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Applicability of singular-value decomposition for reconstructing the strange attractor from one-dimensional chaotic time 

series, proposed by Broomhead and King, is extensively tested and discussed. Previously published doubts about its 

reliability are confirmed: singular-value decomposition, by nature a linear method, can bring distorted and misleading results 

when nonlinear structures are studied. 

1. Introduction 

Interpretation of irregular dynamics of various 
systems as a deterministic chaotic process is in- 
creasingly popular and widely used in almost all 
fields of science [l-4]. It is based on an idea that 
structurally complex systems can perform dynam- 
ics with only a few degrees of freedom reflecting 
a strange attractor in the system phase space. 
Takens’ embedding theorem [51 offers the possi- 
bility of reconstructing n-dimensional dynamics 
from one system observable - measurable one- 
dimensional signal and thus to estimate dynami- 
cal invariants (e.g. dimensions, entropies, 
Lyapunov exponents [l, 6, 71) from experimental 
data. Results of these analyses, giving finite and 
even low dimensions, are presented as evidence 
for deterministic chaotic nature of the examined 
dynamics and obtained values of dynamical in- 
variants are employed for characterization of the 
system under study. 

Algorithms used for estimations of dynamical 
invariants from experimental data [g-11] are ex- 
tremely time-consuming and usually must be re- 
peated many times. Broomhead and Ring [12] 
have proposed to use so-called singular system 
analysis -very efficient and at the first sight 
promising method able to give basic characteriza- 
tion of the studied dynamics and to make further 
analyses simpler and more purposive. Numerical 
experience, however, led several authors [13-E] 
to express some doubts about reliability of singu- 
lar system analysis in the attractor reconstruction. 

In this paper we explain why singular-value 
decomposition, the heart of the singular system 
analysis and by nature a linear method, may 
become misleading technique when used in 
nonlinear dynamics studies. Our considerations 
are illustrated by numerical examples in which 
chaotic data from H&on 116, 11 and Lorenz 
[17, 11 attractors are subjected to singular-value 
decomposition and by simultaneous use [13] of 
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singular-value decomposition and Grassberger- 

Procaccia [9, lo] algorithm for estimation of the 

correlation exponent (dimension). 

In section 2 the basic theory of analysis of 

experimental data based on nonlinear dynamical 

systems and deterministic chaos theory (“nonlin- 

ear analysis”) is surveyed. This is followed by 

description of the singular-value decomposition 

method and its supposed application in nonlinear 

analysis (section 3). Confusing numerical results 

of the latter and their origin- an attempt to in- 

stall linear order in nonlinear world-are then 

presented and discussed in sections 4 and 5. 

2. Dynamical systems with one observable 

Let the system under study be described as the 

ergodic dynamical system: 

in an n-dimensional continuous phase space .i/‘. 

If smooth vector field F(y): .y+,F satisfies 

well-known conditions of the existence and 

uniqueness theorem [18, 191, then (1) defines an 

initial value problem: for any y. E,~Y there is the 

unique solution curve y(t, yo) passing through y,, 

which can be formally written as y(t, yo) = 4,~‘~). 

Here 4, represents one-parameter map family 

4,: .Y + <ip, also called flow of vector field F. 
If the system (1) is known, its dynamics can be 

characterized qualitatively by analysis of topologi- 

cal (or dynamical) invariants of the system phase 

portrait (such as singular trajectories or limit sets). 

In practice, however, the system under study gives 

usually one observable, i.e. the only information 

about the system is noisy one-dimensional signal 

sampled with a finite precision. We have knowl- 

edge neither about system equations nor about 

geometry of its phase portrait. 

Suppose there is a smooth compact m-dimen- 

sional manifold &c.Y such that: 

(i) A’ is invariant in the sense: Vx EA’ and 

vt > 0 =a 4,x =.A@; 

(ii) A’ is attracting in the sense that the evolu- 

tion curves 4,x starting in almost all points out- 

side _& tend to .A for t + x; 

(iii) smooth flow 4, has an attractor within .A%‘; 

and there is smooth function I’: .A+ R’. 

The according to Takens’ theorem [S] it is a 

generic property that the map Q!,,,(y): A+ 

R1”’ + ’ defined by 

@r,,(Y) = (l’(Y).i.(~,o’)),....i.((I?,,,(!’)))’ 

(2) 

is an embedding. 4, denotes d,;- flow of the 

continuous vector field F, T is a so-called time 

delay; for discrete dynamical system 4 on .X 4, 

denotes 4’; the upper index T denotes transposi- 

tion. (Embedding is a smooth map F from the 

manifold A+’ to some metric space “M such that its 

image F(J?‘) c % is a smooth submanifold of 

‘iz/ and that q is a diffeomorphism between A? 

and q(A).) Dimension 2m + 1 is, according to 

Whitney’s theorem [20, 211, a sufhcient embed- 

ding dimension for m-dimensional compact 

smooth manifold. Often some dimension k of IF?‘, 

m I k I 2m + 1, is a sufficient embedding dimen- 

sion, depending on geometric complexity of the 

manifold. 

Using the above embeddings, geometry and 

qualitative dynamical (topological) invariants can 

be estimated from one-dimensional experimental 

data because a diffeomorphism - topological 

equivalence - preserves all the topological invari- 

ants. 

3. Singular-value decomposition 

Let the experimental signal (the observable of 

the system under study) be recorded with sam- 

pling frequency f,. Then time series Y(I ), I = 

1,2,. , N,, is obtained. The map into R” - 

n-dimensional series X,; (superscript i = 1.. . , H 

is the index determining the component of 
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n-dimensional space, subscript J = 1,. . . , N is the 
time index) is constructed according to Takens’ 
time-delay method [51: 

X,=(Y(l),Y(l+d) )...) Y(l+(n-l)d))T, 

. . . 

. . . 

(3) 

where d = rfs, r is the chosen time delay, N + (n 
- 1)d = N,. The obtained it x N matrix X = IX;] 
(reconstructed n-dimensional trajectory) is called 
the trajectory matrix. 

Let k be the smallest sufficient embedding 
dimension for the studied problem, i.e. the at- 
tractive manifold of the system under study can 
be embedded into [Wk but not into Rk- ‘. As we 
have stressed earlier, the dimension of the mani- 
fold is not known a priori, so that k is not known, 
either. In experimental practice - let us consider, 
for concreteness, estimation of the correlation 
exponent (CE) [9, lo] (see also remark at the end 
of this section) - maps (3) for increasing sequence 
of II are constructed and CE is estimated from 
them. For IZ < k CE is underestimated and in- 
creasing with n, for n 2 k CE saturates on the 
correct value. (Let us disregard practical numeri- 
cal problems now.) 

In order to avoid these extensive computations, 
Broomhead and King [12] proposed method for 
determination of k, or, more precisely, for esti- 
mation of the upper bound of sufficient embed- 
ding dimension, or the upper bound of dimension 
of the system under study. (For example, for the 
three-dimensional Lorenz system Broomhead and 
King obtained k I 4 [12].) 

The basic idea of Broomhead and King is that 
the sufficient embedding dimension k is equal to 
the number of linearly independent vectors that 
can be obtained from the columns of trajectory 
matrix X, hence to the rank of X. Instead of 

determining the rank of n x N trajectory matrix 
X it is more convenient to determine the rank of 
the symmetric n x n matrix C = XTX, because 
rank(X) = rank(C) [121. The elements of C are 

cij= ; f x& 
L=l 

(4) 

where l/N is the proper normalization. The rank 
of a matrix can be determined by singular-value 
decomposition (SVD) [22, 12, 13 and references 
therein]: Let U and V be unitary matrices such 
that 

c = UWT, 

where Z = diag(a,, a,, . . . , CT,,), ai are non-nega- 
tive singular values (SVs) of C by convention 
given in descending order: 

u, 2U,L . . . 2u,20. 

If rank(C) = k < n, then 

u, r . . . 2uk>uk,,= . . . =u,=o. (5) 

Conversely, if a, > 0 and a, + , = 0 then rank(C) 
= k. In case of a symmetric matrix C equality 
V = U holds. 

SVD provides a set of n singular vectors of the 
matrix C which conform the orthonormal bases of 
both the range (the singular vectors correspond- 
ing to the non-zero singular values) and the null 
space (the singular vectors corresponding to the 
zero singular values) of matrix C. 

In experimental practice with noised and 
finite-precision data, all singular values are shifted 
and are non-zero. Relation (5) takes the form 

[12, 131 

u, 2 . . . 2Uk>>Uk,,2 .,. >a,>0 (6) 

and the image of the map (3) in R” can be 
decomposed into two orthogonal parts: a deter- 
ministic subspace corresponding to ai for i = 
1 , . . . , k and a subspace dominated by noise cor- 



NORMALIZED d 

-5.51b \ 

0. NORMALIZED INDEX 1. 

Fig. 1. Normalized singular values, plotted against the nor- 

malized index (the jth value is plotted at position j/n on the 

abscissa, n is the embedding dimension), obtained from 4096 

data points of the noised sine signal (a) and 4096 data points 

generated by the H&on map in the chaotic state (b). Embed- 

ding dimensions were 5 (open circles), 15 (crosses) and 25 (full 

circles). 

responding to U, for i = k + 1,. . . , n; with rele- 

vant orthonormal bases of singular vectors 

[12, 131. Values of a,, i = k + l,..., n, in the 

so-called noise floor should reflect the noise level 

in the data [12, 131. Hence one can estimate the 

rank of C as the number k of singular values 

greater than the noise level and sufficient embed- 

ding dimension should be equal to k or k should 

be the upper bound for sufficient embedding di- 

mension. 

Practically, maps (3) are constructed and their 

correlation matrices C decomposed for increasing 

dimension n. When sufficient embedding dimen- 

sion is reached, number of singular values greater 

than the noise level should remain constant and 

all the residual singular values should fall onto 

the noise floor. For illustration the method was 

applied to the noised sine signal and results are 

presented in fig. la. The correct dimension two 

for embedding of a cycle was obtained as ex- 

pected. 

In summary, singular-value decomposition of 

the matrix C = XTX should provide the finite 

upper bound k for sufficient embedding dimen- 

sion and information about noise level, that is 

about a portion of the noise in the studied data. 

Moreover, it should offer the possibility of noise 

reduction: reconstructed n-dimensional trajectory 

(trajectory matrix X) can be transformed into 

basis of singular vectors of C. As this transforma- 

tion is only a rotation it will not change the 

topological properties of the image of map (3). If 

relation (6) holds, elements WY of trajectory in 

the basis of singular vectors for i = k + 1, . . . , n 

could be discarded so that the embedding dimen- 

sion is reduced and noise effects should be sup- 

pressed [ 131. 

Remarks. In almost all papers concerning re- 

construction of embeddings into R” from one- 

dimensional series any map of type (3) is called 

embedding without considering whether its image 

is diffeomorphic to the original attractive mani- 

fold or not. There are no differences considered 

between the attractive manifold and the attractor. 

For simplicity we shall follow this convention as 

well. 

In this paper we use the term “correlation 

exponent” instead of broadly used “correlation 

dimension”. Determination of the correlation di- 

mension, according to its definition [l, 71, re- 

quires a limit transition to “infinitely fine” space 

partition, while the correlation exponent charac- 

terizes the scaling, that is the macroscopic prop- 

erty of the signal probability distribution. What is 

really estimated by the Grassberger-Procaccia 

algorithm [9, 101 or its modification [24] is the 

correlation exponent not the correlation dimen- 

sion. 

4. Numerical results and their discussion 

In our experiments we used chaotic series of 

the x-components generated by the H&on map 

for parameters a = 1.4 and b = 0.3 (eq. (4) in ref. 

[16]) and by numerical integration of the Lorenz 
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Fig. 2. The normalized singular spectra obtained from 4096 data points generated by the x component of the Lorenz system in 

chaotic state with integration step 0.02. Embedding dimensions used were 5 (open circles), 15 (crosses) and 25 (full circles). Time 

delays, used in embedding reconstructions, were 7 = 0.02 (a), 0.04 (b), 0.12 Cc) and 0.4 Cd). 
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0 
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equations for u = 10, r = 28 and b = 8/3 
(eqs. (251, (261, (27) in ref. [17]). The 
Bulirsh-Stoer algorithm [23, p. 5631 for numeri- 
cal solution of systems of ordinary differential 
equations was used. Integration steps in the 
Lorenz model were 0.0025 (results in figs. 3, 6 
and 7b) and 0.02 (other results). Before calculat- 
ing matrix C from matrix X, the series Xj were 
centered and scaled. i.e. instead of series Xj 
series (Xj - ~‘)/a’, where 

were used. The topological structure is not 
changed by this transformation and C is now the 
correlation matrix of the reconstructed trajectory. 

Matrix C was decomposed using the SVDCMP 
routine according to ref. [23, p. 521. Obtained 
singular values were plotted in conventional way: 
on ordinate, there are logarithms of normalized 
SVs: log[a’/TrW, on abscissa, there is a so- 

called normalized index: the first SV is plotted at 
position l/n on abscissa, the second at 2/n,. . . , 

and the nth singular value at position 1. Finally, 
original reconstructed trajectories and those 
transformed into (a part of) basis of singu- 
lar vectors of C were used for estimation of 
the correlation exponent using Grassberger- 
Procaccia algorithm 17, 9, 101, slightly modified 
according to Dvo%k and Klaschka [24]. 

Computations of the presented singular spectra 
were performed with 4096 data points. Numerical 
experiments with data of 12288 points brought no 
significant differences in relevant singular spec- 
tra. Correlation exponents were estimated using 
time series of primary length 12288 points. 

4.1. Upper bound for the embedding dimension 

4.1.1. Numerical results 
In fig. 1 data from two various two-dimensional 

systems are subjected to SVD. Results for noised 
sine signal (fig. la) are as expected: two singular 
values are greater than the noise level indepen- 
dently of the embedding dimension (n = $1525). 
It does not hold for the discrete chaotic H&on 
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Fig. 3. The normalized singular spectra obtained from 4096 data points generated by the x-component of the Lorenz system in 

chaotic state with integration step 0.0025. Embedding dimensions used were 5 (open circles), 15 (crosses) and 25 (full circles). Time 

delays, used in embedding reconstructions. were 7 = 0.02 (a), 0.04 (b), 0.12 Cc) and 0.4 Cd). 

map (fig. lb): no noise floor is detected here; 

from the viewpoint of SVD it is classified either 

as a pure noise or as a deterministic system of 

high dimension and not as the two-dimensional 

system which it is actually. 

Figs. 2 and 3 present results of SVD applica- 

tion to data from the continuous Lorenz system. 

The number of singular values greater than the 

noise level increases with increasing embedding 

dimension, n = 5,15,25, or, more frequently, no 

noise floor is detected. (Influence of time delay 

and integration step - “sampling frequency” - on 

singular spectra, depicted on the above figures, 

will be discussed further.) 

Influences of data precision and of a defined 

amount of noise in the data on the singular 

spectra were studied next. The same data from 

the x-component of the Lorenz system were gen- 

erated with various precisions: 6, 10, 14 and 18 

bits, and 18-bit data were jammed by Gaussian 

noise so that contents of about 10% and 30% of 

noise in the data were obtained. Fig. 4a confirms 

the report of Mees et al. [13] that the higher the 

precision the more singular values are greater 

than noise level (noise floor is sinking with in- 

creasing precision of data). Also an increase of 

the amount of noise brings more singular values 

to fall onto the noise floor-see fig. 5a. It seems 

that the number of singular values over the noise 

floor depends on numerical accuracy, precision of 

the data and amount of noise in the data rather 

than on intrinsic dynamical structure of the sys- 

tem under study. (Influence of time delay r on 

the singular spectra will be discussed further.) 

We should note, however, that each of the “up- 

per bounds” (numbers of singular values above 

the noise floor) obtained is sufficient to embed 

faithfully the attractor. Since experimentalists 

need saturation of the value in question on well- 

defined and possibly the lowest upper bound in 

case the dimension of the studied system is un- 

known, SVD is not too reliable for this purpose. 

4.1.2. Discussion of results 

Let us try to explain the obtained results. Let k 

be the sufficient embedding dimension in previ- 

ously defined sense, e.g. for data from the Lorenz 

system k = 3 (for proper time delay T, see fur- 

ther). Let embedding dimension n be n 2 2k. It 

can possibly occur that there are two subspaces of 
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Fig. 4. The normalized singular spectra computed from 4096 

data points generated by the x component of the Lorenz 

system in chaotic regime with integration step 0.02. In each 

case the embedding dimension was 25. The four different 

spectra were obtained from data of various precisions: 6, 10, 

14 and 18 bits (reading from top to bottom). Time delays, 

used in embedding reconstructions, were r = 0.02 (a) and 0.12 

(b). In case of r = 0.12 (b) the singular spectra are practically 

undistinguishable whatever the data precision is. 

R” containing diffeomorphic images of the origi- 

nal attractive manifold. As a diffeomorphism is a 

relation of equivalence, these two images are 

mutually diffeomorphic, i.e. relations: 

X’=f’(X’,X2 )...) Xk), 

for i=k+ l,...,n (7) 

and their inverses hold. (The superscript denotes 

again the component index, time index or argu- 

ment is not used for simplification of formulas.) 

Diffeomorphic relations f’ need not be linear so 

that in embedding (3) more than k, possibly even 

n, linearly independent components can be found. 

As correlation is measure of a linear dependence 

[14, 22, 251 and correlation (or covariance) matrix 

C reflects the structure of this linear dependence, 

it is clear that the singular-value decomposition 

of C, extracting the number of linearly indepen- 
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Fig. 5. The normalized singular spectra computed from 4096 

data points generated by the x component of the Lorenz 

system in chaotic state with integration step 0.02 and recorded 

with precision 18 bits. In each case the embedding dimension 

was 25. The three different spectra were obtained from data 

jammed by different portions of the Gaussian noise: 30%, 

10% and no noise (reading from top to bottom). Time delays, 

used in embedding reconstructions, were r = 0.02 (a) and 0.12 

(b). In case of T = 0.12 (b) the singular spectra are practically 

undistinguishable whatever the portion of noise in data is. 

dent components in the embedding, cannot dis- 

cover the true dimensionality of the system under 

study. Especially, as a one-dimensional chaotic 

time series has a finite correlation length 7, (its 

autocorrelation function is usually exponentially 

decreasing [l]), any number of linearly indepen- 

dent delayed series can be constructed (up to 

some practical bound given by precision, sam- 

pling frequency etc.) using time delay T > TV. As a 

consequence the SVD procedure gives unbound- 

edly increasing number of singular values greater 

than the noise level or no noise level is obtained 

in singular spectrum at all. 

4.1.3. The role of the “window length” 
In all our experiments with SVD, except of 

those depicted in fig. 6, when we increased em- 

bedding dimension n, we kept constant time delay 
7. Alternatively, Broomhead and King [12] pro- 
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Fig. 6. The normalized singular spectra computed from 4096 

data points generated by the x component of the Lorenz 

system in chaotic state with integration step 0.0025 and 

recorded with precision 20 bits. Embedding dimensions were 

n = 10 (open circles), 20 (crosses) and 40 (full circles). The 

constant “window lengths” 7, = 0.1 (a), 0.2 (b) and 0.3 Cc) 

were used, i.e. time delay T, used in particular embedding 

reconstruction. was 7 = 7*/n. 

posed to keep constant a so-called window length 

7, = nr, i.e. when we increase dimension n, delay 

T must proportionally decrease. According to our 

experience this is exactly the way which can bring 

“false positive” results when SVD is applied: As 

a time series obtained from a continuous chaotic 

system has bounded but usually nonzero correla- 

tion length 0 < 7, +K 03 [l], for given window length 

a limited number of linearly independent delayed 

series can be constructed and any other series 

from the window is correlated with previous ones. 

As a consequence, we can state the following 

conjecture: For any k E N there is a window 

length T,.~ so that keeping constant T~,~ the 

number k of singular values greater than the 

noise level will remain constant for n 2 k. (There 

are again some numerical restrictions.) This phe- 

nomenon is illustrated in fig. 6. Using the same x 

series of the Lorenz system and keeping constant 

window lengths T,,,,~ = 0.1, r,,h = 0.2 and r,, x = 

0.3, constant numbers of “deterministic” singular 

values k = 4 - 5, 6 and 8, respectively, were ob- 

tained. 

There are examples quoted in ref. [12] where a 

proper choice of window length (around the cor- 

relation time of the signal) brings satisfactory 

results. These examples document that the con- 

stant window length-if ever used-should be 

chosen and used with utmost care. 

4.2. SVD and noise control 

4.2.1. Numerical results 

Discovered dependence of the noise level in 

singular spectra on data precision (fig. 4a) and on 

the amount of noise in the data (fig. 5a) led some 

authors [13] to assume that singular-value decom- 

position could be used as an efficient tool for 

detecting the amount of noise in the studied data. 

Comparing parts (a) and (b) of figs. 4 and 5 we 

can see that the detected noise level and even its 

occurrence in a singular spectrum depends on 

time delay T used in an embedding construction 

rather than on precision of the data or on the 

actual amount of noise in the data: Results pre- 

sented in figs. 4b and 5b were obtained by com- 

putations in the same conditions as those in figs. 

4a and 5a, respectively; except of time delay T 

which is T = 0.02 for spectra given in figs. 4a and 

5a and r = 0.12 for spectra in figs. 4b and 5b. The 

singular spectra in figs. 4b and 5b are practically 

the same whatever the precision of data or the 

amount of noise in the data are. 

4.2.2. Discussion of results 

Occurrence of the noise level in the singular 

spectrum of the correlation matrix of an embed- 
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ding means that there are linearly dependent 
components in the embedding, or, in other words, 
that components of the embedding are corre- 
lated. Correlation of two identical but lagged 
series (which is the case in the Takens’ embed- 
ding method) depends on lag T and on the sam- 
pling rate of the signal (on the integration step in 
the generated data). Occurrence of a noise floor 
implies the possibility that a signal is oversampled 
and certainty that the lag T is less than a “proper” 
time delay 7p (see further) and/or the correla- 
tion length T, of the series. (Condition T,, > T, is 
not always necessary because even actual compo- 
nents of the system can be slightly correlated.) 

The theory [5] gives broad possibility for setting 
the value of time delay T in the embedding 
construction. When the embedding dimension is 
sufficient [20, 211 the maps of type (2) and (3) are 
(diffeomorphic) embeddings generically. This 
holds for function u, flow 4 in (2) and lag r in 
(3). In general, an object from some set or space 
of objects is generic if it is the element of the 
intersection of countably many open sets, dense 
in this space. In experimental practice, however, 
the situation is different and map (3) is (diffeo- 
morphic) embedding usually for drastically re- 
duced subset of theoretically accepted values 
of 7. 

Based on numerical experience we could state 
that the time delay 7p is “proper” when the 
image of the map (3) constructed using 7p is 
diffeomorphic with the original geometry of the 
system attractive manifold and the embedding 
dimension is not greater than the smallest suffi- 
cient embedding dimension. Embeddings con- 
structed with T < 7p are wrong or improper in the 
following way: a diffeomorphic image of the sys- 
tem attractor is reached in R” with dimension n 
higher than the embedding dimension, which is 
sufficient for 7p and computations of e.g. correla- 
tion exponent are superfluously complicated. In 
the worst case, whatever the dimension II is, the 
components of map (3) are so strongly correlated 
that estimations of CE are heavily biased down- 
wards or even tend to unity (fig. 7a). On the other 

EMBEDDING DIMENSION 
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Fig. 7. Estimates of correlation exponent from 12288 data 

points of the x components of the Lorenz attractor dynamics 

plotted against the embedding dimension. (a) Dependence of 

the CE estimation on time delay 7, used in the embedding 

reconstruction, for 7 = 0.12 (open circles), 0.04 (full circles) 

and 0.02 (crosses). Data were generated with integration step 

0.02 and recorded with precision 20 bits. (b) Dependence of 

the CE estimation on the integration step 7i of the data 

generation (“sampling frequency”) for -ri = 0.02 (open circles) 

and 0.0025 (full circles). Time delay 7 = 0.12. Horizontal lines 

at positions 1.95 and 2.15 on the ordinate are frontiers of 5% 

error of estimation. 

hand, for T greater than some “greatest proper 
rP” the estimates of CE are overestimated. 

There are several methods for determining the 
proper time delay rP. The most promising, ac- 
cording to our experience, is the method of the 
first minimum of mutual information [26] giving 
for our Lorenz series 7p = 0.12. 

Further study of the dependence of singular 
spectra on lag T is depicted in figs. 2 and 3. Using 
T,, = 0.12 a noise floor disappears (figs. 2c and 3~). 
Comparing the numbers of singular values on the 



noise levels in figs. 2a and 3a an influence of the 

integration step (sampling frequency) on the sin- 

gular spectra can be seen. 

4.3. Test of the embeddings by CE computations 

“Quality” of the above embeddings of the 

Lorenz attractor for various T was studied using 

the Dvoiak-Klaschka version [24] of the 

Grassberger-Procaccia algorithm [9, 101 for esti- 

mation of the correlation exponent (fig. 7). Using 

data with integration step 0.02 and rp = 0.12 

determined by the first minimum of mutual infor- 

mation [26], according to our expectation, embed- 

ding dimension n = 3 was found as sufficient and 

unbiased value CE = 2.03 [ll] (with standard de- 

viation less than 0.1) was obtained. For n > 3 CE 

saturates (with slight random oscillations) on this 

value. Using T = 0.04 CE is underestimated up to 

n = 10-12, when the correct value is reached. 

Delay T = 0.02, which seemed in previous compu- 

tations so promising for the noise control, gives 

so strongly correlated components of the embed- 

ding that the value CE = 1 is estimated whatever 

the dimension n of the embedding is (fig. 7a). 

Using series with integration step 0.0025 and the 

same series length as previously (N,, = 122881, 

even for r,, = 0.12 CE is underestimated, proba- 

bly due to correlations caused by “oversampling” 

of the signal (fig. 7b). 

4.4. SVD and noise reduction 

4.4.1. Numerical experiment 

Before further testing of the SVD applications, 

let us summarize the results of the above discus- 

sion: The aim of the attractor reconstruction from 

a one-dimensional time series is to reconstruct an 

uncorrelated embedding with the lowest possible 

embedding dimension. (Slightly correlated com- 

ponents are acceptable; a more general formula- 

tion could be “to obtain the highest information 

content in the lowest possible number of compo- 

nents”.) Using the method of the first minimum 

of the mutual information [26] and its generaliza- 

tion [27] such embedding can be in principle 

constructed. It seems that using the singular-value 

decomposition loses its sense: with increasing em- 

bedding dimension n we find no upper bound for 

the number of linearly independent components. 

No noise floor need to be detected and a frontier 

between “deterministic” and “noise” components 

in a singular spectrum need not be found. So that 

using SVD as a noise reduction technique by reject- 

ing the “noise” components of the embedding in 

the basis of singular vectors is dubious. But, in 

order to lead the discussion to the whole end, let 

us suppose that one can know the sufficient em- 

bedding dimension and wants to use SVD only 

for the noise reduction. 

Let us estimate CE for the Lorenz data jammed 

with 10% of the Gaussian noise (with time delay 

rp = 0.12). While for the same signal without noise 

starting with n = 3 CE saturates approximately 

on the expected value 2.03-2.08, presence of 

noise causes overestimation of CE: for II = 3 CE 

= 2.77 was obtained. (For n = 4 CE = 3.36, etc.) 

If we insist on strict application of the algorithm 

for CE estimation based on saturation of its val- 

ues with increasing n, addition of noise blurs the 

saturation and CE - strictly speaking - is not de- 

fined. We can estimate, however, the value of CE 

for each II and with the aforementioned signals 

we can test the noise reduction ability of the 

singular-value decomposition. 

Embedding n/k in the following means that 

an n-dimensional embedding was constructed and 

its n X n correlation matrix C was decomposed. 

The reconstructed trajectory was transformed into 

the basis of singular vectors of C ordered accord- 

ing to decreasing singular values. The first k 

components of the transformed trajectory (corre- 

sponding to the k largest singular values of C) 

were used in CE estimations as proposed when 

using SVD as the noise-reduction technique [13]. 

With the noise level in the singular spectrum 

absent (fig. 2c) we tried to make use of the 

previous experience:‘using rp = 0.12 for these data 

the three-dimensional embedding could be suf- 

ficient. Embedding 5/3 gave CE = 2.59, for 7/3 
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CE = 2.61 and for 9/3 CE = 2.43 were obtained. 

Overestimation was attenuated. Was it the effect 

of noise reduction or not? We repeated these 

computations for pure, not-noised data, which 

gave for II = 3 CE = 2.03, n = 4 CE = 2.07, etc., 

as discussed in section 4.3 (fig. 7, T’, = 0.12). Em- 

bedding 5/3 gave CE = 2.07, for 7/3 CE = 1.96 

and for 9/3 CE = 1.77 were obtained. Results 

from the embedding sequence n/3 are depicted 

in fig. 8a. It can be seen that for n > 6 CE for 

embeddings n/3 are underestimated. It seems 

that SVD can reduce dynamical information 

rather than noise. 

4.4.2. Discussion of results 
In order to find a possible explanation of the 

above phenomenon let us recall relations (7) and 

propose the special form of them holds for some 

indexes j~[k+ l,...,n]: 

Xj=f’(X’,X’). 

After SVD the first three components in the 

singular-vector basis related to the three largest 

singular values can be written as: 

w’ =g’(X’, X’), 

w” =gj(X’, X’), (8) 

because singular values are given by the variance 

of the transformed components [22, p. 5011 and 

do not reflect the nonlinear dynamical structure 

of the data. Functions g’, i = 1,2,3, can be non- 

linear and the three components (8) can be lin- 

early independent. But, on the other hand, these 

three components can obtain only some two- 

dimensional projection of the Lorenz attractor. 

(Estimation of CE is 1.8.) It is clear that using all 

the transformed components full embedding 

(contained several times in the original embed- 

ded trajectory) must be obtained. In order to 

l$ . 
5. 10. 15. 

PRIMARY EMBEtIDING DIMENSION 

NLiMBER OF COMPONENTS IN BASIS OF SINGULAR VECTORS 

Fig. 8. Estimates of correlation exponent from 12288 data 

points of the x component of the Lorentz attractor dynamics, 

obtained from: (a) the first three components (related to the 

three largest singular values) of the embedding in the basis of 

singular vectors of the correlation matrix of primary (Takens’ 

time delay) embedding, depicted against relevant primary 

embedding dimension; (b) the first k components (sorted 

according to descending singular values) of the embedding in 

the basis of singular vectors of correlation matrix of the 

primary 1 l-dimensional embedding, depicted against the 

number k of components used in the estimation. Each primary 

embedding was reconstructed from ZO-bit data generated with 

integration step 0.02, time delay r = 0.12. Horizontal lines at 

positions 1.95 and 2.15 on the ordinate are frontiers of 5% 

error of estimation. 

verify this, CE was computed for the sequence of 

embeddings 11/k, k = 1,2,. . . , 11 (fig. Sb). Fig. 

8b illustrates that “full” - diffeomorphic embed- 

ding is reached earlier-for k = 6. 

As we mentioned above, this particular situa- 

tion (no noise floor in the singular spectrum) is 

not the case for noise reduction as described in 

previous papers [13]. But this “enlarged” analysis 

is a good illustration of the “nonlinear phantom” 



haunting people accustomed to the linear world 

only. Even in case of noise floor presence the 

supra-noise (linearly independent) components 

could be created only from one true dynamical 

component which is mapped nonlinearly from 

one linearly independent component to another. 

And other true dynamical components (together 

with their nonlinear “ghosts”) could be sup- 

pressed onto the noise floor due to lower vari- 

ance. 

In order to bring more support for these con- 

siderations, we studied dependence structure of 

components of the embedding of the Lorenz at- 

tractor in the basis of singular vectors obtained by 

SVD of the correlation matrix of primary 1 l- 

dimensional embedding (T,, = 0.12, as above). The 

correlation function and mutual information 

[26, 28, 291 were calculated. The components of 

the singular basis were ordered, as usual, accord- 

ing to descending singular values. 

The mutual information I(n, y) is, in general, a 

measure of the stochastic dependence of two 

random variables X, y. Roughly speaking, it can 

be taken as a generalization of the correlation 

function to nonlinear dependence. (For more de- 

tails see refs. [26, 28, 291.) Mutual information 

(MI) is non-negative, zero is equivalent to inde- 

pendent variables X, y. For a more vivid repre- 

sentation of the results correlation functions in 

fig. 9 are depicted in absolute values. 

Correlation functions (CF) and mutual infor- 

mation (MI) of couples of the series are displayed 

as functions of lag T, 0 I T 5 2.0, albeit values of 

CF and MI for T = 0 are of main interest here. 

Figs. 9a and 9b reflect the dependence of the 

first and the second, and the first and the third 

singular basis components, relevant to the three 

largest singular values of the correlation matrix of 

the original embedding. Correlation functions for 

T = 0 are due to orthogonality of the basis close 

to zero. But it does not hold for mutual informa- 

tion between the components (figs. 9a and 9b), 

which are significantly greater than zero, i.e. the 

components are not independent. The depen- 

Fig. 0. Mutual information (full lines) and absolute VHIUCS ol 

correlation functions (dashed lines) of the first and the second 

(a). of the first and the third (h) and of the first and the yisth 

components of the embedding in the hasis of singular vectora 

(sorted xcording to descending singular values) of the corre- 

lation matrix of the primary I I-dimensional embedding of the 

Lorew attractor, reconstructed hy the samt‘ way as the cap- 

tion in tig. 8 dcscrihes. The *scales of (‘F and MI are identical 

accidentally. 

dence level between the first and the sixth 

components (see fig. 9~) is much lower. This 

corresponds to the above findings that the first six 

components provide again the diffeomorphic em- 

bedding of the attractor (see fig. 8b). (Here WC 

must remark that neither for the ideal embedding 

one can expect fully independent components, 

because even the original components of the sys- 

tem under study are’tied by the particular trajec- 

tory.) 
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5. Concluding discussion 

Reliability of singular-value decomposition in 
reconstructing a strange attractor from a one- 
dimensional chaotic time series was extensively 
tested. SVD, an effective method in discovering 
the linear structures in the data under study, can 
be misleading when nonlinear structures are of 
interest. Hence it can be hardly useful for de- 
termining an upper bound for the embedding 
dimension of the system attractor, or even dimen- 
sionality of the studied nonlinear system. Its role 
in noise control is questionable, too, because the 
so-called noise level and even its occurrence in 
singular spectra .depends on the sampling rate of 
the series and on the time delay used in the 
embedding reconstruction drastically more than 
on the precision of the measurement and the 
actual amount of noise in the data. Components 
of the orthonormal basis given by SVD are lin- 
early independent but can be strongly related in a 
nonlinear sense. As a consequence, the “most 
important” components, related to the largest 
singular values, can contain less dynamical infor- 
mation than the same number of components 
given by simple time delay method. 

Presented criticism of SVD is not meant to 
refuse SVD technique as a whole or even de- 
nounce authors recommending application of 
SVD in nonlinear analysis. Though we in princi- 
ple agree with the majority of statements in ref. 
[131, we have no intention to evoke a discussion 
of the type “you criticize claims we never made” 
like in ref. [30, 311. But the results presented in 
our detailed analysis are warning to experimen- 
talists, trying to find dynamical structures or even 
to detect strange attractor in their data, to be 
precautious in SVD applications and especially in 
interpreting the results it yields. 

While application of SVD in reconstructing an 
attractor from a one-dimensional time series by 
the time-delay method is questionable, it may be 
of great importance when multi-dimensional time 
series are registered [32]. Neither in this case 

must we forget that nonlinearities in the data can 
distort the results. 

Nonlinear relations in dynamical data are usu- 
ally equivalent to the curvature of the relevant 
attractive manifold. However, a manifold with 
nonzero curvature is locally flat. This fact was the 
inspiration for applying SVD locally, i.e. on a 
subset of trajectory confined to a neighborhood 
of selected points 133, 341. At the first sight this 
approach, in general not a new one (using local 
decomposition for estimating intrinsic dimension- 
ality of data was proposed by Fukunaga and 
Olsen [35] twenty years ago for general data 
without any concept of dynamical systems), seems 
to be promising even for determining the actual 
dimension of the attractive manifold. But, analyz- 
ing experimental data, many questions appear, 
like “is the local subset local enough?“, or “what 
is the noise effect in local case?“, etc. Therefore 
several authors try to use local SVD together 
with some statistical or informational criteria for 
estimating the number of deterministic compo- 
nents in the singular spectra [36, 371. 

SVD is surely an established method of signal 
analysis, but it should be applied with caution. 
Also results it provides must be interpreted with 
care. Improper use of singular-value decomposi- 
tion (like that of Grassberger-Procaccia or any 
other algorithm) can bring misleading results in- 
terpreted like a (false) discovery of a strange 
attractor in any data. We are afraid that at least a 
part of recently published papers, alleging detec- 
tion of chaos, are based on misinterpreted re- 
sults, which cause “inflation” of the scientific 
value of this approach and jeopardize the pres- 
tige of deterministic chaos theory for experimen- 
tal data analysis. 
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