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Predecessors of inquisitive semantics

Alternative semantics:

» Hamblin, C. L. (1973). Questions in Montague English.

» Karttunen, L. (1977). Syntax and Semantics of Questions.
Partition semantics:

» Groenendiik, J., Stokhof, M. (1984). Studies in the
Semantics of Questions and the Pragmatics of Answers.

» Groenendijk, J. (1999). The Logic of Interrogation.
Inquisitive indifference semantics:
» Groenendijk, J. (2009). Inquisitive Semantics: Two
Possibilities for Disjunction.

» Mascarenhas, S. (2009). Inquisitive Semantics and Logic.
(Master thesis)



The current framework of inquisitive semantics

» Ciardelli, I. (2009). Inquisitive Semantics and Intermediate
Logics. (Master thesis)

» Ciardelli, I. (2016) Questions in Logic. (Ph.D. thesis)

» Ciardelli, ., Groenendijk, J., Roelofsen, F. (2019).
Inquisitive Semantics.

» Grilletti, G. (2020). Questions and Quantification. (Ph.D.
thesis)

» Ciardelli, I. (to appear). Questions in Logic.



Three aspects of inquisitive logic

1. Questions are types of types (information types)

2. One can define a consequence relation among information
types

3. Information types can be combined by logical connectives



Questions are types of types

> Statements classify structures.
» Questions classify statements.
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Algebras of information tokens and of their types
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Algebras of information states and their types
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structures information tokens information types



Entailment among types of information

The space of possibilities S:

QA]|A0
OO0 [AaA
Information tokens:
ais acircle, b is a triangle, ais red, . ..
Information types:
shape of a, shape of b, colour of a, colour of b
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The space of possibilities S:
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> aisatriangle =g b is red
> aisacircle #5 b is red



Entailment among types of information

The space of possibilities S:

QA]|A0
OO0 [AaA
Information tokens:
ais acircle, b is a triangle, ais red, . ..
Information types:
shape of a, shape of b, colour of a, colour of b

> ais atriangle Eg b is red

> aisacircle #5 b is red

» colour of b, shape of a Eg colour of a
» colour of b, shape of a¥g shape of b



Combining information types

» the shape of a and the colour of b (an instance: ais a
circle and b is blue)

» the colour of all objects (an instance: ais red and b is blue)

» dependence of the shape of b on the colour of a (an
instance: if ais red then b a triangle and if a is blue then b
is a circle)



First-order language

Terms are defined in the usual way. Complex formulas are
defined as follows:

pui=Ll|th=b|Ph...th|eAp|e—p]|VXp| Ve | Ixp

>
>
>
>

v

TP =def ¢ — L

OV =ger 7(—p A )
IXp =der VX

P =det p V T

Pa\v Qa represents the question whether a has the
property P or the property Q

AxPx represents the question that asks what is an object
that has the property P



Some examples

Is Alice married to Bob?

Is Alice married to Bob' or to Charliet?
Is Allice married to Bob or to Charlie'
Who did Alice invite to her wedding?
What is Bob’s favorite dish?

?Mab

Mab\ Mac
?(Mab v Mac)
Vx?lax
FxFbx



Some examples

Fxp(X) =der Ix((X) AVY(p(¥) = ¥ = X))

» What is the largest city in the world?
» Who is the current president of France?
» Who was the best man at your wedding?



Inquisitive model

An inquisitive model (for a given signature) is a pair
M = (D, W), where
» D is a nonempty set,
» W is a set of first-order structures on the domain D.

We can assume that the interpretations of names and function
symbols are rigid. Given an evaluation of variables e every
term t has a fixed value t-€.

An information state in M is a subset of W.



Inquisitive semantics

Given an inquisitive model M = (D, W), and an evaluation of
variables e in M, we define a support relation between
information states in M and formulas.

>

vVvYyyvyy

Slke Liff s =10,

slke by = b iff 1€ is identical with £,

Slke Pl ... thiff MEg P ... t,, forevery M e W,
Slke p A iff STFo w and s k¢ 1,

Slke p — o iff forevery t C s, if t g ¢, then t kg ),
S Ike Vxp iff for every 0 € D, S lkgo)x) s



Inquisitive semantics

Given an inquisitive model M = (D, W), and an evaluation of
variables e in M, we define a support relation between
information states in M and formulas.

>

vVvVvYVvyVvVvVvyyy

Slke Liff s =0,

slke by = b iff 1€ is identical with £,

Slke Pl ... thiff MEg P ... t,, forevery M e W,
Slke p A iff STFo w and s k¢ 1,

Slke @ — tiff forevery t C s, if t I ¢, then t ¢ 1),
S Ike Vxp iff for every 0 € D, S lkgo)x) s

Slke W iff Slkg @ Or slkg 9,

S Ike Fxy iff for some 0 € D, S l¢(o/x) -



Key properties

Proposition

The following two properties hold generally for every formula ¢
1. Empty-set property: () I-¢ ¢,
2. Persistence: s e ¢ andt C s implies t I-¢ .

The following property holds for every {3,\v}-free formula o.:
3. Truth-support bridge: s k¢ o iff for all M € s, M Eq .



Inquisitive vs. declarative existential quantifier

> slke IxPx means: in every structure from s there is some
object that has the property P.

» s l-e IxPx means: there is some object that in every
structure from s has the property P.

OA
OO0[a

A0
A

In this state s we have
> s e dxRXx,
> but s K¢ AxPx.



Inquisitive vs. declarative disjunction

» slke PaVv Qameans: in every structure from s, the object
a either has the property P or the property Q.

» sl¢ Pa\w Qameans: either the object a has the property

P in all structures from s, or the object a has the property
Q in all structures from s.

OA|AO
OO0 [AaA
In this state s we have

> slke CaVv Ra,

> but s e Ca\w Ra.



Inquisitive consequence relation

We define the consequence relation F as preservation of
support.

Proposition

For the {3, \v}-free fragment of the language, the logic
corresponds to classical first-order logic.



Disjunction and existence property

Theorem (Grilletti 2018)

LetT be a set of {3,\v}-free formulas and ¢, arbitrary
formulas. Then

(@) ifTE vy thenT Eyporl E,
(b) ifT E dxp then for some term t, T E o[t/ x].



Compactness

Theorem
If every finite subset of A is satisfiable then A is satisfiable.

Compactness for entailment is an open problem:
> if A F ¢ then for some finite A’ C A, A’ E .



More open problems

> |s the set of valid formulas recursively enumerable?
(axiomatization)

» If ¢ is not valid, is there a counterexample (D, W) with
countable D and W? (Léwenheim-Skolem)



A fragment of the language £;,,

Only declarative antecedents are allowed:
o=l |bh=b|P...thlpANp|la—=p| VX |eWVe|Ixe

where « is {3, \v}-free



Inquisitive logic in the language £,

Intuitionistic logic plus (where « is declarative)

DN ——a — «a,

CD Vx(p W) — (¢ WV Vxy), if x is not free in ¢,
WV-split (o = (pW ) = (o = @)V (a — ),
F-split (o — Fxp) — Ix(a — @), if x is not free in ¢.

The derivability relation is denoted by F.

Theorem (Grilletti 2020)

Let® U {¢} be a set of L;, -sentences. Then,

OFEiff ok .



Mention-some fragment

xo=o | xWVx | Ixx | xAx|a—x

where « is {3, \}-free

Theorem (Ciardelli 2016)

For every x from the mention-some fragment there are
declarative a4, . . . , an and tuples of variables X1, ..., Xp such
that:



Antecedents from the mention-some fragment

xui=a|xWVx | Ixx | xAxla—x
pr=Lltt=0LI|Ph...thleANe|x—= ¢ |VXp | pWVe|Ixp

where « is {3, \}-free



What creates the problem

Formulas like this:
> Vx?Px — dxSx



Two ways of fuzzyfication

(a) Fuzzyfication of the information states
(b) Fuzzyfication of the support relation



Information states

An inquisitive model (for a given signature) is a pair
M = (D, W), where
» D is a nonempty set,
» W is a set of first-order structures on the domain D.

We can assume that the interpretations of names and function
symbols are rigid. Given an evaluation of variables e every
term t has a fixed value t-€.

An information state in M is a subset of W.



Fuzzy information states

A fuzzy inquisitive model (for a given signature) is a tuple
M= (D,A W), where

> Dis a nonempty set,

» Ais an algebra of values,

> W is a set of first-order fuzzy structures on the domain D.

We can assume that the interpretations of names and function
symbols are rigid. Given an evaluation of variables e every
term t has a fixed value tM-€.

A fuzzy information state is a fuzzy subset of W.



Crisp and fuzzy information states

» A crisp information state s in an inquisitive model M is a
set of structures from M that are compatible with the
information available in s.

» A fuzzy information state s in a fuzzy inquisitive model M
assigns to M from M the degree to which M is compatible
with the information available in s.



Inquisitive semantics

Given an inquisitive model M = (D, W), and an evaluation of
variables e in M, we define a support relation between
information states in M and formulas.

>
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Inquisitive semantics

Given a fuzzy inquisitive model M = (D, A, W), and an
evaluation of variables e in M, we define a support relation
between information states in M and formulas.

>
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Inquisitive semantics

Given a fuzzy inquisitive model M = (D, A, W), and an
evaluation of variables e in M, we define a support relation
between information states in M and formulas.

» slko Liff s =0,

slre ty = ty iff £ is identical with ;""°,

Slke Pt ... tyiff forall M € W, s(M)<M®(Pt; ... t),
Slke p AN iff SIFg p and s k¢ 1,
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Inquisitive semantics

Given a fuzzy inquisitive model M = (D, A, W), and an
evaluation of variables e in M, we define a support relation
between information states in M and formulas.
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Inquisitive semantics

Given a fuzzy inquisitive model M = (D, A, W), and an
evaluation of variables e in M, we define a support relation
between information states in M and formulas.

>

vVvVvVvyVvVvVvVvyyy

Slke Liff s =0,

slre ty = ty iff £ is identical with ;""°,

Slke Pt ... tyiff forall M € W, s(M)<M®(Pt; ... t),
Slke p AN iff SIFg p and s k¢ 1,

Slke @ — @ iff forevery t,if t ke o, then tx s g 9,
S Ike Vxyp iff for every 0 € D, S lkgo)x) s

Slke W iff Slkg poOr slkg 9,

S Ike Fxy iff for some 0 € D, S I¢(o/x) -



Key properties

Proposition

The following two properties hold generally for every formula ¢:
1. Empty-set property: () I-¢ ¢,
2. Persistence: slk¢ ¢ and t C s implies t IF¢ .

The following property holds for every {3,\/}-free formula o:
3. Truth-support bridge: s I-¢ o iff S(M)<M°®(«v), for all Me W.

Proposition
For the {3,\v}-free fragment of the language, the logic of fuzzy
information states is the corresponding fuzzy first-order logic.



Fuzzy support relation

Consider the question:
» What is the color of a?

The statement a is blue resolves the question to a greater
degree than the statement a is blue or green.

We can define the degree to which an information state
supports a formula.



Fuzzy support relation

S IFe aviff (M) < M®(«), for all Me W



Fuzzy support relation

S IFe aviff (M) < M®(«), for all Me W
sla] = 1iff Apew(s(M) = M®(a)) =1



Fuzzy support relation

S IFe aviff (M) < M®(«), for all Me W
sla] = 1iff Apew(s(M) = M®(a)) =1
sla] = Amew(s(M) = M?(a))



Inquisitive semantics

Given a fuzzy inquisitive model M = (D, A, W), and an
evaluation of variables e in M, we define the degree to which
an information state supports a formula.

>

vVvvyVvVvYVvyyy

S[Lle = Amew(s(M) = 0),

s[ty = t] is 0 or 1 according to whether
S[Pty ... thle = Apmew(S(M) = M®e(Pt; ... 1)),
Sl A ple = min{s[¢le, S[¢]e},

Sl = Yle = Aicstates tlele = txS[¢]e,
s[Vxele = Nocp Sl#le(o/x);

sle WV le = max{s|gle, s[¢]e},

S[Bxple = voeD S[@]e(o/x)-

tMe tMe



Key properties

Proposition

The following two properties hold generally for every formula ¢:
1. Empty-set property: O[ple = 1,
2. Persistence: t C s implies s[p]e < t[1]e-

The following property holds for every {3,\v}-free formula o.:
3. Truth-support bridge: s[ale = Ayecw(S(M) = Mé(a)).



Truth-support bridge: the inductive step for implication

If it holds for every state s
> slale = Auew(s(M) = M®(a)),
> s[Ble = Amew(s(M) = M°(3))
then it holds for every state s

> sla = fle = Amew(s(M) = M®(a — B)).
left side of the equation: A ;. ge(tlale = sxt[5le), i.e.

Ntestate(Amew (HM) = M®(a)) = Apycw(txs(M) = M®(3))).
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Truth-support bridge: the inductive step for implication

If it holds for every state s
> slale = Auew(s(M) = M®(a)),
> s[Ble = Amew(s(M) = M°(3))
then it holds for every state s

> sla = fle = Amew(s(M) = M®(a — B)).
left side of the equation: A;cge(tlale = sxt[5le), i.e.

Ntestate(Amew (HM) = M®(a)) = Apcw(txs(M) = M®(3))).



Truth-support bridge: the inductive step for implication

If it holds for every state s
> slale = Amew(s(M) = M*(a)),
> S[Ble = Awew(S(M) = M(8))
then it holds for every state s

> sla = Sle = Amew(s(M) = M®(a — 5)).
left side of the equation: A;cgae(tlale = sxt[5le), i.e.

Atestate(Amew (t(M) = M®(a)) = Aycw(txs(M) = M(5))).

(the algebra of value can be any bounded commutative
residuated lattice)



Truth-support bridge: the inductive step for implication

> slkeaiffforall M e s, M, a.
> slke aiffforall M e W, s(M) < Mé(«).
> s[ale = Ayew(S(M) = M®(a)).

Proposition
For the {3, \v}-free fragment of the language, the logic of fuzzy
information states is the corresponding fuzzy first-order logic.



Algebraic semantics

» Puncochéf, V. (2021) Inquisitive Heyting algebras. Studia
Logica, 109(5), 995-1017.

» Quadrellaro, D.E. On intermediate inquisitive and
dependence logics. To appear in Annals of Pure and
Applied Logic.



Complete infinitely distributive Heyting algebras

A complete infinitely distributive Heyting algebra (H-algebra)
is a structure H = (H, | |,[ ],=-,0) where
> (H,| |,[']) is a complete lattice in which:

S |_|,-6, = |_|,-€,(S (] l‘,‘),
s e/ ti = Uie/(sT1 1)

> = is the relative pseudocomplement:
snt<uiffs<t= u.

> 0 is the least element.

Note that =- and 0 can be defined in terms of the join and meet:
>» x=>y=||{zeH|znx <y},
> 0=[]H.



Inquisitive and declarative propositions

» information tokens (statements) correspond to principal
ideals in the Boolean algebra of information states

» information types (questions) correspond to nonempty
downward closed sets in the Boolean algebra of
information states



Cored algebras

A cored algebra is a structure A = (A, C(A),L).[],=,0)

satisfying the following conditions:

(a) A*=(A/l,[],=,0) forms an H-algebra,

(b) C(A) is a subset of A that contains 0 and is closed under [ ]
and = (C(A) is called the core of A),

(c) A =(C(A),[],=,0) (with [ ]and = restricted to C(A))

forms a power-set algebra (i.e. complete atomic Boolean
algebra).



Downsets cored algebras

For any power-set algebra B we define the structure
DwB = (DwB, PDwB, | J,(),=,{0}), where
» DwB is the set of all non-empty downsets of B,
» PDwB is the set of principal downsets,
» the operations | J and () are (infinitary) union and
intersection,

» and = is defined as follows:
> X=Y={ZeDwB|ZnXC Y]}



Cored models

A cored model is a tuple N’ = (A, D, V), where
» A= (A C(A),LI,[],=,0) is a cored algebra,
» Dis a non-empty set
> Vs a valuation, i.e. a function that assigns

» to every name an element of D,
> to every n-ary predicate a function that assigns to every
n-tuple of elements from D an element of the core.



Algebraic semantics for inquisitive logic

Given N = (A, D, V) where A = (A, C(A),L],[],=,0)

L[y =0,
|Pty ... ol = V(P)(Ve(t),..., V&(ty)),
o AL = lpld T IwIg,
o = s = leld = [l
oV IS = ol Ul
Vxpld = |_|oeD|<P| e(0/x)’
> EHX90|e Loco |90‘ e(o/x)"
=39 is preservation of validity in algebraic models.

vVvyYVvyVvyVvyy



Inquisitive algebras

An inquisitive algebra is a cored algebra A which satisfies the
following conditions:

(a) forevery x € A, x =] Y forsome Y C C(A),
(b) C(A) is the set of | |-irreducible elements of A.



A characterization of inquisitive algebras

Theorem

For every power-set algebra B, the structure DwB is an
inquisitive algebra. Moreover, every inquisitive algebra is
c-isomorphic to DwB for some power-set algebra B.

Theorem
Let T be the class of inquisitive algebras. Let ® U {¢} be a set
of Ling-sentences. Then,

& =39 o jff & F .



Complete c-homomorphism

Consider two cored algebras:
> A= (A C(A),LI" T4, =404,
B =(B,C(B),|°,T1°,="75,05) .
and a function h from Ato B. Then, his called a (complete)

c-homomorphism from A to B if it satisfies the following
conditions for every x, y, x; € A (for all i € | of some index set /):

h(C(A)) = C(B),
h(U,e/X/) |_|:el h(x;),
(

h(

>
>
> h |_|IEIXI) |_|I€I ( )
> h(x =7 y) = h(x) =5 h(y),
> h(04) =08
If his moreover a bijection, it is called a c-isomorphism.



c-homomorphisms preserve and reflect validity

Lemma

Let A, B be cored algebras, h a c-homomorphism from A to B,
U a non-empty set, and ¢ an Linq-formula. Then, the following
hold:

p Is valid in (A, U) iff p is valid in (B, U).



Inquisitive algebras are not closed under complete
c-homomorphic images



A characterization of c-homomorphic images of
inquisitive algebras

Theorem

Let A= (A C(A),|],[],=,0) be a cored algebra. A is a
c-homomorphic image of some inquisitive algebra if and only if
it satisfies the following two conditions for every index sets I, J
and all aj;, a,b; € C(A), whereic landjc J:

(1) TierUjes @i = Ur. 1 i @ity
(2) a= Lic;bi = Lie/(a= by).

Theorem

Let Z" be the class of all cored models based on cored
algebras that satisfy the conditions (1) and (2) above. Let
d U {p} be a set of Ling-sentences. Then,

& E29 o iff o F .



Resolutions in propositional logic

> R(p) ={p} R(L) ={L},
> R(pAp)={aAB|aeR(p)B R}
> R = ¥) ={Aaer(p) @ = f@) [ f: R(p) = R(¥)},
> R(p V1) =R(p) UR(Y).
Theorem
© Zing. VR().



Resolutions in predicate logic

> RE(Pty...th) = {|Pt ... tle}, RE(L) = {0},
> Ré(pn1p) ={amib|aeRe(p),be RE(Y)},
> R = ¥) = [ laere(py(@= (@) | f: R%(p) = RE(¥)},
> RE(Vxp) = AT lpeu f(m) | f € x~>R(p)},
> RE(p V1) =RE(p) UR(Y),
> Re(EHXQO) = UmeURe(m/X)(‘p)a
where
x~RE(p) = {f |forall me U : f(m) € REM/X)(p)}.

Theorem
In cored algebras satisfying (1) and (2), |ple = | | R(¥)-
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