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Galieleo’s paradox concerning the relation between collections of natural
numbers and their squares may be the best illustration of the well-known
fact (Mancosu 2009) that in comparing infinite collections one must choose
one of two mutually exclusive principles:

1. The Part-Whole Principle (PW): “The whole is greater than its part.”

2. Cantor’s Principle (CP): “Two sets have the same size if and only if
there is a one-to-one correspondence between their elements.”

While Bolzano insisted on PW, according to Cantor, two sets have the
same size if CP holds. Cantor’s approach prevailed and is generally accepted
as the only correct one. All infinite countable sets have one and the same
size, namely ℵ0, that is the cardinality of the set of natural numbers.

Bolzano’s theory of infinite quantities preserving PW described primarily
in Paradoxes of the Infinite is also meaningful and can be interpreted consis-
tently in contemporary mathematics (Trlifajová 2018), (Bellomo & Massas
2021). Bolzano was aware of the existence of a one-to-one correspondence
between some infinite multitudes, however, he writes: “Merely from this cir-
cumstance we can in no way conclude that these multitudes are equal to one
another if they are infinite with respect to the plurality of their parts . . . An
equality of these multiplicities can only be concluded if some other reason
is added, such as that both multitudes have exactly the same determining
ground.” (Bolzano 1851/2004, §21).

We introduce a theory of sizes of some countable sets based on Bolzano’s
ideas. The method is similar to that of Benci and Di Nasso’s Numerosity
Theory (NT) (Benci & Di Nasso 2003, 2019) but it differs in some substantial
ways. Set sizes are determined constructively. They are unambiguous for
they do not depend on the choice of an ultrafilter which is always partially
arbitrary. Rules for determining are more rigorously justified, and so some
results are more accurate. On the other side, sizes of countable sets are only
partial and not linearly ordered. Quid pro quo.



Simultaneously, this is an answer to Matthew Parker, who argues in Set
Size and the Part-Whole Principle (Parker 2013) that all Euclidean theo-
ries, i.e. theories satisfying PW, must be either very weak or arbitrary and
misleading.

Canonically countable sets are those that can be arranged into mutually
disjoint finite groups indexed by natural numbers according to its determining
ground

A =
⋃
{An, n ∈ N}.

Then a size of A is a sum of finite cardinalities |An| expressed as a se-
quence of partial sums. We define a size sequence of A as the sequence
σ(A) = (σn(A))n∈N such that

σn(A) = |A1|+ . . . |An|.

The problem is the exact meaning of the determining ground. In some
cases a canonical arrangement is evident, in other cases we will define it so
that the following rules are satisfied.

A canonical arrangement of natural numbers N =
⋃
{An, n ∈ N} is

An = {n}.

Let A,B be two canonically arranged sets, A =
⋃
{An, n ∈ N} and B =⋃

{Bn, n ∈ N}. Then

A ⊆ B ⇒ (∀n ∈ N)(An ⊆ Bn).

A canonical arrngement of the Cartesian product A×B is defined for all
n ∈ N

(A×B)n =
⋃
{Ai ×Bj, n = max{i, j}}.

Now, we can determine size sequences of integers, rational numbers and
their subsets. If two intervals of rational numbers of have the same length
then have the same size as well.

Theorem 1. Let A,B be two canonically countable sets.

1. If A is finite then σ(A) =F |A|

2. If A is a proper subset of B, A ⊂ B, then σ(A) <F σ(B).

3. The size sequence of the union is σ(A∪B) = σ(A) + σ(B)− σ(A∩B).

4. The size sequence of the Cartesian product is σ(A×B) = σ(A) · σ(B).



Theorem 2. Let S be the set of size sequences, i.e. the set of non-decreasing
sequences of natural numbers. Let addition and multiplication be defined
componentwise, equality and order are also defined componentwise but from
a sufficiently great index, i.e. modulo Fréchet filter Then the structure
(S,+, ·,=F , <F) is a partial ordered non-Archimedean commutative semir-
ing.
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