β ∨ β

Programs π := skip | p | π;π | if β then π else π | while β do π

In KAT:

skip := b ∨ b̄
if b then p else q := (bp) ∨ (b̄q)

while b do p := (bp)∗b̄

Partial correctness: bp = bpc.
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Kleene algebra with domain

Definition
A Kleene algebra with domain [DS11] is D = (K,∨, ·,∗ , 1, 0, d) where
d : K → K such that:

x ≤ d(x)x
d(xy) = d(xd(y))

d(x) ≤ 1
d(0) = 0

d(x ∨ y) = d(x) ∨ d(y)

(Similarly codomain c with x ≤ xc(x) and c(xy) = c(c(x)y).)

Prop. (d(K),∨, ·, 1, 0) and (c(K),∨, s, 1, 0) are bounded distr. lattices.

Open Prob. When is (d(K),∨, ·, 1, 0) a Heyting algebra?
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Example

Example
Extend a relational Kleene algebra with

d(R) = {(s, s) | ∃t.(s, t) ∈ R}.

Intuitively, d(x) should be the least left preserver of x under 1:

if y ≤ 1, then x ≤ yx ⇐⇒ d(x) ≤ y (1)

The equational theory of domain semirings (delete ∗ and the corresponding
axioms from KAD) coincide with the equational theory of relation algebras in
the signature (∪, ◦, ∅, id, d) [McL20].

Open Prob. What about the full signature with ∗?
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Kleene algebra with antidomain

Definition
A Kleene algebra with antidomain [DS11] is A = (K,∨, ·,∗ , 1, 0, a) where
a : K → K such that

a(x)x = 0

a(xy) ≤ a(xa2(y))

a2(x) ∨ a(x) = 1

A domain operation is then defined by d(x) := a2(x).

Prop. (d(K),∨, ·, 1, 0) is a Boolean algebra where a(x) is the complement of
d(x).
Thm. The domain subalgebra of a KAAD is the maximal Boolean subalgebra
of the semiring of elements x ≤ 1.
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Kleene algebra with (anti)domain

Example
Take a relational Kleene algebra and define

a(R) = {(s, s) | ¬∃t.(s, t) ∈ R},

then a(a(R)) = d(R).

However: Prop. Some finite KA cannot be extended with a domain operation.

s1s2s0
A3

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 0

∗ 0 1 2
1 1 1

The culprit is the locality axiom d(xy) = d(xd(y)).
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Problem

Can one find a one-sorted alternative ALT to KAT that satisfies
1 ALT expands Kleene algebras by additional operations t and t′.

2 Every Kleene algebra extends to an ALT.

3 The test algebra t(A ) need not be the maximal Boolean subalgebra of
elements x ≤ 1.

4 The equational theory of KAT embeds into the equational theory of ALT.
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One-sorted Kleene algebras with tests

Definition
A KAt is K = (K,∨, ·,∗ , 1, 0, t, t′) where t, t′ : K → K such that

t(0) = 0 (2)
t(1) = 1 (3)

t(t(x) + t(y)) = t(x) + t(y) (4)
t(t(x)t(y)) = t(x) t(y) (5)

t(x)t(x) = t(x) (6)
t(x) ≤ 1 (7)

1 ≤ t′(t(x)) + t(x) (8)
t′(t(x)) t(x) ≤ 0 (9)

t′(t(x)) = t(t′(t(x))) (10)
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Examples

Example
Relational Kleene algebra with t := d and t′ = a.

Theorem 1
Every KAT K = (K,B,∨, ·,∗ , 1, 0, )̄ expands to a KAt
K = (K,∨, ·,∗ , 1, 0, t, t′), i.e., B = t(K).

In particular, we take

t(x) =

{
x if x ∈ B
1 otherwise.

t′(x) =

{
x̄ if x ∈ B
x otherwise.

Prop. Every Kleene algebra extends to a KAt, so KAt is a conservative
extension of KAt.
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Embedding result

Theorem 2
We show that equational theory of KAT embeds into the equational theory of
ALT provided that

ALT expands Kleene algebras by additional operations t and t′.

The test algebras t(A ) is a Boolean algebra for each ALT A .

Every KAT expands to an ALT.

Proof sketch.
Tr(pn) = x2n, Tr(bn) = t(x2n+1), Tr(b̄) = t′(Tr(b));
Tr commutes with 1, 0, ·, ∨ and ∗.
If KAT 6|= p ≈ q, which give rise to an expansion. Conversely, each ALT
induces a Boolean algebra of tests, and hence a KAT.

Prop. The equational theory of KAT embeds into that of KAt.

So, KAt exhibits all the required properties (1-4).
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Embedding result 2

Theorem 3
We show that equational theory of KAT embeds into the equational theory of
ALT provided that

ALT expands Kleene algebras by additional operations t and t′.

The test algebras t(A ) is a Boolean algebra for each ALT A .

Every relational KAT expands to an ALT.

Proof sketch.
As before...
If KAT 6|= p ≈ q, then p ≈ q fails in an rKAT, which gives rise to an expansion.
Conversely, each ALT induces a Boolean algebra of tests, and hence a
KAT.

Prop. The equational theory of KAT embeds into that of KAD, but properties 2
and 3 fail.
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strong KAt

Extending KAt with all of the following axioms retains properties (1-4)

t(x+ y) = t(x) + t(y) (11)
x ≤ t(x)x (12)

t(t(x)y) ≤ t(x) (13)
t(xy) ≤ t(xt(y)) (14)

(11) entails that t is monotonic; (12) says that t(x) is a left preserver of x;
(13) entails that t(x) is the least left preserver among tests;
(14) is called sublocality, and we can not add the reverse inequality.
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Residuated program algebras

Definition
A residuated KAt P = (K,∨, ·,→,←,∗ , 1, 0, t) is a strong KAt (ignoring the
t′ axioms) that is extended with residuals for · satisfying

t(x→ y) ≤ x→ xt(y) (15)
1 ≤ t(x) ∨ (t(x)→ 0). (16)

One can define t′(x) := t(x→ 0), to obtain a KAt reduct.

Prop.: Every relational KAT expands to a residuated KAt, so the equational
theory of KAT embeds into that of residuated KAt.

Another result: The substructural logic of partial correctness by Kozen and
Tiuryn [KT03] embeds into ∗-continuous residuated KAt expanded by e such
that t(x) ≤ y ⇐⇒ x ≤ e(y).
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