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For motivation consider a familiar mathematical problem: find the domain of the function

f(x) =
3

x2 − 3x+ 2

f ’s domain – i.e. the set of real numbers for which f is defined – contains any number
n if and only if the result of substituting n’s name for x in 3

x2−3x+2
is a valid expression,

i.e. a name of some number m; m is then the value of f at n. Since no fraction with zero
denominator represents a number, and the original expression is equivalent to 3

(x−1)×(x−2)
,

it can be readily seen that f ’s domain contains all numbers except 1 and 2, i.e. R\{1; 2}.
When solving the above problem, one in fact employs the pivotal rules of type theory

(TT ) (i.e. a higher-order logic with a hierarchy of functions sorted in interpretations (sets)
Dτ of types τ) namely the rules of β-conversion (i.e. β-contraction: `; β-expansion: a):

[λx̃m.C](D̄m) a` C(D̄m/x̄m)

where X̃m is short for X1X2...Xm; X̄m is short for X1, X2, ..., Xm; but C(D̄m/x̄m) is short for
C(D1/x1)...(Dm/xm), where C(D/x) is the result of substituting D for all free occurrences of x
in C (interpreted in our approach as [[Sub(pDq, pxq, pCq)]]M ,v, where v is an assignment,
M is a model that is built, inter alia, from a frame F = {Dτ | τ ∈ T }, where T is the
set of all relevant types; pXq presents X as such, not X’s value).

However, within partial TT, i.e. a TT that embraces both total and partial functions,1

the above classical formulation of β-contraction is not valid. For example,

[λx.λy.÷ (x, x)](÷(3, 0)) 6⇒β λy.÷ (÷(3, 0),÷(3, 0)),

for [λx.λy. ÷ (x, x)](÷(3, 0)) is non-denoting (because D := ÷(3, 0) is non-denoting),
but λy. ÷ (÷(3, 0),÷(3, 0)) denotes a certain partial function. This is why Tichý 1982,
Moggi 1988, Farmer 1990, Feferman 1995, Beesson 2004 and others conditioned the rule
by requiring that D entering β-reduction must be denoting.

1A total/partial function[-as-graph] maps all/some-but-not-all members of its domain D to some
members of its range D ′. Note that such functions differ from functions-as-computations.



In Tichý’s 1982 convenient ‘two-dimensional’ natural deduction ND for his simple
TT (STT) with total and partial (multiargument) functions, his safe β-contraction rule
by-name reads2

(β−CON) [λx̃m.C](D̄m):a ` C(D̄m/x̄m):a

in which terms C are ‘signed’ by :a, which is a terse variant of ∼= a, where ∼= is a symbol of
congruence; a is either a variable a or a constant A or an acquisition pAq. This requires
here the whole β-redex, i.e. the application written on the left-hand side of `, and thus
also its parts being denoting.

However, Tichý’s proposal is too restrictive. For example,

[λx.÷ (x, 0)](3)⇒β (÷(3, 0))

is not handled by (β-CON). To capture also such examples we propose the ‘negative’
variant of the above ‘positive’ rule (β-CON) (i.e. (β-CON+)),

(β−CON−) Γ −→ [λx̃m.C](D̄m): ; Γ −→ D1:x1; ...; Γ −→ Dm:xm ` Γ −→ C(D̄m/x̄m):

where each Di:xi says that Di is denoting an object in the range of xi, and X: represents
that X is non-denoting ( stands for any type-theoretically appropriate non-denoting
term).

Our further main contribution (see reference below) is a derivation of rules of β-
conversion by-value, both in ‘positive’ and ‘negative’ variants, from the primitive rules
(e.g. (β-CON)) of the natural deduction ND for partial TT. Notation ± covers both +-
and −-variants and V indicates that one substitutes the value of D, which is directly
‘named’ by d – while it is d (not D) what is substituted for x through C, cf. C(d̄m/x̄m):

(β−CONV±) Γ −→ [λx̃m.C](D̄m):a,Γ −→ D1:d1; ...; Γ −→ Dm:dm ` Γ −→ C(d̄m/x̄m):a
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2In this abstract, we omit β-expansion rule(s). Further, let C etc. be typed by types τ(i) as follows:
C,a/τ ;D1, x1/τ1; ...;Dm, xm/τm, so λx̃m.C/〈τ̄m〉→τ (the type of functions from Dτ1 × ...×Dτm to Dτ ),
where τ̄m is short for τ1, τ2, ..., τm.


