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I Karttunen, L. (1977). Syntax and Semantics of Questions.
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I Groenendijk, J., Stokhof, M. (1984). Studies in the

Semantics of Questions and the Pragmatics of Answers.
I Groenendijk, J. (1999). The Logic of Interrogation.

Inquisitive indifference semantics:
I Groenendijk, J. (2009). Inquisitive Semantics: Two

Possibilities for Disjunction.
I Mascarenhas, S. (2009). Inquisitive Semantics and Logic.

(Master thesis)



The current framework of inquisitive semantics

I Ciardelli, I. (2009). Inquisitive Semantics and Intermediate
Logics. (Master thesis)

I Ciardelli, I. (2016) Questions in Logic. (Ph.D. thesis)
I Ciardelli, I., Groenendijk, J., Roelofsen, F. (2019).

Inquisitive Semantics.
I Grilletti, G. (2020). Questions and Quantification. (Ph.D.

thesis)
I Ciardelli, I. (to appear). Questions in Logic.



Three aspects of inquisitive logic

1. Questions are types of types (information types)
2. One can define a consequence relation among information

types
3. Information types can be combined by logical connectives



Questions are types of types

I Statements classify structures.
I Questions classify statements.
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Algebras of information tokens and of their types
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Algebras of information states and their types
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Entailment among types of information

The space of possibilities S:
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Information tokens:
a is a circle, b is a triangle, a is red, . . .

Information types:
shape of a, shape of b, colour of a, colour of b

I a is a triangle �S b is red
I a is a circle 2S b is red
I colour of b, shape of a �S colour of a
I colour of b, shape of a 2S shape of b
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Combining information types

I the shape of a and the colour of b (an instance: a is a
circle and b is blue)

I the colour of all objects (an instance: a is red and b is blue)
I dependence of the shape of b on the colour of a (an

instance: if a is red then b a triangle and if a is blue then b
is a circle)



First-order language

Terms are defined in the usual way. Complex formulas are
defined as follows:

ϕ ::= ⊥ | t1 = t2 | Pt1 . . . tn | ϕ ∧ ϕ | ϕ→ ϕ | ∀xϕ | ϕ > ϕ | ∃∃xϕ

I ¬ϕ =def ϕ→ ⊥
I ϕ ∨ ψ =def ¬(¬ϕ ∧ ¬ψ)

I ∃xϕ =def ¬∀x¬ϕ
I ?ϕ =def ϕ

> ¬ϕ

I Pa

>

Qa represents the question whether a has the
property P or the property Q

I ∃∃xPx represents the question that asks what is an object
that has the property P



Some examples

I Is Alice married to Bob? ?Mab
I Is Alice married to Bob↑ or to Charlie↓? Mab

>

Mac
I Is Allice married to Bob or to Charlie↑ ?(Mab ∨Mac)

I Who did Alice invite to her wedding? ∀x?Iax
I What is Bob’s favorite dish? ∃∃xFbx



Some examples

∃∃!xϕ(x) =def ∃∃x(ϕ(x) ∧ ∀y(ϕ(y)→ y = x))

I What is the largest city in the world?
I Who is the current president of France?
I Who was the best man at your wedding?



Inquisitive model

An inquisitive model (for a given signature) is a pair
M = 〈D,W 〉, where
I D is a nonempty set,
I W is a set of first-order structures on the domain D.

We can assume that the interpretations of names and function
symbols are rigid. Given an evaluation of variables e every
term t has a fixed value tM,e.

An information state inM is a subset of W .



Inquisitive semantics

Given an inquisitive modelM = 〈D,W 〉, and an evaluation of
variables e inM, we define a support relation between
information states inM and formulas.
I s e ⊥ iff s = ∅,
I s e t1 = t2 iff tM,e

1 is identical with tM,e
2 ,

I s e Pt1 . . . tn iff M �e Pt1 . . . tn, for every M ∈W ,
I s e ϕ ∧ ψ iff s e ϕ and s e ψ,
I s e ϕ→ ψ iff for every t ⊆ s, if t e ϕ, then t e ψ,
I s e ∀xϕ iff for every o ∈ D, s e(o/x) ϕ,
I s e ϕ

>

ψ iff s e ϕ or s e ψ,
I s e ∃∃xϕ iff for some o ∈ D, s e(o/x) ϕ.



Inquisitive semantics

Given an inquisitive modelM = 〈D,W 〉, and an evaluation of
variables e inM, we define a support relation between
information states inM and formulas.
I s e ⊥ iff s = ∅,
I s e t1 = t2 iff tM,e

1 is identical with tM,e
2 ,

I s e Pt1 . . . tn iff M �e Pt1 . . . tn, for every M ∈W ,
I s e ϕ ∧ ψ iff s e ϕ and s e ψ,
I s e ϕ→ ψ iff for every t ⊆ s, if t e ϕ, then t e ψ,
I s e ∀xϕ iff for every o ∈ D, s e(o/x) ϕ,
I s e ϕ

>

ψ iff s e ϕ or s e ψ,
I s e ∃∃xϕ iff for some o ∈ D, s e(o/x) ϕ.



Key properties

Proposition
The following two properties hold generally for every formula ϕ:

1. Empty-set property: ∅ e ϕ,
2. Persistence: s e ϕ and t ⊆ s implies t e ϕ.

The following property holds for every {∃∃, > }-free formula α:
3. Truth-support bridge: s e α iff for all M ∈ s, M �e α.



Inquisitive vs. declarative existential quantifier

I s e ∃xPx means: in every structure from s there is some
object that has the property P.

I s e ∃∃xPx means: there is some object that in every
structure from s has the property P.

©4 4©
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In this state s we have
I s e ∃xRx ,
I but s 1e ∃∃xPx .



Inquisitive vs. declarative disjunction

I s e Pa ∨Qa means: in every structure from s, the object
a either has the property P or the property Q.

I s e Pa

>

Qa means: either the object a has the property
P in all structures from s, or the object a has the property
Q in all structures from s.

©4 4©
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In this state s we have
I s e Ca ∨ Ra,
I but s 1e Ca

>

Ra.



Inquisitive consequence relation

We define the consequence relation � as preservation of
support.

Proposition
For the {∃∃, > }-free fragment of the language, the logic
corresponds to classical first-order logic.



Disjunction and existence property

Theorem (Grilletti 2018)
Let Γ be a set of {∃∃, > }-free formulas and ϕ,ψ arbitrary
formulas. Then
(a) if Γ � ϕ

>

ψ then Γ � ϕ or Γ � ψ,
(b) if Γ � ∃∃xϕ then for some term t, Γ � ϕ[t/x ].



Compactness

Theorem
If every finite subset of ∆ is satisfiable then ∆ is satisfiable.

Compactness for entailment is an open problem:
I if ∆ � ϕ then for some finite ∆′ ⊆ ∆, ∆′ � ϕ.



More open problems

I Is the set of valid formulas recursively enumerable?
(axiomatization)

I If ϕ is not valid, is there a counterexample 〈D,W 〉 with
countable D and W? (Löwenheim-Skolem)



A fragment of the language L−inq

Only declarative antecedents are allowed:

ϕ ::= ⊥ | t1 = t2 | Pt1 . . . tn | ϕ ∧ ϕ | α→ ϕ | ∀xϕ | ϕ > ϕ | ∃∃xϕ

where α is {∃∃, > }-free



Inquisitive logic in the language L−inq

Intuitionistic logic plus (where α is declarative)
DN ¬¬α→ α,
CD ∀x(ϕ

>

ψ)→ (ϕ

> ∀xψ), if x is not free in ϕ,

>

-split (α→ (ϕ

>

ψ))→ ((α→ ϕ)

>

(α→ ψ)),
∃∃-split (α→ ∃∃xϕ)→ ∃∃x(α→ ϕ), if x is not free in ϕ.

The derivability relation is denoted by `.

Theorem (Grilletti 2020)
Let Φ ∪ {ϕ} be a set of L−inq-sentences. Then,

Φ � ϕ iff Φ ` ϕ.



Mention-some fragment

χ ::= α | χ > χ | ∃∃xχ | χ ∧ χ | α→ χ

where α is {∃∃, > }-free

Theorem (Ciardelli 2016)
For every χ from the mention-some fragment there are
declarative α1, . . . , αn and tuples of variables x1, . . . , xn such
that:

` χ↔ ∃∃x1α1

>

. . .

> ∃∃xnαn.



Antecedents from the mention-some fragment

χ ::= α | χ > χ | ∃∃xχ | χ ∧ χ | α→ χ

ϕ ::= ⊥ | t1 = t2 | Pt1 . . . tn | ϕ ∧ ϕ | χ→ ϕ | ∀xϕ | ϕ > ϕ | ∃∃xϕ

where α is {∃∃, > }-free



What creates the problem

Formulas like this:
I ∀x?Px → ∃∃xSx



Two ways of fuzzyfication

(a) Fuzzyfication of the information states
(b) Fuzzyfication of the support relation



Information states

An inquisitive model (for a given signature) is a pair
M = 〈D,W 〉, where
I D is a nonempty set,
I W is a set of first-order structures on the domain D.

We can assume that the interpretations of names and function
symbols are rigid. Given an evaluation of variables e every
term t has a fixed value tM,e.

An information state inM is a subset of W .



Fuzzy information states

A fuzzy inquisitive model (for a given signature) is a tuple
M = 〈D,A,W 〉, where
I D is a nonempty set,
I A is an algebra of values,
I W is a set of first-order fuzzy structures on the domain D.

We can assume that the interpretations of names and function
symbols are rigid. Given an evaluation of variables e every
term t has a fixed value tM,e.

A fuzzy information state is a fuzzy subset of W .



Crisp and fuzzy information states

I A crisp information state s in an inquisitive modelM is a
set of structures fromM that are compatible with the
information available in s.

I A fuzzy information state s in a fuzzy inquisitive modelM
assigns to M fromM the degree to which M is compatible
with the information available in s.
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Key properties

Proposition
The following two properties hold generally for every formula ϕ:
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2. Persistence: s e ϕ and t v s implies t e ϕ.
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Proposition
For the {∃∃, > }-free fragment of the language, the logic of fuzzy
information states is the corresponding fuzzy first-order logic.



Fuzzy support relation

Consider the question:
I What is the color of a?

The statement a is blue resolves the question to a greater
degree than the statement a is blue or green.

We can define the degree to which an information state
supports a formula.



Fuzzy support relation

s e α iff s(M) ≤ Me(α), for all M∈W

s[α] = 1 iff
∧

M∈W (s(M)⇒ Me(α)) = 1

s[α] =
∧

M∈W (s(M)⇒ Me(α))
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Fuzzy support relation

s e α iff s(M) ≤ Me(α), for all M∈W

s[α] = 1 iff
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M∈W (s(M)⇒ Me(α)) = 1
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M∈W (s(M)⇒ Me(α))



Inquisitive semantics

Given a fuzzy inquisitive modelM = 〈D,A,W 〉, and an
evaluation of variables e inM, we define the degree to which
an information state supports a formula.
I s[⊥]e =

∧
M∈W (s(M)⇒ 0),

I s[t1 = t2] is 0 or 1 according to whether tM,e
1 = tM,e

2 ,
I s[Pt1 . . . tn]e =

∧
M∈W (s(M)⇒ Me(Pt1 . . . t1)),

I s[ϕ ∧ ψ]e = min{s[ϕ]e, s[ψ]e},
I s[ϕ→ ψ]e =

∧
t∈States t [ϕ]e ⇒ t∗s[ψ]e,

I s[∀xϕ]e =
∧

o∈D s[ϕ]e(o/x),
I s[ϕ

>

ψ]e = max{s[ϕ]e, s[ψ]e},
I s[∃∃xϕ]e =

∨
o∈D s[ϕ]e(o/x).



Key properties

Proposition
The following two properties hold generally for every formula ϕ:

1. Empty-set property: ∅[ϕ]e = 1,
2. Persistence: t v s implies s[ϕ]e ≤ t [ψ]e.

The following property holds for every {∃∃, > }-free formula α:
3. Truth-support bridge: s[α]e =

∧
M∈W (s(M)⇒ Me(α)).



Truth-support bridge: the inductive step for implication

If it holds for every state s
I s[α]e =

∧
M∈W (s(M)⇒ Me(α)),

I s[β]e =
∧

M∈W (s(M)⇒ Me(β))

then it holds for every state s
I s[α→ β]e =

∧
M∈W (s(M)⇒ Me(α→ β)).

left side of the equation:
∧

t∈State(t [α]e ⇒ s∗t [β]e), i.e.∧
t∈State(

∧
M∈W (t(M)⇒ Me(α))⇒

∧
M∈W (t∗s(M)⇒ Me(β))).
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(the algebra of value can be any bounded commutative
residuated lattice)



Truth-support bridge: the inductive step for implication

I s e α iff for all M ∈ s, M �e α.
I s e α iff for all M ∈W , s(M) ≤ Me(α).
I s[α]e =

∧
M∈W (s(M)⇒ Me(α)).

Proposition
For the {∃∃, > }-free fragment of the language, the logic of fuzzy
information states is the corresponding fuzzy first-order logic.



Algebraic semantics

I Punčochář, V. (2021) Inquisitive Heyting algebras. Studia
Logica, 109(5), 995-1017.

I Quadrellaro, D.E. On intermediate inquisitive and
dependence logics. To appear in Annals of Pure and
Applied Logic.



Complete infinitely distributive Heyting algebras

A complete infinitely distributive Heyting algebra (H-algebra)
is a structure H = 〈H,

⊔
,
d
,⇒,0〉 where

I 〈H,
⊔
,
d
〉 is a complete lattice in which:

s t
d

i∈I ti =
d

i∈I(s t ti ),
s u

⊔
i∈I ti =

⊔
i∈I(s u ti ).

I ⇒ is the relative pseudocomplement:
s u t ≤ u iff s ≤ t ⇒ u.

I 0 is the least element.

Note that⇒ and 0 can be defined in terms of the join and meet:
I x ⇒ y =

⊔
{z ∈ H | z u x ≤ y},

I 0 =
d

H.



Inquisitive and declarative propositions

I information tokens (statements) correspond to principal
ideals in the Boolean algebra of information states

I information types (questions) correspond to nonempty
downward closed sets in the Boolean algebra of
information states



Cored algebras

A cored algebra is a structure A = 〈A,C(A),
⊔
,
d
,⇒,0〉

satisfying the following conditions:
(a) A∗ = 〈A,

⊔
,
d
,⇒,0〉 forms an H-algebra,

(b) C(A) is a subset of A that contains 0 and is closed under
d

and⇒ (C(A) is called the core of A),
(c) A∗ = 〈C(A),

d
,⇒,0〉 (with

d
and⇒ restricted to C(A))

forms a power-set algebra (i.e. complete atomic Boolean
algebra).



Downsets cored algebras

For any power-set algebra B we define the structure
DwB = 〈DwB,PDwB,

⋃
,
⋂
,V, {0}〉, where

I DwB is the set of all non-empty downsets of B,
I PDwB is the set of principal downsets,
I the operations

⋃
and

⋂
are (infinitary) union and

intersection,
I andV is defined as follows:

I X V Y =
⋃
{Z ∈ DwB | Z ∩ X ⊆ Y}.



Cored models

A cored model is a tuple N = 〈A,D,V 〉, where
I A = 〈A,C(A),

⊔
,
d
,⇒,0〉 is a cored algebra,

I D is a non-empty set
I V is a valuation, i.e. a function that assigns

I to every name an element of D,
I to every n-ary predicate a function that assigns to every

n-tuple of elements from D an element of the core.



Algebraic semantics for inquisitive logic

Given N = 〈A,D,V 〉 where A = 〈A,C(A),
⊔
,
d
,⇒,0〉

I |⊥|Ne = 0,
I |Pt1 . . . tn|Ne = V (P)(V e(t1), . . . ,V e(tn)),
I |ϕ ∧ ψ|Ne = |ϕ|Ne u |ψ|Ne ,
I |ϕ→ ψ|Ne = |ϕ|Ne ⇒ |ψ|Ne ,
I |ϕ > ψ|Ne = |ϕ|Ne t |ψ|Ne ,
I |∀xϕ|Ne =

d
o∈D |ϕ|Ne(o/x),

I |∃∃xϕ|Ne =
⊔

o∈D |ϕ|Ne(o/x).

�alg
C is preservation of validity in algebraic models.



Inquisitive algebras

An inquisitive algebra is a cored algebra A which satisfies the
following conditions:
(a) for every x ∈ A, x =

⊔
Y for some Y ⊆ C(A),

(b) C(A) is the set of
⊔

-irreducible elements of A.



A characterization of inquisitive algebras

Theorem
For every power-set algebra B, the structure DwB is an
inquisitive algebra. Moreover, every inquisitive algebra is
c-isomorphic to DwB for some power-set algebra B.

Theorem
Let I be the class of inquisitive algebras. Let Φ ∪ {ϕ} be a set
of Linq-sentences. Then,

Φ �alg
I ϕ iff Φ � ϕ.



Complete c-homomorphism

Consider two cored algebras:
I A = 〈A,C(A),

⊔A,dA,⇒A,0A〉,
I B = 〈B,C(B),

⊔B,dB,⇒B,0B〉 .
and a function h from A to B. Then, h is called a (complete)
c-homomorphism from A to B if it satisfies the following
conditions for every x , y , xi ∈ A (for all i ∈ I of some index set I):

I h(C(A)) = C(B),
I h(

⊔A
i∈I xi) =

⊔B
i∈I h(xi),

I h(
dA

i∈I xi) =
dB

i∈I h(xi),
I h(x ⇒A y) = h(x)⇒B h(y),
I h(0A) = 0B.

If h is moreover a bijection, it is called a c-isomorphism.



c-homomorphisms preserve and reflect validity

Lemma
Let A, B be cored algebras, h a c-homomorphism from A to B,
U a non-empty set, and ϕ an Linq-formula. Then, the following
hold:

ϕ is valid in 〈A,U〉 iff ϕ is valid in 〈B,U〉.



Inquisitive algebras are not closed under complete
c-homomorphic images

•

• •

•

•

• •

•

•



A characterization of c-homomorphic images of
inquisitive algebras

Theorem
Let A = 〈A,C(A),

⊔
,
d
,⇒,0〉 be a cored algebra. A is a

c-homomorphic image of some inquisitive algebra if and only if
it satisfies the following two conditions for every index sets I, J
and all aij ,a,bi ∈ C(A), where i ∈ I and j ∈ J:
(1)

d
i∈I

⊔
j∈J aij =

⊔
f : I→J

d
i∈I aif (i),

(2) a⇒
⊔

i∈I bi =
⊔

i∈I(a⇒ bi).

Theorem
Let I+ be the class of all cored models based on cored
algebras that satisfy the conditions (1) and (2) above. Let
Φ ∪ {ϕ} be a set of Linq-sentences. Then,

Φ �alg
I+ ϕ iff Φ � ϕ.



Resolutions in propositional logic

I R(p) = {p}, R(⊥) = {⊥},
I R(ϕ ∧ ψ) = {α ∧ β | α ∈ R(ϕ), β ∈ R(ψ)},
I R(ϕ→ ψ) = {

∧
α∈R(ϕ) α→ f (α) | f : R(ϕ)→ R(ψ)},

I R(ϕ

>

ψ) = R(ϕ) ∪R(ψ).

Theorem
ϕ ≡InqL

> R(ϕ).



Resolutions in predicate logic

I Re(Pt1 . . . tn) = {|Pt1 . . . tn|e}, Re(⊥) = {0},
I Re(ϕ ∧ ψ) = {a u b | a ∈ Re(ϕ),b ∈ Re(ψ)},
I Re(ϕ→ ψ) = {

d
a∈Re(ϕ)(a⇒ f (a)) | f : Re(ϕ)→ Re(ψ)},

I Re(∀xϕ) = {
d

m∈U f (m) | f ∈ x Re(ϕ)},
I Re(ϕ

>

ψ) = Re(ϕ) ∪Re(ψ),
I Re(∃∃xϕ) =

⋃
m∈U Re(m/x)(ϕ),

where
x Re(ϕ) = {f | for all m ∈ U : f (m) ∈ Re(m/x)(ϕ)}.

Theorem
In cored algebras satisfying (1) and (2), |ϕ|e =

⊔
Re(ϕ).



Picture taken from Galatos, N. Jipsen, P. Kowalski, T., Ono, H. (2007)
Residuated Lattices: An Algebraic Glimpse at Substructural Logics.
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