Abstract evolution systems*

Wiesław Kubiś Paulina Radecka

Institute of Mathematics, Czech Academy of Sciences (CZECH REPUBLIC)

We introduce the concept of an abstract evolution system, which provides a convenient framework for studying generic mathematical structures and their properties. Roughly speaking, an evolution system is a category endowed with a selected class of morphisms called transitions, satisfying certain natural conditions. It can also be viewed as a generalization of abstract rewriting systems, where the partially ordered set is replaced by a category. In our setting, the process of rewriting plays a nontrivial role, whereas in rewriting systems only the result of a reduction/rewriting is relevant. An analogue of Newman's Lemma holds in our setting, although the proof is a bit more delicate, nevertheless, still based on Huet's idea using well founded induction.

Formally, an evolution system is a structure of the form $\mathscr{E} = \langle \mathfrak{V}, \mathscr{T}, \Theta \rangle$, where \mathfrak{V} is a category, Θ is a fixed \mathfrak{V} -object (called the *origin*) and \mathscr{T} is a class of \mathfrak{V} -arrows (its elements are called *transitions*). An evolutions is a sequence of the form

$$\Theta \to A_0 \to A_1 \to \cdots \to A_n \to \cdots$$

where each of the arrows above is a transition. The category \mathfrak{V} serves as the universe of discourse. Given a \mathfrak{V} -object X, we denote $\mathscr{T}(X) = \{f \in \mathscr{T} : \operatorname{dom}(f) = X\}$, that is, the set of all transitions with domain X. Two transitions $f, g \in \mathscr{T}(X)$ are isomorphic if there is an isomorphism h in \mathfrak{V} such that $g = h \circ f$. The system is regular if transitions commute with isomorphisms, that is, $f \circ h$ is a transition whenever f is a transition and h is an isomorphism. An object X will be called finite if there exist transitions f_0, \ldots, f_{n-1} such that $f_i \colon X_i \to X_{i+1}$ for $i < n, X_0 = \Theta$ and $X_n = X$. We say \mathscr{E} has the finite amalgamation property if for every finite object C, for every transitions $f \colon C \to A$, $g \colon C \to B$ there are paths $f' \colon A \to D$, $g' \colon B \to D$ with $f' \circ f = g' \circ g$. An evolution system $\mathscr{E} = \langle \mathfrak{V}, \mathscr{T}, \Theta \rangle$ is essentially countable if for every finite object X there is a countable set of transitions $\mathscr{F}(X) \subseteq \mathscr{T}(X)$ such that every transition in $\mathscr{T}(X)$ is isomorphic to a transition in $\mathscr{F}(X)$.

Below are two natural motivating examples of evolution systems.

^{*}Research supported by EXPRO project 20-31529X (Czech Science Foundation).

Example 1. Let \mathscr{F} be a class of finite structures in a fixed first-order language consisting of relations only. It is convenient to assume \mathscr{F} is closed under isomorphisms. Let $\sigma\mathscr{F}$ denote the class of all structures of the form $\bigcup_{n\in\omega}X_n$, where $\{X_n\}_{n\in\omega}$ is a chain in \mathscr{F} . Let \mathfrak{V} be the category of all embeddings between structures in $\sigma\mathscr{F}$. Let \mathscr{T} consist of all embeddings of the form $f\colon X\to Y$, where $Y\setminus f[X]$ is a singleton or the empty set. In other words, transitions are one-point extensions and isomorphisms. Finally, Θ might be the empty structure. Clearly, $\mathscr{E}=\langle\mathfrak{V},\mathscr{T},\Theta\rangle$ is an evolution system.

Example 2. Let \mathscr{F} be a fixed class of finite nonempty relational structures and consider it as a category where the arrows are epimorphisms. Define transitions to be epimorphisms $f: X \to Y$ such that either f is an isomorphism (a bijection) or else there is a unique $y \in Y$ with a nontrivial f-fiber and moreover $f^{-1}(y)$ consists of precisely two points. Define \mathfrak{V} to be the opposite category, so that $f \in \mathfrak{V}$ is an arrow from Y to X if it is an epimorphism from X onto Y. Then $\mathscr{E} = \langle \mathfrak{V}, \mathscr{F}, \Theta \rangle$ is an evolution system, where Θ is a prescribed finite structure in \mathscr{F} .

We say that an evolution \vec{u} has the absorption property if for every $n \in \omega$, for every transition $t: U_n \to Y$ there are m > n and a path $g: Y \to U_m$ such that $g \circ t = u_n^m$.

Theorem 3. Assume \mathcal{E} is an essentially countable evolution system that has the finite amalgamation property. Then there exists a unique, up to isomorphism, evolution with the absorption property.

A system is *terminating* if every evolution is eventually trivial, namely, from some point on all transitions are isomorphisms. The following result is an extension of Newman's Lemma [3]; the proof is based on the idea of Huet [1], using well founded induction.

Theorem 4. A locally confluent regular terminating evolution system is confluent.

Confluent terminating systems provide a good framework for studying finite homogeneous structures.

References

- [1] G. Huet, Confluent reductions: abstract properties and applications to term rewriting systems, J. Assoc. Comput. Mach. 27 (1980) 797–821.
- [2] W. Kubiś, P. Radecka, Abstract evolution systems, arXiv:2109.12600
- [3] M.H.A. Newman, On theories with a combinatorial definition of "equivalence.", Ann. of Math. (2) 43 (1942) 223–243.