Abstract	1. Partial TT and eta -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusion
00	000000000	0000000000	000000	000

Derivability of (novel) rules of β -conversion in partial type theory

Petr Kuchyňka & Jiří Raclavský

Dpt. of Philosophy, Masaryk University (Brno)

MUNI

Czech Gathering of Logicians, 16/6/2022, Prague

Abstract	1. Partial TT and eta -conversion	 β-conversion by-name 00000000000 	III. β-conversion by-value	Conclusion
●○	000000000		000000	000

• High-school mathematics: find the domain \mathscr{D}_f of the function prescribed by

$$y = \frac{3}{x^2 - 3x + 2}$$

•
$$f := \lambda x \cdot \frac{3}{(x-1) \times (x-2)}$$

so
$$\mathscr{D}_f = \mathbb{R} - \{1; 2\}$$

Abstract	1. Partial TT and eta -conversion	 β-conversion by-name 00000000000 	III. β-conversion by-value	Conclusion
●○	000000000		000000	000

• High-school mathematics: find the domain \mathscr{D}_f of the function prescribed by

$$y = \frac{3}{x^2 - 3x + 2}$$

•
$$f := \lambda x \cdot \frac{3}{(x-1) \times (x-2)}$$

so $\mathscr{D}_f = \mathbb{R} - \{1; 2\}$

Abstract	1. Partial TT and eta -conversion	 β-conversion by-name 00000000000 	III. β-conversion by-value	Conclusion
●○	000000000		000000	000

• High-school mathematics: find the domain \mathscr{D}_f of the function prescribed by

$$y = \frac{3}{x^2 - 3x + 2}$$

•
$$f := \lambda x \cdot \frac{3}{(x-1) \times (x-2)}$$
,
so $\mathscr{D}_f = \mathbb{R} - \{1; 2\}$

Abstract	1. Partial TT and β -conversion	II. β-conversion by-name	III. β-conversion by-value	Conclusion
●○	000000000	0000000000	000000	000

• High-school mathematics: find the domain \mathscr{D}_f of the function prescribed by

$$y = \frac{3}{x^2 - 3x + 2}$$

•
$$f := \lambda x \cdot \frac{3}{(x-1) \times (x-2)}$$
,
so $\mathscr{D}_f = \mathbb{R} - \{1; 2\}$

Abstract	I. Partial TT and eta -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusio
0.	000000000	0000000000	000000	000

- The β-reduction rule [λx.f(x)] (a) ⊢ f(x)_(a/x)
 is the fundamental rule of λ-calculus/type theory (TT)
- TT is the(?) higher-order logic (HOL); vast applications, e.g. in
 - a. functional programming languages
 - b. proof assistants
 - c. formalisation of natural language

• Partial TT meets the widespread demand of CS to employ partiality

- 1. show appropriate rules of β -conversion by-name and by-value
- 2. formulate novel rules β -conversion by-name and by-value
- 3. derive all the rules from the initial couple of

 β -conversion by-name rules

3 / 33

Abstract	I. Partial TT and β -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusion
0•	000000000	0000000000	000000	000

• The β -reduction rule $[\lambda x.f(x)]$ $(a) \vdash f(x)_{(a/x)}$

is the fundamental rule of λ -calculus/type theory (TT)

• TT is the(?) higher-order logic (HOL); vast applications, e.g. in

- a. functional programming languages
- b. proof assistants
- c. formalisation of natural language

Partial TT meets the widespread demand of CS to employ partiality

- 1. show appropriate rules of eta-conversion by-name and by-value
- 2. formulate novel rules β -conversion by-name and by-value
- 3. derive all the rules from the initial couple of

 β -conversion by-name rules

Abstract	I. Partial TT and β -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusion
0.	000000000	0000000000	000000	000

• The β -reduction rule $[\lambda x.f(x)](a) \vdash f(x)_{(a/x)}$

is the fundamental rule of λ -calculus/type theory (TT)

- TT is the(?) higher-order logic (HOL); vast applications, e.g. in
 - a. functional programming languages
 - b. proof assistants
 - c. formalisation of natural language

• **Partial TT** meets the widespread demand of *CS* to employ *partiality*

- 1. show appropriate rules of β -conversion by-name and by-value
- 2. formulate novel rules β -conversion by-name and by-value
- 3. derive all the rules from the initial couple of

 β -conversion by-name rules

3 / 33

Abstract	I. Partial TT and β -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusion
0•	000000000	0000000000	000000	000

• The β -reduction rule $[\lambda x.f(x)](a) \vdash f(x)_{(a/x)}$

is the fundamental rule of λ -calculus/type theory (TT)

- TT is the(?) higher-order logic (HOL); vast applications, e.g. in
 - a. functional programming languages
 - b. proof assistants
 - c. formalisation of natural language
- **Partial TT** meets the widespread demand of *CS* to employ *partiality*
- 1. show appropriate rules of β -conversion by-name and by-value
- 2. formulate novel rules β -conversion by-name and by-value
- 3. derive all the rules from the initial couple of

 β -conversion by-name rules

Abstract	I. Partial TT and eta -conversion	II. β -conversion by-name	III. β -conversion by-value
00	•00000000	0000000000	000000

Conclusion

Content

2 Partial TT and β -conversion

- \bigcirc Primitive and derived rules of eta-conversion by-name
 - Derived rules of eta-conversion by-value

Concluding remarks

III. β-conversion by-value 000000 Conclusion

Non-denoting terms and partiality

Non-denoting terms

Non-denoting terms are terms that lack denotation.

– e.g., " $3 \div 0$ ", "3 - 10" (in \mathbb{N}), "the greatest prime", "the King of France", ...

• Logics managing non-denoting terms:

- a. partial type theory Tichý 1982 and passim, Farmer 1990, Muskens 1989, 1995, Duží et al. 2010, Raclavský et al. 2015, ...,
- b. (typed) lambda calculus Besson 1984, Moggi 1988, Feferman 1995, Moschovakis 2006, ...
- c. free logic Lambert 2003, Scott 1979, ...
- d. three-(four-)valued logic Bochvar 1981, Kleene 1952, Blamey 1986, Langholm 1988, Muskens 1995, Kohlhase 1996, ...
- e. fuzzy logic Novák + B. 2015, Běhounek 2015, B. + Daňková 2016, B. + Dvořák 2018, ...

III. β -conversion by-value

Conclusion

Non-denoting terms and partiality

Non-denoting terms

Non-denoting terms are terms that lack denotation.

– e.g., " $3\div0$ ", "3-10" (in \mathbb{N}), "the greatest prime", "the King of France", ...

• Logics managing non-denoting terms:

- a. partial type theory Tichý 1982 and passim, Farmer 1990, Muskens 1989, 1995, Duží et al. 2010, Raclavský et al. 2015, ...,
- (typed) lambda calculus Besson 1984, Moggi 1988, Feferman 1995, Moschovakis 2006, ...
- c. free logic Lambert 2003, Scott 1979, ...
- d. three-(four-)valued logic Bochvar 1981, Kleene 1952, Blamey 1986, Langholm 1988, Muskens 1995, Kohlhase 1996, ...
- e. *fuzzy logic* Novák + B. 2015, Běhounek 2015, B. + Daňková 2016, B. + Dvořák 2018, ...

Abstract	1. Partial TT and eta conversion
00	00000000

III. β-conversion by-value 000000 Conclusion

Two kinds of partiality

Two kinds of partiality

'Functional terms' such as " $\lambda x. \div (x, 0)$ "

a. denote partial functions-as-graphs

b. express strict ('partial') functions-as-computations

- b. is of a profound interest in *computer science*
 - Besson, Moggi, Feferman, ...

 Abstract
 I. Partial TT and β-conversion

 00
 000000000

III. β -conversion by-value

Conclusion

7 / 33

Partial functions (a.-type partiality)

Partial functions

A partial function[-as-graph] is undefined for at least 1 element of its domain \mathscr{D}_F .

i.e. not all members of its \mathscr{D}_F are mapped to its co-domain $\mathscr{C}_F.$

- Example. Let $x, y/\tau^{\mathbb{R}}$ (type of reals); $\div/\langle \tau^{\mathbb{R}}, \tau^{\mathbb{R}} \rangle \mapsto \tau^{\mathbb{R}}$;

$$\begin{array}{c|c|c|c|c|c|c|c|c|}\hline \langle x,y\rangle & \div(x,y) \\ \hline \vdots & \vdots \\ \langle 3,0\rangle & \text{ i.e. nothing at all} \\ \langle 3,1\rangle & 3 \\ \langle 3,2\rangle & 1.5 \\ \hline \vdots & \vdots \\ \hline \end{array}$$

II. β -conversion by-name III. β -conversion by-value

Conclusion

7 / 33

Partial functions (a.-type partiality)

Partial functions

A partial function[-as-graph] is undefined for at least 1 element of its domain \mathscr{D}_F .

i.e. not all members of its \mathscr{D}_F are mapped to its co-domain \mathscr{C}_F .

Example. Let $x, y/\tau^{\mathbb{R}}$ (type of reals); $\div/\langle \tau^{\mathbb{R}}, \tau^{\mathbb{R}} \rangle \mapsto \tau^{\mathbb{R}}$; _

$\langle x, y \rangle$	$\div(x,y)$
$\langle 3, 0 \rangle$ $\langle 3, 1 \rangle$ $\langle 3, 2 \rangle$	i.e. nothing at all
$\langle 3,1\rangle$	3
$\langle 3,2\rangle$	1.5
:	

III. β -conversion by-value 000000

Conclusion

Constructions (b.-type partiality)

Constructions

A **construction** C (Tichý, Girard, Moschovakis, ...) is an acyclic algorithmic computation of an object O denoted by the term "C" that expresses C.

E.g., " $3 \div 0$ " expresses the construction $\div (3,0)$ and denotes nothing at all.

Let v be an *assignment* for variables-as-constructions.

(Im)Proper constructions

C is v-proper / v-improper iff C v-constructs an object / nothing at all.

v-congruence of constructions

C and D are v-congruent, \cong iff C and D v-construct the same object, or they are both v-improper. e.g., \div (3, 1) and +(1, 2), \div (3, 0) and \div (2, 0)

III. β-conversion by-value 000000 Conclusion

Constructions (b.-type partiality)

Constructions

A **construction** C (Tichý, Girard, Moschovakis, ...) is an acyclic algorithmic computation of an object O denoted by the term "C" that expresses C.

E.g., " $3 \div 0$ " expresses the construction $\div (3,0)$ and denotes nothing at all.

Let v be an *assignment* for variables-as-constructions.

(Im)Proper constructions

C is v-proper / v-improper iff C v-constructs an object / nothing at all.

v-congruence of constructions

C and D are v-congruent, \cong iff C and D v-construct the same object, or they are both v-improper. e.g., $\div(3, 1)$ and +(1, 2), $\div(3, 0)$ and $\div(2, 0)$

Language of TT*

Partial type theory (PTT)

Partial type theory (PTT) manages both total and partial functions. (Tichý 1982, Farmer 1990)

Language $\mathcal{L}_{\mathsf{TT}^*}$

 $C ::= x \mid c \mid C_0(\bar{C}_m) \mid \lambda \tilde{x}_m . C_0 \mid \lceil C_0 \rceil$

- i.e. variables, constants, applications, abstractions, acquisitions
- where $ar{X}_m$ stands for $X_1,...,X_m$ and $ar{X}_m$ stands for $X_1...X_m$
- auxiliary brackets: [,]
- typing: C/ au where $type\ au$ is either ι or o of \mathscr{B} , or $\langle ar{ au}_m
 angle{ o au_0}$ over \mathscr{B}
- Semantics (based on Henkin 1950):
 - a $\textit{domain} \ \mathscr{D}_{ au}$ is a set that interprets au
 - $\ \mathscr{F} = \{\mathscr{D}_\tau\}_\tau \text{ is a } \textit{frame and } \mathscr{M} = \langle \mathscr{F}, \mathscr{I} \rangle \text{ a (general) } \textit{model}$

Language of TT*

Partial type theory (PTT)

Partial type theory (PTT) manages both total and partial functions. (Tichý 1982, Farmer 1990)

Language \mathcal{L}_{TT*}

 $C ::= x \mid c \mid C_0(\bar{C}_m) \mid \lambda \tilde{x}_m \cdot C_0 \mid \lceil C_0 \rceil$

- i.e. variables, constants, *applications*, *abstractions*, *acquisitions*
- where $ar{X}_{m{m}}$ stands for $X_1,...,X_m$ and $ar{X}_{m{m}}$ stands for $X_1...X_m$
- auxiliary brackets: [,]
- typing: C/τ where type τ is either ι or o of \mathscr{B} , or $\langle \bar{\tau}_m \rangle \rightarrow \tau_0$ over \mathscr{B}
- Semantics (based on Henkin 1950):

Language of TT*

Partial type theory (PTT)

Partial type theory (PTT) manages both total and partial functions. (Tichý 1982, Farmer 1990)

Language \mathcal{L}_{TT*}

 $C ::= x \mid c \mid C_0(\bar{C}_m) \mid \lambda \tilde{x}_m \cdot C_0 \mid \lceil C_0 \rceil$

- i.e. variables, constants, *applications*, *abstractions*, *acquisitions*
- where $ar{X}_m$ stands for $X_1,...,X_m$ and $ar{X}_m$ stands for $X_1...X_m$
- auxiliary brackets: [,]
- typing: C/τ where type τ is either ι or o of \mathscr{B} , or $\langle \bar{\tau}_m \rangle \rightarrow \tau_0$ over \mathscr{B}
- Semantics (based on Henkin 1950):
 - a domain \mathscr{D}_{τ} is a set that interprets τ
 - $-\mathscr{F} = \{\mathscr{D}_{\tau}\}_{\tau}$ is a *frame* and $\mathscr{M} = \langle \mathscr{F}, \mathscr{I} \rangle$ a (general) *model*

II. β -conversion by-name 00000000000

III. β-conversion by-value 000000 Conclusion 000

Substitution

Substitution as a construction

 $C_{(D/x)} = \llbracket Sub(\ulcorner D\urcorner, \ulcorner x\urcorner, \ulcorner C\urcorner) \rrbracket^{\mathscr{M}, v}$

Substitution function Sub v-constructed by Sub

Let C, D, x, B, \bar{B}_m are nth-order constructions. Let "FV(C)" stand for the set of all free variables that are (nth-order) subconstructions of C. (adaptated from Curry 1958)

- I. If the variable x is not free $(\lambda, \Box binds)$ in C, then $C_{(D/x)}$ is identical with C.
- II. If the variable x is *free* in C, then

If C is	$C_{(D/x)}$ is	
		$x \in FV(B)$ and $y \notin FV(D)$ $x \in FV(B)$ and $y \in FV(D)$ and $z \notin FV(B) \cup FV(D)$

• Substitution principle: For any v into \mathscr{F} and any C, if $\llbracket D \rrbracket \mathscr{M}, v = D$, then $\llbracket C_{(D/x)} \rrbracket \mathscr{M}, v = \llbracket C \rrbracket \mathscr{M}, v(D/x)$.

Abstract	Partial TT and β -conversion	
00	0000000000	

II. β -conversion by-name 00000000000

III. β -conversion by-value

Conclusion

Substitution

Substitution as a construction

 $C_{(D/x)} = \llbracket Sub(\ulcorner D\urcorner, \ulcorner x\urcorner, \ulcorner C\urcorner) \rrbracket^{\mathscr{M}, v}$

Substitution function Sub v-constructed by Sub

Let C, D, x, B, \bar{B}_m are nth-order constructions. Let "FV(C)" stand for the set of all free variables that are (nth-order) subconstructions of C. (adaptated from Curry 1958)

- I. If the variable x is not free $(\lambda, \Box binds)$ in C, then $C_{(D/x)}$ is identical with C.
- II. If the variable x is free in C, then

	If C is	$C_{(D/x)}$ is	condition:
i. ii. iii. iv	$ \begin{array}{c} x \\ B(\bar{B}_m) \\ \lambda y.B \\ \lambda y.B \\ \lambda y.B \end{array} $	$D \\ B_{(D/x)}(\bar{B}_{m(D/x)}) \\ \lambda y.B_{(D/x)} \\ [\lambda z.B_{(z/y)}]_{(D/x)}$	$\begin{array}{l} x \in FV(B) \text{ and } y \not\in FV(D) \\ x \in FV(B) \text{ and } y \in FV(D) \text{ and} \\ z \notin FV(B) \cup FV(D) \end{array}$

• Substitution principle: For any v into \mathscr{F} and any C, if $\llbracket D \rrbracket \mathscr{M}, v = D$, then $\llbracket C_{(D/x)} \rrbracket \mathscr{M}, v = \llbracket C \rrbracket \mathscr{M}, v(D/x)$.

Abstract	1. Partial TT and β -conversion
00	0000000000

II. β-conversion by-name 0000000000 III. β -conversion by-value

Conclusion

Substitution

Substitution as a construction

 $C_{(D/x)} = \llbracket Sub(\ulcorner D\urcorner, \ulcorner x\urcorner, \ulcorner C\urcorner) \rrbracket^{\mathscr{M}, v}$

Substitution function Sub v-constructed by Sub

Let C, D, x, B, \bar{B}_m are nth-order constructions. Let "FV(C)" stand for the set of all free variables that are (nth-order) subconstructions of C. (adaptated from Curry 1958)

- I. If the variable x is not free $(\lambda, \Box binds)$ in C, then $C_{(D/x)}$ is identical with C.
- II. If the variable x is free in C, then

	If C is	$C_{(D/x)}$ is	condition:
i. ii. iii. iv.	$ \begin{array}{c} x \\ B(\bar{B}_m) \\ \lambda y.B \\ \lambda y.B \\ \lambda y.B \end{array} $	$D \\ B_{(D/x)}(\bar{B}_{m(D/x)}) \\ \lambda y.B_{(D/x)} \\ [\lambda z.B_{(z/y)}]_{(D/x)}$	$x \in FV(B)$ and $y \notin FV(D)$ $x \in FV(B)$ and $y \in FV(D)$ and $z \notin FV(B) \cup FV(D)$

• Substitution principle: For any v into \mathscr{F} and any C, if $\llbracket D \rrbracket \mathscr{M}, v = D$, then $\llbracket C_{(D/x)} \rrbracket \mathscr{M}, v = \llbracket C \rrbracket \mathscr{M}, v(D/x)$.

Jiří Raclavský (2022) Masaryk University

Classical β -conversion rules

• β-conversion rules are derivation rules of STT by Church 1940:

Classical β -conversion rules

Let $C_{(D/x)}$ be C in which x is v-congruently substituted by D; let $C_{(\bar{D}_m/\bar{x}_m)}$ be short for $C_{(D_1/x_1)...(D_m/x_m)}$.

$$rac{[\lambda ilde{x}_m.C](ar{D}_m) \quad eta ext{-redex}}{C_{(ar{D}_m/ar{x})} \quad eta ext{-contractum}}\left(eta ext{-CON}_0
ight)$$

('an application of a function to an argument leads to its value')

$$\frac{C_{(\bar{D}_m/\bar{x})}}{[\lambda \tilde{x}_m.C](\bar{D}_m)} \left(\beta \text{-}\mathsf{EXP}_0\right)$$

where $D_1, x_1/ au_1; ...; D_m, x_m/ au_m; C/ au$

Problem 1 – adequate rules of β -conversion

PROBLEM 1 (Adequate rules of β -conversion)

Are there adequate rules of β -conversion for PTT?

- 1. The classical rules aren't. (Proof below.)
- 2. We need their modified and adequate versions are stated/derived below.

12 / 33

Problem 1 – adequate rules of β -conversion

PROBLEM 1 (Adequate rules of β -conversion)

Are there adequate rules of β -conversion for PTT?

- 1. The classical rules aren't. (Proof below.)
- 2. We need their modified and adequate versions are stated/derived below.

Problem 1 – adequate rules of β -conversion

PROBLEM 1 (Adequate rules of β -conversion)

Are there adequate rules of β -conversion for PTT?

- 1. The classical rules aren't. (Proof below.)
- 2. We need their modified and adequate versions are stated/derived below.

Inadequacy of the classical rules of β -conversion

FACT 1 (Invalidity of the classical rules of β -conversion)

The classical rules of β -conversion do not generally hold in PTT.

Demonstration by a counter-example

Let $D, x/\tau_1; y/\tau_2; C/\tau_3$ Let D be v-improper and C contain a free occurrence of x. Is $C_1 \beta$ -convertible to C_2 ?

 $C_1 := [\lambda x.\lambda y.C](D)$ is *v*-improper because D is *v*-improper

 $C_2 := [\lambda y.C]_{(D/x)}$ is (always) *v*-proper

Since, $C_1 \not\cong C_2$, (B-CON₀), (B-EXP₀)

Example: $[\lambda x.\lambda y. \div (x,x)]$ $(\div (3,0)) \not\longrightarrow_{\beta} \lambda y. \div (\div (3,0), \div (3,0))$

Inadequacy of the classical rules of β -conversion

FACT 1 (Invalidity of the classical rules of β -conversion)

The classical rules of β -conversion do not generally hold in PTT.

Demonstration by a counter-example

Let $D, x/\tau_1; y/\tau_2; C/\tau_3$ Let D be v-improper and C contain a free occurrence of x. Is $C_1 \beta$ -convertible to C_2 ?

 $C_1 := [\lambda x.\lambda y.C](D)$ is *v*-improper because D is *v*-improper

 $C_2 := [\lambda y.C]_{(D/x)}$ is (always) *v*-proper

Since, $C_1 \not\cong C_2$, (*B*-CON₀), (*B*-EXP₀)

Example: $[\lambda x.\lambda y. \div (x,x)]$ $(\div (3,0)) \not\longrightarrow_{\beta} \lambda y. \div (\div (3,0), \div (3,0))$

Inadequacy of the classical rules of β -conversion

FACT 1 (Invalidity of the classical rules of β -conversion)

The classical rules of β -conversion do not generally hold in PTT.

Demonstration by a counter-example

Let $D, x/\tau_1; y/\tau_2; C/\tau_3$ Let D be v-improper and C contain a free occurrence of x. Is $C_1 \beta$ -convertible to C_2 ?

 $C_1 := [\lambda x.\lambda y.C](D)$ is *v*-improper because D is *v*-improper

 $C_2 := [\lambda y.C]_{(D/x)}$ is (always) *v*-proper

Since, $C_1 \not\cong C_2$, (*B*-CON₀), (*B*-EXP₀)

 $\textit{Example:} \ [\lambda x.\lambda y. \div (x,x)] \ (\div (3,0)) \not \longrightarrow_{\beta} \ \lambda y. \div (\div (3,0), \div (3,0))$

II. β-conversion by-name •000000000 III. β -conversion by-value 000000

Conclusion 000

14 / 33

Content

\bigcirc Primitive and derived rules of eta-conversion by-name

Derived rules of eta-conversion by-value

Concluding remarks

- \bullet Seeking an appropriate ND that and captures e.g. that D must be denoting
- e.g. Tichý 1982, Moggi 1988, Farmer 1990

ND_{TT*} - natural deduction in sequent style (adjusted from Tichý 1982)

- i. embraces total and partial function
- ii. captures fine-grained hyperintensionality

e.g. $AbortiveComputation(\neg : (3,0) \neg)$

- iii. resists Blamey's 1986 criticism (monotonicity of ⊨)
- iv. *complete* w.r.t. (Henkin) *general models* (Kuchyňka 2020)

- Seeking an appropriate ND that and captures e.g. that D must be denoting
- e.g. Tichý 1982, Moggi 1988, Farmer 1990

ND_{TT*} - natural deduction in sequent style (adjusted from Tichý 1982)

- i. embraces total and partial function
- ii. captures fine-grained hyperintensionality

e.g. $AbortiveComputation(\neg : (3,0) \neg)$

- iii. resists Blamey's 1986 criticism (monotonicity of ⊨)
- iv. *complete* w.r.t. (Henkin) *general models* (Kuchyňka 2020)

- \bullet Seeking an appropriate ND that and captures e.g. that D must be denoting
- e.g. Tichý 1982, Moggi 1988, Farmer 1990

ND_{TT*} - natural deduction in sequent style (adjusted from Tichý 1982)

- i. embraces total and partial function
- ii. captures fine-grained hyperintensionality
 - e.g. $AbortiveComputation(\ulcorner \div (3,0)\urcorner)$
- iii. resists Blamey's 1986 criticism (monotonicity of ⊨)
- iv. *complete* w.r.t. (Henkin) *general models* (Kuchyňka 2020)

- \bullet Seeking an appropriate ND that and captures e.g. that D must be denoting
- e.g. Tichý 1982, Moggi 1988, Farmer 1990

ND_{TT*} - natural deduction in sequent style (adjusted from Tichý 1982)

- i. embraces total and partial function
- ii. captures fine-grained hyperintensionality
 - e.g. $AbortiveComputation(\ulcorner \div (3,0)\urcorner)$
- iii. resists Blamey's 1986 criticism (monotonicity of ⊨)
- iv. complete w.r.t. (Henkin) general models (Kuchyňka 2020)

15 / 33

Towards an appropriate ND for PTT

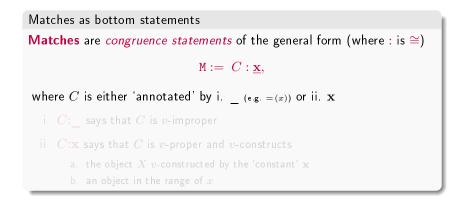
- Seeking an appropriate ND that and captures e.g. that D must be denoting
- e.g. Tichý 1982, Moggi 1988, Farmer 1990

ND_{TT*} - natural deduction in sequent style (adjusted from Tichý 1982)

- i. embraces total and partial function
- ii. captures fine-grained hyperintensionality
 - e.g. $AbortiveComputation(\ulcorner \div (3,0)\urcorner)$
- iii. resists Blamey's 1986 criticism (monotonicity of ⊨)
- iv. complete w.r.t. (Henkin) general models (Kuchyňka 2020)

Abstract	1. Partial TT and β -conversion	II. β-conversion by-name	III. β-conversion by-value	Conclusion
00	000000000	00●00000000	000000	000

ND_{TT*}: matches



• v satisfies (in \mathscr{M}) M iff both M's C and $\underline{\mathbf{x}}$ v-construct the same/no object

Abstract	1. Partial TT and β -conversion	II. β-conversion by-name	III. β-conversion by-value	Conclusion
00	000000000	00●00000000	000000	000

ND_{TT*}: matches

Matches as bottom statements Matches are congruence statements of the general form (where : is \cong) $M := C : \underline{x},$ where C is either 'annotated' by i. _ (e.g. = (x)) or ii. x i. C:_ says that C is v-improper ii. C:x says that C is v-proper and v-constructs a. the object X v-constructed by the 'constant' x b. an object in the range of x

• v satisfies (in \mathcal{M}) M iff both M's C and $\underline{\mathbf{x}}$ v-construct the same/no object

I. Partial TT and β -conversion Abstract II. β -conversion by-name 00000000000

III. β -conversion by-value Conclusion

ND_{TT*}: sequents and rules

ND_{TT*}'s sequents and rules **Sequents** are of the form (let Γ be a set of matches; \longrightarrow is 'entailment')

 $S := \Gamma \longrightarrow M$

S is valid (in \mathscr{M}) iff every v that satisfies (in \mathscr{M}) all Γ 's members satisfies (in \mathscr{M}) also M.

Rules are validity-preserving operations of the form

$$R := \frac{S_m}{S}$$

• Examples:

$$\Gamma, \mathbb{M} \longrightarrow \mathbb{M}$$
 (AX

$$\frac{\Gamma \longrightarrow M}{\Gamma, M' \longrightarrow M} (WR)$$

Jiří Raclavský (2022) Masaryk University

Derivability of rules of β -conversion in partial TT 17 / 33

 Abstract
 I. Partial TT and β-conversion
 II. β-conversion by-name
 III. β-con

 00
 000000000
 000000000
 0000000
 0000000

III. β-conversion by-valueConclusion000000000

ND_{TT*}: sequents and rules

ND_{TT*}'s sequents and rules Sequents are of the form (let Γ be a set of matches; \longrightarrow is 'entailment')

 $\mathtt{S}:=\ \Gamma \longrightarrow \mathtt{M}$

S is valid (in \mathscr{M}) iff every v that satisfies (in \mathscr{M}) all Γ 's members satisfies (in \mathscr{M}) also M.

Rules are validity-preserving operations of the form

$$R := \frac{S_m}{S}$$

Examples:

$$\frac{\Gamma \longrightarrow M}{\Gamma, M \longrightarrow M} (AX) \qquad \qquad \frac{\Gamma \longrightarrow M}{\Gamma, M' \longrightarrow M} (WR)$$

$$\frac{\Gamma \longrightarrow M_1 \qquad \Gamma \longrightarrow M_2}{\Gamma \longrightarrow M} (\mathsf{EFQ}) \qquad \frac{\Gamma, C:_ \longrightarrow M \qquad \Gamma, C:x \longrightarrow M}{\Gamma \longrightarrow M} (\mathsf{EXH})$$

Condition (EFQ): M_1 and M_2 are of the form $C: \mathbf{x}$, but they don't v-construct the same object.

Abstract	1. Partial TT and eta -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusion
00	000000000	000000000	000000	000

Further three rules

_

• We'll employ also

$$\frac{\Gamma \longrightarrow \mathbf{x}:\mathbf{x}}{\Gamma \longrightarrow F(\bar{X}_m):_} (\mathsf{TM})$$

$$\frac{\Gamma \longrightarrow F(\bar{X}_m):_}{\Gamma \longrightarrow F(\bar{\mathbf{x}}_m):_} (\operatorname{app-SUB.i}^-)$$

$$\frac{\Gamma \longrightarrow F(\bar{\mathbf{x}}_m):_}{\Gamma \longrightarrow F(\bar{X}_m):_} (\operatorname{app-SUB.ii}^-)$$

• The rules (app-SUB⁻) are derivable (similarly for (app-SUB.ii⁻))
s
$$\Gamma \longrightarrow F(\bar{X}_m)$$
:_ assumption in H
s_1 $\Gamma \longrightarrow X_1$:x1 assumption in H
 \vdots \vdots \vdots
s_m $\Gamma \longrightarrow X_m$:xm assumption in H
1. $\Gamma, F(\bar{\mathbf{x}}_m)$:y $\to F(\bar{\mathbf{x}}_m)$:y (AX)
2. $\Gamma, F(\bar{\mathbf{x}}_m)$:y $\to F(\bar{\mathbf{x}}_m)$:y from 1, $\bar{\mathbf{s}}'_m$ by (app-SUB.ii)
3. $\Gamma, F(\bar{\mathbf{x}}_m)$:y $\to F(\bar{\mathbf{x}}_m)$:_ from 2, s' by (EFQ)
4. $\Gamma, F(\bar{\mathbf{x}}_m)$:_ $\to F(\bar{\mathbf{x}}_m)$:_ (AX)
5. $\Gamma \longrightarrow F(\bar{\mathbf{x}}_m)$:_ from 3, 4 by (EXH)

Abstract	1. Partial TT and eta -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusion
00	000000000	000000000	000000	000

Further three rules

• We'll employ also

$$\frac{\Gamma \longrightarrow F(\bar{X}_m):}{\Gamma \longrightarrow F(\bar{\mathbf{x}}_m):} \qquad \Gamma \longrightarrow X_1: \mathbf{x}_1 \qquad \Gamma \longrightarrow X_m: \mathbf{x}_m \qquad \text{(app-SUB.i}^-)$$

$$\frac{\Gamma \longrightarrow F(\bar{\mathbf{x}}_m):}{\Gamma \longrightarrow F(\bar{\mathbf{x}}_m):} \qquad \Gamma \longrightarrow X_1: \mathbf{x}_1 \qquad \dots \qquad \Gamma \longrightarrow X_m: \mathbf{x}_m \qquad \text{(app-SUB.ii}^-)$$

• The rules (app-SUB⁻) are derivable (similarly for (app-SUB.ii⁻))
S
$$\Gamma \longrightarrow F(\bar{X}_m)$$
:_ assumption in H
S₁ $\Gamma \longrightarrow X_1$:x₁ assumption in H
 \vdots \vdots \vdots
S_m $\Gamma \longrightarrow X_m$:x_m assumption in H
1. $\Gamma, F(\bar{\mathbf{x}}_m)$:y $\longrightarrow F(\bar{\mathbf{x}}_m)$:y (AX)
2. $\Gamma, F(\bar{\mathbf{x}}_m)$:y $\longrightarrow F(\bar{\mathbf{x}}_m)$:y from 1. $\bar{\mathbf{s}}'_m$ by (app-SUB.ii)
3. $\Gamma, F(\bar{\mathbf{x}}_m)$:y $\longrightarrow F(\bar{\mathbf{x}}_m)$:_ (AX)
4. $\Gamma, F(\bar{\mathbf{x}}_m)$:_ $\longrightarrow F(\bar{\mathbf{x}}_m)$:_ (AX)
5. $\Gamma \longrightarrow F(\bar{\mathbf{x}}_m)$:_ from 3.4 by (EXH)

III. β -conversion by-value

Conclusion

ND_{TT*} 's primitive rules of β -conversion

The condition of the validity of the β -contraction-by-name rules Each construction D_i , which we substitute in a λ -abstraction, must be v-proper.

• Tichý's 1982 β -rules immune to the above counter-example:

$$\mathsf{ND}_{\mathsf{TT}^*}$$
's primitive rules of eta -conversion

$$\frac{\Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m):\mathbf{y}}{\Gamma \longrightarrow C_{(\bar{D}_m/\bar{x}_m)}:\mathbf{y}} (\beta\text{-}\mathsf{CON})$$

$$\frac{\Gamma \longrightarrow C_{(\bar{D}_m/\bar{x}_m)}: \mathbf{y} \qquad \Gamma \longrightarrow D_1: \mathbf{x}_1 \dots \Gamma \longrightarrow D_m: \mathbf{x}_m}{\Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m): \mathbf{y}} (\beta \text{-}\mathsf{EXP})$$

– the function $[\![\lambda \tilde{x}_m.C]\!]^{\mathcal{M},v}$ is defined for the m-tuple $[\![\bar{D}_m]\!]^{\mathcal{M},v}$

II. β -conversion by-name III. β -conversion by-value

Conclusion

ND_{TT*}'s primitive rules of β -conversion

The condition of the validity of the β -contraction-by-name rules Each construction D_i , which we substitute in a λ -abstraction, must be v-proper.

• Tichý's 1982 β -rules immune to the above counter-example:

$$\begin{split} \mathsf{ND}_{\mathsf{TT}^*} \text{'s primitive rules of } \beta\text{-conversion} \\ & \frac{\Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m):\mathbf{y}}{\Gamma \longrightarrow C_{(\bar{D}_m/\bar{x}_m)}:\mathbf{y}} \left(\beta\text{-CON}\right) \\ & \frac{\Gamma \longrightarrow C_{(\bar{D}_m/\bar{x}_m)}:\mathbf{y} \quad \Gamma \longrightarrow D_1:\mathbf{x}_1 \dots \Gamma \longrightarrow D_m:\mathbf{x}_m}{\Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m):\mathbf{y}} \left(\beta\text{-EXP}\right) \end{split}$$

- the function $[\![\lambda \tilde{x}_m.C]\!]^{\mathscr{M},v}$ is defined for the m-tuple $[\![\bar{D}_m]\!]^{\mathscr{M},v}$

Problem 2 – β -conversion of constructions of undefined functions

• Cf. $[\lambda x. \div (x, 0)]$ (3) \vdash \div (3, 0), or our high-school example

PROBLEM 2 (β -conversion of constructions of undefined functions) (β -CON) and (β -EXP) cannot handle abstractions *v*-constructing a function undefined for a given argument. Are there appropriate rules?

- We need additional, new β -conversion rules.
- Subproblem: Are they derivable from ND_{TT*}'s primitive rules?

Problem 2 – β -conversion of constructions of undefined functions

• Cf. $[\lambda x. \div (x, 0)]$ (3) \vdash \div (3, 0), or our high-school example

PROBLEM 2 (β -conversion of constructions of undefined functions) (β -CON) and (β -EXP) cannot handle abstractions *v*-constructing a function undefined for a given argument. Are there appropriate rules?

- We need additional, new β -conversion rules.
- Subproblem: Are they derivable from ND_{TT*}'s primitive rules?

Problem 2 – β -conversion of constructions of undefined functions

• Cf. $[\lambda x. \div (x, 0)]$ (3) \vdash \div (3, 0), or our high-school example

PROBLEM 2 (β -conversion of constructions of undefined functions) (β -CON) and (β -EXP) cannot handle abstractions *v*-constructing a function undefined for a given argument. Are there appropriate rules?

- We need additional, new β -conversion rules.
- Subproblem: Are they derivable from ND_{TT*}'s primitive rules?

III. β -conversion by-value

Conclusion

New rules of β -conversion are derivable

• To solve Problem 2,

Theorem 1: 'negative' variants of the β -conversion rules (β -CON) and (β -EXP) $\frac{\Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m):_}{\Gamma \longrightarrow C_{(\bar{D}_m/\bar{x}_m)}:_} (\beta$ -CON⁻) $\frac{\Gamma \longrightarrow C_{(\bar{D}_m/\bar{x}_m)}:_}{\Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m):_} (\beta$ -EXP⁻)

- i. In both rules, the function $[\![\lambda \tilde{x}_m.C]\!]^{\mathscr{M},v}$ is undefined for the $m\text{-tuple}\;[\![\bar{D}_m]\!]^{\mathscr{M},v}$
- ii. In (β -CON⁻), $\Gamma \longrightarrow D_1: \mathbf{x}_1 \dots \Gamma \longrightarrow D_m: \mathbf{x}_m$ precludes the counter-example from Problem 1

New rules of β -conversion are derivable

• To solve Problem 2,

Theorem 1: 'negative' variants of the β -conversion rules (β -CON) and (β -EXP) $\frac{\Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m):_}{\Gamma \longrightarrow C_{(\bar{D}_m/\bar{x}_m)}:_} (\beta$ -CON⁻) $\frac{\Gamma \longrightarrow C_{(\bar{D}_m/\bar{x}_m)}:_}{\Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m):_} (\beta$ -EXP⁻)

- i. In both rules, the function $[\![\lambda \tilde{x}_m.C]\!]^{\mathscr{M},v}$ is undefined for the $m\text{-tuple}\;[\![\bar{D}_m]\!]^{\mathscr{M},v}$
- ii. In (β -CON⁻), $\Gamma \longrightarrow D_1: \mathbf{x}_1 \dots \Gamma \longrightarrow D_m: \mathbf{x}_m$ precludes the counter-example from Problem 1

III. β -conversion by-value

Conclusion

New rules of β -conversion are derivable

• To solve Problem 2,

Theorem 1: 'negative' variants of the β -conversion rules (β -CON) and (β -EXP) $\frac{\Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m):_}{\Gamma \longrightarrow C_{(\bar{D}_m/\bar{x}_m)}:_} (\beta$ -CON⁻) $\frac{\Gamma \longrightarrow C_{(\bar{D}_m/\bar{x}_m)}:_}{\Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m):_} (\beta$ -EXP⁻)

- i. In both rules, the function $[\![\lambda \tilde{x}_m.C]\!]^{\mathscr{M},v}$ is undefined for the $m\text{-tuple}\;[\![\bar{D}_m]\!]^{\mathscr{M},v}$
- ii. In (β -CON⁻), $\Gamma \longrightarrow D_1: \mathbf{x}_1 \dots \Gamma \longrightarrow D_m: \mathbf{x}_m$ precludes the counter-example from Problem 1

Abstract	1. Partial TT and eta -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusion
00	00000000	00000000000	000000	000

Proof of $(\beta$ -CON⁻)

S	$\Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m):$	assumption
S_1	$\Gamma \longrightarrow D_1: \mathbf{x}_1$	assumption
÷	:	:
\mathtt{S}_m	$\Gamma \longrightarrow D_m : \mathbf{x}_m$	assumption
1.	$\Gamma, C_{(\bar{D}_m/\bar{x}_m)}: \mathbf{a} \longrightarrow C_{(\bar{D}_m/\bar{x}_m)}: \mathbf{a}$	(AX)
2.	$\Gamma, C_{(\bar{D}_m/\bar{x}_m)}: \mathbf{a} \longrightarrow [\lambda \tilde{x}_m \cdot C](\bar{D}_m): \mathbf{a}$	from 1, $ar{\mathtt{S}}_m$ by ($eta extsf{-}EXP$)
3.	$\Gamma, C_{(\bar{D}_m/\bar{x}_m)}: \mathbf{a} \longrightarrow [\lambda \tilde{x}_m \cdot C](\bar{D}_m):$	from S by (WR)
4.	$\Gamma, C_{(\bar{D}_m/\bar{x}_m)}: \mathbf{a} \longrightarrow C_{(\bar{D}_m/\bar{x}_m)}:$	from $2,3$ by (EFQ)
5.	$\Gamma, C_{(\bar{D}_m/\bar{x}_m)}:_\longrightarrow C_{(\bar{D}_m/\bar{x}_m)}:_$	(AX)
6.	$\Gamma \longrightarrow C_{(\bar{D}_m/\bar{x}_m)}:_$	from $4,5$ by (EXH)

Abstract	1. Partial TT and eta -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusion
00	000000000	0000000000	000000	000

Proof of $(\beta$ -EXP⁻)

Abstract	1. Partial TT and β -conversion	II. β-conversion by-name	III. β-conversion by-value	Conclusion
00	000000000	000000000●	000000	000

Partial conclusion

- One specific quadruple of β -conversion rules
 - a. $(\beta$ -CON), $(\beta$ -EXP) and $(\beta$ -CON⁻) - the substituted construction D_i is v-proper
 - b. (eta-CON $^-$) and (eta-EXP $^-$)

- relate v-improper constructions (their λ -abstractions v-construct an undefined function)

We'll see another quadruple of β-conversion rules
 a. in all of them: the substituted construction D_i is v-proper

Abstract	1. Partial TT and eta -conversion	II. β-conversion by-name	III. β-conversion by-value	Conclusion
00	000000000	000000000●	000000	000

Partial conclusion

- One specific quadruple of β -conversion rules
 - a. $(\beta$ -CON), $(\beta$ -EXP) and $(\beta$ -CON⁻) - the substituted construction D_i is v-proper
 - b. (β -CON⁻) and (β -EXP⁻)

- relate v-improper constructions (their λ -abstractions v-construct an undefined function)

- We'll see another quadruple of β -conversion rules
 - a. in all of them: the substituted construction D_i is v-proper

Abstract	1. Partial TT and β -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusion
00	000000000	0000000000	00000	000

Content

- 2) Partial TT and β -conversion
- 3 Primitive and derived rules of eta-conversion by-name

Φ Derived rules of β-conversion by-value

Concluding remarks

Abstract	I. Partial TT and eta -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusion
00	000000000	0000000000	00000	000

Towards β -conversion-by-value

- We want to substitute into a λ -abstracts not D as such, but its 'value' which must be computed first
- call-by-value evaluation in CS

PROBLEM 3 (Substitution by an already proven value)

Are there β -conversion rule that substitute the value of D which is an already proven object of a particular system?

Abstract	I. Partial TT and eta -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusion
00	000000000	0000000000	00000	000

Towards β -conversion-by-value

- We want to substitute into a λ -abstracts not D as such, but its 'value' which must be computed first
- call-by-value evaluation in CS

PROBLEM 3 (Substitution by an already proven value)

Are there β -conversion rule that substitute the value of D which is an already proven object of a particular system?

Abstract	1. Partial TT and eta -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusion
00	000000000	0000000000	00000	000

 β -contraction by-value in computer science

Usual formulation in CS (e.g Constable 1998); ↓ reads 'evaluates to' or 'is convergent to':

$$\begin{array}{ccc} \textit{call-by-name rule} & \textit{call-by-value rule} \\ \hline f \downarrow \lambda x.b & b_{(z/x)} \downarrow c \\ \hline f(z) \downarrow c & \hline f(a) \downarrow c \end{array} \qquad \qquad \begin{array}{c} f \downarrow \lambda x.b & a \downarrow a' & b_{(a'/x)} \downarrow c \\ \hline f(a) \downarrow c & \hline \end{array}$$

27 / 33

New rules of β -conversion 'by-value'

• In ND_{TT*} ,

Theorem 2: Derived (and novel) β -conversion rules by-value $\frac{\Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m):\underline{\mathbf{a}} \qquad \Gamma \longrightarrow D_1:\mathbf{d}_1 \dots \Gamma \longrightarrow D_m:\mathbf{d}_m}{\Gamma \longrightarrow C_{(\bar{\mathbf{d}}_m/\bar{x}_m)}:\underline{\mathbf{a}}} (\beta\text{-}\mathrm{CON}^{V\pm})$ $\frac{\Gamma \longrightarrow C_{(\bar{\mathbf{d}}_m/\bar{x}_m)}:\underline{\mathbf{a}} \qquad \Gamma \longrightarrow D_1:\mathbf{d}_1 \dots \Gamma \longrightarrow D_m:\mathbf{d}_m}{\Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m):\underline{\mathbf{a}}} (\beta\text{-}\mathrm{EXP}^{V\pm})$

• β -conversion provided it is first established that \bar{D}_m result in values \bar{d}_m directly *acquired* by the respective acquisitions

 Abstract
 I. Partial TT and β-conversion

 00
 000000000

II. β-conversion by-name 00000000000

III. β-conversion by-value 0000●0 Conclusion

Proofs of $(\beta$ -CON^{V+}) and $(\beta$ -CON^{V-})

Let $ar{\mathbf{d}}_m$	$/ar{ au}_m$ be not variables.	
S_1	$\Gamma \longrightarrow D_1: \mathbf{d}_1$	assumption in H^{CON^V}
	$\vdots \\ \Gamma \longrightarrow D_m : \mathbf{d}_m$	assumption in H^{CON^V}
1.	$ \begin{array}{l} \Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m):\mathbf{a} \\ \Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{\mathbf{d}}_m):\mathbf{a} \\ \Gamma \longrightarrow C_{(\bar{\mathbf{d}}_m/\bar{x}_m)}:\mathbf{a} \end{array} $	assumption in $H^{ ext{CON}^V}$ from $ar{ extsf{S}}_m$ and $ extsf{S}^{ extsf{C}+}$ by (app-SUB.i) from 1 by (eta -CON)
	$ \begin{array}{c} \Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{D}_m):_\\ \Gamma \longrightarrow [\lambda \tilde{x}_m.C](\bar{\mathbf{d}}_m):_\\ \Gamma \longrightarrow C_{(\bar{\mathbf{d}}_m/\bar{x}_m)}:_ \end{array} $	assumption in $H^{ ext{CON}^V}$ from $ar{ extsf{S}}_m$ and $ extsf{S}^{ extsf{C}-}$ by (app-SUB.i $^-$) from $ar{ extsf{S}}_m$ and 2 by ($eta extsf{-CON}^-$)

AbstractI. Partial TT and β -conversion000000000000

II. *β*-conversion by-name

III. β-conversion by-value 00000● Conclusion

Proofs of $(\beta$ -EXP^{V+}) and $(\beta$ -EXP^{V-})

Abstract	1. Partial TT and eta -conversion	II. β -conversion by-name	III. β -conversion by-value
00	000000000	0000000000	000000

Conclusion

Content

- 2 Partial TT and β -conversion
- \bigcirc Primitive and derived rules of eta-conversion by-name
 - Derived rules of eta-conversion by-value

6 Concluding remarks

Abstract	I. Partial TT and eta -conversion	II. β -conversion by-name	III. β-conversion by
00	000000000	0000000000	000000

conversion by-value Co 00 OC

Conclusion 000

Conclusions

- In TT* which is an expressive system with both total and partial functions we
- 1. showed appropriate rules of β -conversion by-name and by-value
 - because STT's classical rules fail in PTT (Fact 1)
- 2. formulated *novel* ('negative') *rules* β -conversion by-name and by-value
 - because rules such as ($\beta\text{-}\mathsf{CON})$ and ($\beta\text{-}\mathsf{EXP})$ do not handle an application of an undefined function
- 3. *derived* all the rules from the initial couple of
 - eta-conversion by-name rules (Theorem 1 and Theorem 2)
 - which shows superiority of (eta-CON) and (eta-EXP)

Abstract	I. Partial TT and eta -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusion
00	000000000	0000000000	000000	000

Conclusions

- In TT* which is an expressive system with both total and partial functions we
- 1. showed appropriate rules of $\beta\text{-conversion}$ by-name and by-value

- because STT's classical rules fail in PTT (Fact 1)

- 2. formulated *novel* ('negative') *rules* β -conversion by-name and by-value
 - because rules such as ($\beta\text{-}{\rm CON})$ and ($\beta\text{-}{\rm EXP})$ do not handle an application of an undefined function
- 3. *derived* all the rules from the initial couple of

eta-conversion by-name rules (Theorem 1 and Theorem 2)

– which shows superiority of (eta-CON) and (eta-EXP)

Abstract	I. Partial TT and eta -conversion	II. β -conversion by-name	III. β -conversion by-value	Conclusion
00	000000000	0000000000	000000	000

Conclusions

- In TT* which is an expressive system with both total and partial functions we
- 1. showed appropriate rules of β -conversion by-name and by-value
 - because STT's classical rules fail in PTT (Fact 1)
- 2. formulated *novel* ('negative') *rules* β -conversion by-name and by-value
 - because rules such as ($\beta\text{-}\mathsf{CON})$ and ($\beta\text{-}\mathsf{EXP})$ do not handle an application of an undefined function
- 3. *derived* all the rules from the initial couple of
 - eta-conversion by-name rules (Theorem 1 and Theorem 2)
 - which shows superiority of (eta-CON) and (eta-EXP)

Abstract	1. Partial TT and β -conversion	II. β -conversion by-name	III. β -conversion by-value
00	000000000	0000000000	000000

Conclusions

- In TT* which is an expressive system with both total and partial functions we
- 1. showed appropriate rules of β -conversion by-name and by-value
 - because STT's classical rules fail in PTT (Fact 1)
- 2. formulated *novel* ('negative') *rules* β -conversion by-name and by-value
 - because rules such as ($\beta\text{-}\mathsf{CON})$ and ($\beta\text{-}\mathsf{EXP})$ do not handle an application of an undefined function
- 3. *derived* all the rules from the initial couple of
 - β -conversion by-name rules (Theorem 1 and Theorem 2)
 - which shows superiority of (β -CON) and (β -EXP)

Conclusion

 Abstract
 I. Partial TT and β-conversion

 00
 000000000

III. β -conversion by-value 000000

Conclusion

References & Thank you!

Kuchyňka, P.; Raclavský, J. (2021): Rules of β -conversion-by-name, β -conversion-by-value, and η -conversion in partial type theory. *Logic Journal of the IGPL*. conditionally accepted