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Nuclei on BAOs & Heyting Algebras



Nuclei

• Given any Boolean (or Heyting) algebra  and , 
 defined as    is a nucleus  

which we can also call a strong monad on a poset category 
which we can also call a multiplicative closure operator 
which we can also call a lax modality


• Axioms of nuclei: ,    and  


• Boolean algebras are a Kindergarten setting for nuclei: 
any nucleus on a Boolean algebra  is of the form  for some  
In Fourman-Scott terminology, any Boolean nucleic quotient is closed 
Note that we could use also the open quotient  defined as  

𝔄 a ∈ A
𝖩a : A → A 𝖩a(x) = x ∨ a

x ≤ j(x) j(x) = j( j(x)) j(x ∧ y) = j(x) ∧ j(y)

𝔄 𝖩a a ∈ A

𝖩a : A → A 𝖩a(x) = a → x



Subframe construction, dually … 
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ιU
◊(Y) = Y

◊U
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= hU
◊ ◊R( ιU

◊Y)

 not a Boolean morphism and   in general not a -morphism:  pick  to get ιU
◊ hU

◊ ◊ Y = {e} hU
◊(◊RY) ≠ ◊U

R(hU
◊Y)



… or maybe ?

Dual 
modal algebras

(𝔉+)◊ = ⟨𝒫(W), ◊R⟩ (𝔉+
U)◊ = ⟨𝒫(U), ◊U

R⟩

⊤ = U

⊥ = ∅hU
◊(X) = X ∩ U

ιU
◊(Y) = Y

◊U
RY = U ∩ ◊R(U ∩ Y )

= hU
◊ ◊R( ιU

◊Y )

⊤ = WιU
□(Y) = Y

(𝔉+)□ = ⟨𝒫(W), □R ⟩Also dual  
modal algebras

(𝔉+
U)□ = ⟨ ↑𝒫(W) (W − U), □U

R ⟩

⊥ = W − U

W − U

U

⊤ = W

⊥ = ∅
h□

U (X) = X ∪ (W − U)

  and  restrict to mutually inverse Boolean isomorphisms between   and hU
◊ hU

□ (𝔉+
U)◊ (𝔉+

U)□

□U
R Y = W − ◊R(U − Y )

= hU
□ □R ( ιU

□Y )

term equivalent

U

⊤ = W

⊥ = ∅
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Subframe logics in the BAO setting

• We started with normal modal logic (with  as primitive) over CPC


• Abstract algebraic logic (AAL) perspective: 
a logic  as a set of theorems   an equational theory  


• Def:  is a subframe logic if  is closed under nucleic quotients 
That is, for any  and any nucleus ,   
(this definition follows G. Bezhanishvili & S. Ghilardi  rather than Wolter)


• Theorem: Kripke-subframe logics are subframe in this sense.  (Wolter, I guess) 
For transitive normal modal logics, not only does the converse holds as well, 
but they do enjoy the finite model property  (essentially Fine) 
(G. Bezhanishvili & S. Ghilardi & M. Jibladze: still holds for weak transitivity,  
F. Wolter: … but not for 2-transitivity) 

□

Λ ⟺ 𝖵𝖺𝗋(Λ)

Λ 𝖵𝖺𝗋(Λ)
𝔄 ∈ 𝖵𝖺𝗋(Λ) j : A → A 𝔄j ∈ 𝖵𝖺𝗋(Λ)



Algebraic semantics of IPC

• Heyting algebras: bounded lattices where  has right adjoint  
(hence distributive)


• G. Bezhanishvili & Ghilardi 2007: nuclei on Heyting algebras capture 
descriptive/Priestley/Esakia subframe constructions 

∧ →



• Recall the construction of , i.e., the nucleic quotient of  via :  
For any  and any nucleus , we can define 

 (the collection of fixpoints of )


• Any -ary operation  is turned into  by 
 

(or, strictly speaking,  if the identity embedding  made visible


• While we explicitly see the “extensional” connectives ( ) of   
as obtained this way … 


• As , 
 is an implicative subsemilattice of : we only need to prefix  in front of  and 


• Furthermore,  obtained this way is a Heyting algebra in its own right! 
But not necessarily satisfying the same equational axioms as the original : 
the subframe ones are precisely the safe ones

𝔄j 𝔄 j
𝔄 j : A → A

Aj = {a ∈ A ∣ j(a) = a} j

n ♥ : An → A ♥j : An
j → Aj

♥j(c1, …, cn) = j(♥(c1, …, cn))
♥j(c1, …, cn) = j(♥(ιj(c1), …, ιj(cn))) ιj : Aj → A

∧ , ∨ , → , ⊤ , ⊥ 𝔄j

j( ⊤ ) = ⊤ , j( j(a) ∧ j(b)) = j(a) ∧ j(b) and j( j(a) → j(b)) = j(a) → j(b)
𝔄j 𝔄 j ∨ ⊥

𝔄j
𝔄



• Also, as for preservation of : 
nuclei satisfying are called dense


• G. Bezhanishvili & S. Ghilardi show that the (pre-existing) notion of 
(superintuitionistic) cofinal subframe logics corresponds to  
preservation by dense nuclei


• Furthermore, this is in turn equivalent to a seemingly stronger property: 
preservation by locally dense nuclei: those satisfying  
(correspond to strict lax modalities of Aczel 2001)

⊥
j( ⊥ ) = ⊥

j(¬j( ⊥ )) = ⊤



Pleasant results in the pure Heyting signature

• Theorem (Fine, Zakharyaschev): 


✴ A (locally dense) nuclear superintuitionistic logic/variety has the finite frame/algebra property 
(in the modal setting, true only in the presence of wK4!)


✴ A logic/variety is nuclear iff  
it is axiomatized by -formulas/identities


✴ A logic/variety is (locally) dense nuclear iff  
it is axiomatized by -formulas/identities


• Theorem (quite a few good people):  
TFAE for a superintuitionistic logic :


✴  is nuclear 


✴  is axiomatized by NNIL formulas (No Nesting of Implication to the Left) 
“NNIL” is pronounced as “NIL”, where the first “N” is pronounced with some slight hesitation - Visser et al. 1995


✴  is axiomatized by formulas preserved by submodels of Kripke models 

( ∧ , → )

( ∧ , → , ⊥ )

Λ

𝖵𝖺𝗋(Λ)

Λ

Λ



But we also begin to see first problems

• Nucleic quotient of a perfect BAO ( -BAO or simply a Kripke 
algebra) is again the dual of a Kripke frame


• This does not hold anymore in the Heyting setting!


• More issues to follow …

𝒞𝒜𝒱



What happens when more connectives present?

• Intuitionistic modal logics: with box only …? With diamond(s) too?


• Most broadly: extensions of Weiss’s ICK?       
(Basic Intutionistic Conditional Logic, JPL 2019: arrow distributing over  in the 2nd coord. 
Chellas-Weiss semantics or generalized Routley-Meyer semantics)


• More narrow: constructive strict implication/Lewis arrow? Heyting-Lewis Calculus:  
 (formerly known as ) = ICK + arrow transitive, admitting gen. necessitation, antimonotone in the 1st coord.  
:  +  (formerly known as ) =  of arrows with the same consequent  an arrow with  in the antecedent 

(  includes, e.g., the logic of type inhabitation of Haskell arrows)


• Superlogics of HLC capturing preservativity in Heyting Arithmetic and its extension? 
variants of the Löb axiom + more? 
(generalized Veltman semantics)


• The logic of bunched implications BI?  
(commutative and associative)   adjoint to   
(variants of partial monoid semantics, also topological ones) 

∧

𝖧𝖫𝖢♭ 𝗂𝖠−

𝖧𝖫𝖢♯ 𝖧𝖫𝖢♭ 𝖣𝗂 𝗂𝖠 ∧ ↔ ∨
𝖧𝖫𝖢♭

⋆ −⋆



(Term-definable) nuclei on  
Heyting Algebra Expansions (HAEs): 

Towards general theory



Classical subframization is describable I 

• Here we want to introduce another item from Wolter’s toolbox 
(in a suitably generalized form)


• Namely, we focus on his notion of a describable operation


• Let us start in even more generality: given any class of algebras  and 
a set-valued operation , we extend it to subclasses :   

(note that I don’t want  to be closed under isomorphism)


• Say that  is delimited if for any ,  
Say that  is extensive if for any ,   (inflationary?)


• The operation of forming all subframes/nucleic quotients  is both delimited and extensive 
(on Boolean or Heyting algebras, or their expansions)


• But on Boolean algebras it has yet another property, more problematic in the Heyting case

V
C : V → 𝒫(V) K ⊆ V C(K) = ⋃{C(𝔄) ∣ 𝔄 ∈ K}
C(K)

C K ⊆ V C(C(K)) ⊆ C(K)
C K ⊆ V K ⊆ C(K)

𝕁



Classical subframization is describable II
• Let  be a Boolean modal algebra. Consider the situation when  

(I assume it is clear what it means for  to hold in a class of algebras) 

Does it boil down to  for some suitable translation  ? 
(jumping ahead a bit, we can speak of nucleic Gödel-Gentzen or generalized negative translation) 
 
Fix a fresh variable .  Define a recursive translation:

   
(not exactly how this is presented by Wolter, as he focuses on the diamond-relativization)  
we could also use the open translation instead of the closed one  


• Theorem (essentially Kracht/Wolter): For any Boolean modal algebra , any  and any fresh , 

  iff  


• Whenever there is  s.t.    iff  ,  is a weakly describable operation 

with the describing translation made explicit, we can use this notion for the pair 

𝔄 𝕁(𝔄) ⊨ φ
φ

𝔄 ⊨ φ j ( ⋅ ) j

p
q𝗎,p = q ∨ p (¬φ)𝗎,p = ¬φ𝗎,p ∨ p (φ ∧ ψ)𝗎,p = φ𝗎,p ∧ ψ𝗎,p (□φ)𝗎,p = □ (φ𝗎,p) ∨ p

𝔄 φ p
𝕁(𝔄) ⊨ φ 𝔄 ⊨ φ𝗎,p

( ⋅ )c C(𝔄) ⊨ φ 𝔄 ⊨ φc C
⟨C, ( ⋅ )c⟩



Problems even in the pure Heyting signature

• The lattice of nuclei on a Heyting algebra is quite complex


• Describability is thus a subtle (or messy) business


• Let us look at several standard examples of nuclei, taken from 


✴ “Sheaves and Logic”, Fourman and Scott 1977


✴ “Modal operators on Heyting algebras”, Macnab 1981 



•  (Macnab writes ): the closed quotient, dense (and identity) for a = ⊥.  

•  (Macnab writes ): the open quotient, dense (and identity) for a = ⊤.  

•  (Macnab writes ): the boolean quotient,  
dense for a = ⊥; even then identity not a special case.  
Denote the dense case as  ( ): the double-negation quotient. 
(this one may collapse duals of Kripke structures to pointless/atomless algebras)


• : the forcing quotient,  
dense (and identity) for a = ⊥.


• : a mixed quotient; dense (and identity) for a = ⊤.

𝖩aφ = a ∨ φ 𝗎a

𝖩aφ = a → φ 𝗏a

𝖡aφ = (φ → a) → a 𝗐a

𝖡⊥φ = ¬¬φ 𝗐⊥

(𝖩a ∧ 𝖩b)φ = (a ∨ φ) ∧ (b → φ)

(𝖡a ∧ 𝖩a)φ = (φ → a) → φ



• For each of these (definable) lax modalities (Aczel terminology), 
given an algebra , we can consider the corresponding class of nucleic 
quotients of  (  …) 
obtained by varying , … across the carrier of 


• Clearly, each of them is (at least) weakly describable


• How to describe the class of all nucleic quotients though?

𝔄
𝔄 𝕌, 𝕍, 𝕎, 𝕎⊥

a b 𝔄



Basics facts about describability
• In our generalizations, we have to make finer distinctions than Wolter did


• A weakly describable operation is stabilizing if  implies  
A weakly describable operation is subsuming if  implies 


• Fact: Being stabilizing is equivalent to  for all  
Fact: Being subsuming implies that  for all  
Fact: Being delimited (recall it’s ) and weakly describable implies being stablizing  
Fact: Being extensive (recall it’s ) and weakly describable implies being subsuming


• Definition: A weakly describable operation is Wolterian or fully describable when delimited and extensive 
Theorem (Wolter): The subframization/nucleization operation  on Boolean algebra expansions (BAEs) is fully 
describable (Wolterian) 
 
Meaningful weakly describable operations should be stabilizing, but not all of them will be Wolterian-describable 
 
Actually, finding workable general criteria for being stabilizing turned out to be non-trivial!

C(𝔄) ⊨ φ C(𝔄) ⊨ φc

C(𝔄) ⊨ φ 𝔄 ⊨ φ

(φc)c ∈ 𝖣𝖾𝖽(φc) φ
φ ∈ 𝖣𝖾𝖽(φc) φ

C(C(K)) ⊆ C(K)
K ⊆ C(K)

𝕁



Case study I: 
The subframe property as a form of completeness

• Given a set-valued operation  on some ambient variety ,  
a subvariety  (or its corresponding logic )  
is -complete if  


• For extensive operations, this obviously equivalent to 


• In particular, subframe logics = -complete ones

C V
W ⊆ V 𝖫𝗈𝗀(W)

C C(W) ⊆ W

C(W) = W

𝕁







Case study II:  
negative translations for Heyting Algebra Expansions (HAEs)

• In a FSCD 2017 paper (jointly with M. Polzer and U. Rabenstein) 
(also CMCS 2019: Going negative in Prague)  

-completeness of intuitionistic normal -modal logics


• By this we meant: for which such logic , it is the case that 
  iff  , where  is a suitably generous negative translation?


• As turns out, this is precisely the study of -completeness!


• A non-extensive operation, but nevertheless very natural 
(main motivation for me to remove extensiveness from Wolter’s axioms)


• Many of our results were special cases of those in “Towards general theory” above


• On the other hand, it is interesting how far our FSCD “enveloped implications”  
completeness criterion generalizes to other settings

¬¬ □

Λ
φ¬¬ ∈ Λ φ ∈ Λ ⊕ (p ∨ ¬p) ( ⋅ )¬¬

𝕎⊥







Case study III (with Albert Visser):

Extension stability for logics of arithmetical interpretations

• Motivation comes from the metatheory of Heyting Arithmetic 


• We study signatures extending the provability signature 
e.g., the constructive strict implication connective ⥽


• It is most commonly interpreted as preservativity wrt a fixed aritmetical theory T and 
a fixed set of sentences  (most commonly ): 
 A ⥽ , T B if for every -sentence ,   implies  
But many other interpretations are possible


• We say that  is an elegant interpretation if for any recursively axiomatizable 
arithmetical theory  and any arithmetical sentences , we have that  

 ⥽F,U+A      ⥽F,U 

Δ Δ = Σ0
1

Δ Δ S T ⊢ S → A T ⊢ S → B

F
U A, B, C

U ⊢ (B C) ↔ (A → B) (A → C)



• Now when we look at the propositional logic  determined by a given 
arithmetical interpretation  and a given theory , and an arithmetic sentence , 
does it hold that  (?) 
 
Must a principle valid in a base theory hold in all its finite extensions?


• As it turns out, this is not the case: -preservativity logic of HA (Markov’s Principle 
can be axiomatized by a single sentence)


•  is called extension stable if (?) holds (for an elegant )


• The study of extension stability = the study of -completeness


• Challenge: logics which do not always allow a Kripke-style semantics!

ΛF(T)
F T A

ΛF(T) ⊆ ΛF(T + A)

Σ0
1

ΛF(T) F

𝕍



Stabilizing and Wolterian quotients

• Theorem: For any weakly describable operation, -completeness is equivalent to admissibility of the rule “from , infer ”. 
Furthermore, restricting the attention to axioms is enough.


• Theorem: For any weakly describable operation, -complete logics form a complete -subsemilattice of the lattice of all logics 


• Theorem: If a weakly describable operation is stabilizing ( ), then for any set of formulas 


✴  axiomatizes a -complete logic


✴ The least -complete logic containing  is obtained as 


• Theorem: If an operation is Wolterian ( ), then


✴ The least -complete logic containing  is obtained as 


✴ The greatest -complete logic contained in  is 


✴ -complete logics form a complete -sublattice of the lattice of all logics 

C φ φc

C ⋀
𝖩a, 𝖩a, 𝖡a, 𝖡⊥ Γ

Γc C

C Γ 𝖣𝖾𝖽(Γ ∪ Γc)

𝖩a, 𝖩a

C Γ 𝖣𝖾𝖽(Γc)

C Γ 𝖣𝖾𝖽({γc ∣ Γ ⊢ γc})

C ⋀⋁



Aside: good operations
• Wolter has noted that nucleization on Boolean modal algebras is good:


✴ the corresponding translation is computable and decidable


✴ a finite algebra yields a finite set of finite ones


✴ when  is the dual of a Kripke frame, so are all algebras in 


• The last condition is, as we noted, non-trivial in a Heyting setting (boolean quotients)


• In the presence of additional operators, “Kripkeanity” can go wrong even in cases when the Heyting reduct 
remains unproblematic: 
the open nucleus does not preserve  
(recall ? but  is safe for open nuclei)


• Dual perspective to be developed (most interesting for specific signatures and axioms  
allowing “natural” interpretations… such as  and  indeed)

𝔄 𝕁(𝔄)

𝖧𝖫𝖢♯

𝖣𝗂 𝖧𝖫𝖢♭

𝖧𝖫𝖢♭ 𝖧𝖫𝖢♯



General completeness criterion

• (already mentioned)  
Generalization of the criterion of “enveloped implications” from our FSCD 
2017 paper 

• Much more to be done by generalizing modal & intuitionistic theory of 
subframe formulas



More examples?

• Georg Struth: A (B)BI nucleus defined by  yields the 
collection of intuitionistic (affine) assertions …


• The use of (a subclass of) nuclei in algebraic cut elimination and Ono-
style completeness proofs for substructural logics … 
(OTOH, a different notion of “nucleus”: preserves fusion)

𝖨(p) = ⊤ ⋆ p


