
an indication of synchronization as well
as of causal relationships if present in
scrutinized SySteffiS. The introduced ap-
proach is applied in case studies of EEG
recordings of epileptic patients. Two lev-
els of synchronization leading to seizures
are detected and "directions of informa-
tion flow" (drive-response relationships)
are identified.

Coarse-Grained Information Rates
Consider discrete random variables X

and Y with sets of values 3 and Y , respec-
tively, and probability distribution func-
tions (PDFs) p(x), p(y) and joint PDF
p(x,y). The entropy H(X) of a single
variable, say X, is defmed as

H(X) = -LP(x)logp(x),
xEE (1)

and thejointentropy H(X ,Y) ofX and Yis
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s ynchronizatiOn on various levels of or-

ganization of brain tissue, from pairs of

individual neurons to much larger scales

(within one area of the brain or between

different parts of the brain) is one of the
most important topics in neurophysiology .
Some level of synchrony is usually nec-
essary in order to attain normal neural
activity , while too much synchrony may
be a pathological phenomenon such as

epilepsy. Detection of synchrony, or
transient changes leading to a high level

of synchronization, and identification of
causal relations between driving (syn-
chronizing) and response (synchro-
nized) components is a great challenge,
since it can help in anticipating epileptic
seizures and in localization of
epileptogenic foci. Standard linear sta-
tistical methods have brought only a lit-
tle success in this area.

Recently , there has been considerable
interest in the study of cooperative behav-
ior of coupled chaotic systems [1].
Methods developed in the field of nonlin-
ear dynamics and chaos have been suc-
cessfully applied in studies of

cardiorespiratory synchronization [2, 3]
and synchronization of neural signals
[4-7]. The problem of quantitative de-
scription of synchronization phenoma,
however, is still far from being solved,
and some claims of successful detection
of causal relationships are based on con-
tradictory assumptions [4, 5]. Also, mea-
sures of synchronization, based on
infmitezimal properties and performing
well on artificial systems, can fail when
applied to noisy experimental data.

In this article we introduce nonlinear,
statistical, coarse-grained measures based
on information theorv that could orovide

H(X,Y) = -r. r.p(x,y)logp(x,y).

H(XIY) = -r. r.p(x,y)logp(xly).
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xeEyeY (2)

The conditional entropy H(XIY) of X

given Y is

xEEyEY (3)

The average amount of common informa-
tion containeï in the variables X and Y is
quantified by the mutual information
I(X;Y), defmed as

I(X;Y) = H(X) +H(Y)-H(X,Y). (4)

The conditional mutual information
I(X;YIZ) of the variables X, Y given the
variable Z is given as

I(X;YIZ) =H(XIZ)+H(YIZ)

-H(X ,YIZ). (5)



•?: 'tmax:l(x;x't') = O for all datasets.

Then, we detine the norm of the mutual
information

(8)

with Tmin = AT = 1 sample as a usual

choice. The CER h1 is then defmed as

h1 = l(x,x~o)-III(x;x~)II. (9)

It has been shown that the CER h l pro-

vides the same classification of states of
chaotic systems as the exact KSE [l2].
Since usually To = O and l(x;x) = H(X),

which is given by the marginal probability
distribution p(x), the sole quantitative
descriptor of the underlying dynamics is
the mutual information norm [Eq. (8)],
which we will call the coarse-grained in-
formation rate (CIR) of the process {X (t) }
and denote by i(X).

Now, consider two time series {x(t)}
and {y(t) } regarded as realizations of two
processes {X (t) } and {Y(t) }, which repre-
sent two possibly linked (sub)systems.
These two systems can be characterized
by their respective CIRs i(X) and i(Y).

In order to characterize an interaction
of the two systems, in analogy with the
above CIR we define their mutual
coarse-grained information rate (MCIR)

1 ~max;~"o
-r.l (x;y~).
2T -max ~--~---

For another approach to a directional
information rate Iet us consider the mutual
information I(y;x~) measuring the aver-
age amount of information contained in
the process {Y} about the process {X} in
its future 't tirne units ahead ('t-future
thereafter). This measure, however , could
also contain information about the 't-fu-
ture of the process {X} contained in this
processitself iftheprocesses {X} and {Y}
are not independent; i.e., if I(x;y) > O.ln
order to obtain the "ne•' information
about the 't-future ofthe process {X} con-
tained in the process {Y}, we need the
conditional mutual information 1 (y; x ~ Ix).
The latter measure can also be understood
as an information-theoretic formulation
of the Granger causality concept [13].
Also, recently Schreiber [14] proposed a
"transfer entropy" that is in special cases
equivalent to I(y;x ~Ix).

Next, we sum I(y;x~lx) over 't as
above

For Z independent of X and Y we have

I(X;YIZ) = I(X;Y). (6)

Now, Iet {X;} be a stochastic process;
i.e., an indexed sequence of random vari-
ables. Its entropy rate [8J

h = lim!H(Xt'...'Xn),
n-+oo n (7)

whereH( Xt ,...,Xn)is thejointentropyof
the n variables X1,...,Xn with the joint
PDF p(Xt,...xn)' is a measure of "infor-
mation creation" by the process {X ;}, or a
rate of how quickly the process "forgets"
its history .The entropy rate, in the case of
dynarnical systems called Kolmogorov-
Sinai entropy (KSE) [9-11], is a suitable
tool for quantification of dynamics of sys-
tems or processes; however , possibilities
of its estimation from experimental data
are lirnited to a few exceptional cases [8,
11, 12]. Instead, Paluš [12] has proposed
to compute "coarse-grained entropy
rates" (CERs) as relative measures of"in-
formation creation" and of regularity and
predictability of studied processes.

Let {x(t) } be a time series considered as
a realization of a stationary and ergodic
stochastic process {X (t) }, t = 1,2,3,..- In
the following we will mark x(t) as x and
x(t + 't) as x't. For defining the simplest
form of CER we compute the mutual in-
formation I(x;x't) for all analyzed
datasets and find such 'tmax that for

;(X .y) -

-.
(l4)

Using a simple manipulation we find that
i2(X,YIX) is equal to i(XIY), defined in
Eq. (l2). By using two different methods
we have arrived at the same measure,
which we will denote by i(XIY) and call
the coarse-grained transinformation rate
(CTIR) of {X} given {Y}. It is the aver-
age rate of the net amount of information
"transferred" from the process { Y} to
process {X}, or, in otherwords, the aver-
age rate of the net information fiow by
which the process { Y} infiuences the pro-
cess {X}.

Numerical properties of the above-in-
troduced coarse-grained information rates
and their abilities to detect synchroniza-
tion have been tested in an extensive study
[20] using artificial data generated by nu-
merical solutions of unidirectionally cou-
pled chaotic systems. Typically , a system
{X} was an autonomous, independently
evolving system that drove another sys-
tem { Y} .The two systems were studied
for a number of different values of cou-
pling strength, from independency (no
coupling) through weak coupling to fully
synchronized states. In the case of identi-
cal systems, the state of identical synchro-
nization is characterized by

{11)

considering the usual I;hoice
tmin = At = 1 sample. Recalling Eq. (6)
we have ío(XIY) = í(X) for { X} independ-

ent of {Y}; i.e., when the two systems are
uncoupled. Since we prefer a measure that
vanishes for uncoupled systems (though
then it can acquire bothT'l\~;tivp "nt1 npf!"
t;vp v"h.p~), we ,lphnp

í(XIY) = ío(XIY) -í(X). (12)
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,\ ) u.~ (10)

Due to the symmetry properties of l(x;y 't)
the MCIR i(X ,Y) is symmetric; i.e.,
i(X ,Y) = i(Y ,X).

Assessing the direction of coupling be-
tween the two systems, we ask how is the
dynamics of one of the processes, say
{X}, influenced by the otherprocess, {Y}.
For a quantitative answer to this question
we propose to evaluate the conditional
CIRio(XIY) of {X} given {Y}:

1 'tmax
ío(XIY) = -EI(x;x'tly),

'tmax 't=1 .

.'~~.~ .~ ~.~ ..~'"'--
\...~ ~~ ~~.."v



i(X ,Y) = i(X) = i(Y). (15)

The CflRs start at zero for uncoupled
systems, then, with increasing coupling
strength the CTIR i(YIX) increases into
distinctly positive values while the CTIR
i(XIY) remains zero, which indicates that
the system {X} drives the system {Y},
while {X} evolves independently of {Y}.
This distinction, however , ends shortly
before the synchronization threshold,
when both the CTIRs start to fall and
reach the identical synchronization state
with

min(i(X),i(Y))i(X ,Y) ~ max(i(X),i(Y)).

(16)

The CTlRs indicate the correct causal
relations of {X} being the drive of {Y} by
their relation

i(XIY) < i(YIX) (17)

again only before the synchronization
threshold. The above explanation of the
impossibility to infer a causal relation
from an identical time series in the state of
identical synchronization can be general-
ized into time series related by a nonlinear
function as is the case of the generalized

synchronization.i(XIY) = i(YIX) = -i(X)

= -i(Y) = -i(X ,Y).

Summory of the

Mothemoticol Methods
The above-introduced cIRs [Eq. (8)]

are measures of regularity and predict-
ability of individual signals and underly-
ing (sub)systems. They are inversely
proportional to the coarse-grained en-
tropy rates [12], which are measures of
"chaoticity" or "complexity" and provide
the same classification of states of chaotic
systems as Lyapunov exponents and
Kolmogorov-Sinai entropy o However , the
CERs (or CIRs) can be estimated with
lower computational cost and are more ro-
bust against noise than estimates of
Lyapunov exponents or exact entropies
[12]0 The mutual CIR [Eqo (10)], based on
the mutual information [Eqo (4)], is a sym-
metric measure of mutual dependence of
two time series, and thus it ref1ects the
level of coupling of two ( sub )systems and

With emerging synchronization weloose
the possibility to establish the "direction
of information flow :' or the causal rela-
tionship between the systems {X} and
{ Y} .It is understandable: in the identical
synchronization the series {x(t) } and {y(t) }
are identical and there is no possibility to
establish the causal relationship between
{X} and {Y} just from the data.

In the cases of generalized synchroni-
zation [1, 4, 15] oftwo nonidentical sys-
tems, the situation is more complex.
Since the CIRs, similar to their inspira-
tion CERs [12], ~re not dynamical
invariants, in the case of generalized syn-
chronization we cannot expect the equal-
ity [Eq. (15)]; h~wever, the generalized
synchronization is accompanied with
i(X ,Y) rising into values

can indicate synchronization (identical by
the equality [ Eq. (15) ] and generalized by
the relation [Eq. (16)]). The mutual infor-
mation [Eq. (4)] is a measure of general
dependence between two variables: it is
equal to zero for independent variables
and positive otherwise. The CTIRs are
based on the conditional mutual informa-
tion, which quantifies influence of one
system, say {X}, on a future of another

Patient I II 1II

I Age 30 months 141 years 21 years

Sex male male male

PCS with auraPCS PCS with auraType of Seizures

Age When Seizures Started childhood8 months 1 O years

Frequency of Seizures 3-4 per day 1 O per month 4 per month

Interictal EEG sharp and sharp-siQw waves

Qver right hemisphere

discharges in Ieft FT electrodes spikes and sharp waves in Ieft

FT electrodes

Ieptomeningeal angiomatosis of
Ieft TO region

i1eft-sided MTS Ieft-sided MTSMRI Scans

normal hypoperfusion in Ieft FT regionSPECT

PET -FDG decreased accumulation in Ieft

TO region

glucose hypometabolism in Ieft
medial T region

decreased metabolism in Iefl
Tlobe
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system {f}, eliminating the influence of
the history of {f} on its own future.
Therefore, the CTlRs are able to identify
the causal relations of drive and response

(sub)systems (relation 17). This is, how-
ever , possible to establish only in states in
which the (sub)systems are coupled but
not yet fully synchronized [20].
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Materials and Methods
About 20-30% of patients with epi-

lepsy are pharrnacoresistant. Some of
these patients are candidates for surgical
resection of epileptogenic focus. The ob-
jective of presurgical evaluation is to
identify the area of the brain responsible
for generating seizures. In most cases,
presurgical evaluation involves interictal
EEG; long-terrn video EEG monitoring
with noninvasive scalp, semi-invasive
sphenoidal, and in few patients invasive
(subdural or depth) electrodes; neuro-
psychological testing; neuroimaging (usu-
ally magnetic resonance imaging (MRI)
scans); single-photon-emission computed
tomography (SPECT); positron-emission
tomography (PET); and magnetic reso-
nance spectroscopy (MRS). In this article
we present analyses of EEG recordings of
three patients with medically refractory
partial complex seizures. Their clinical,
neuroimaging, and EEG data are listed in
Table 1.

The video-EEG recordings were per-
forrned on a 32-channel Schwarzer system.
Signals were sampled at 256 Hz using an
analog-to-digital converter with 16-b reso-
lution. Patient I is a 30-month-old boy suf-
fering from epileptic seizures since the age
of 8 months. The Sturge- W eber syndrome
has been diagnosed because of congenital
periorbital hemangioma and leptomen-
ingeal hemangiomas in the left tem-
porooccipital area revealed by the MR1
scan. His first EEG showed spiking in the
left temporooccipital area. In the beginning
he had partial complex seizures, while later
myoclonicastatic seizures appeared. Re-
cently , two long-terrn video/EEG monitor-
ing sessions were peïorrned. The first
session showedictal onset in the left tem-
poral lobe. The second monitoring, by
scalp electrodes 1.5 years later, revealed
mostly generalized spiking with a slight
excess in the right temporooccipitallobe.
Interictal PET showed glucose hypo-
metabolism in the left temporooccipital
lobe. A part of the most recent EEG record-
ings underwent synchronization analysis
using the above CIRs, MCIR, and CTlRs.
They were estimated from a 1024-sample
moving window (moving step 128 sam-
ples, sampling frequency 256 Hz), using
four marginal equiquantal bins and
't .= L\'t = 1 and 't = 50 samples Sig -

mm max .

nals from reference and longitudinal (bipo-
lar) montages were analyzed. The latter
brought more clear results in establishing
"directions of inforrnation flow"; i.e., the
drive-response relations using CTIR.

0
0 10 20 30 40

Time[s]

1. An EEG segment with a short seizure, recorded from leads (a) T6O2 and (b) F4C4.
(c) The CIRs i(T60J (dashed line), i(F4CJ (dash-and-dotted line), and the mutual
CIR i(T6O2'F4C4) (fullline). (d) The coarse-grained transinformation rates
i(T6O2IF4C4) (dashed line) and i(F 4C41T60J (fullline) (Patient 1).

Time[sl

2. The same as in Fi~. 1 but for an interictal EEG se~ment of the same patient.
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Patients II and III are adult (41 and 21
years old) men suffering from partial
complex seizures due to medial temporal
Iobe epilepsy associated with left-sided
mesiotemporal sclerosis revealed by the
MRI scan. Hypopeïusion in the left
frontotemporal region was found by
SPECT and decreased metabolism in the
left temporal Iobe by PET -FDG in the
case of patient 111, while patient II had
normal SPECT results and glucose hypo-
metabolism in the left medial temporal
region found byPET -FDG. In addition to
standard scalp electrodes, the EEG sig-
nals of patients II and III were also re-
corded from sphenoidal electrodes (Spl'
Sp2). Therefore, we have analyzed only
the data from the reference montage, us-
ing a window length of 4096 samples, a
window step of 1024 samples, and eight
marginal equiquantal bins. Other pro-
cessing parameters were the same as in
the case of patient I.

CIRs i(T6O2) and i(F4C4) fluctuate on the
same level; however , the dependence of
the signals measured byi(T6O2'F4C4) is
low [Fig. 2(c)]. The drive-response rela-
tion cannot be unambiguously defined,
since the CTIRs i(T 6021F 4C4) and
i(F 4C41T 602) are either approximately the
same or mutually exchange their domi-
nance [Fig. 2(d)].

An evaluation of these results suggests
that transients to seizures are character-
ized by an increasing level of synchroni-
zation (both local, i.e., among neurons of a
particular brain area which causes the in-
creased regularity of the registered EEG
signals measured by the individual CIRs,
and between different brain areas, which
is reflected in increased mutual MCIR),
and an asymmetry in information flow
emerges or is amplified. Considering the
latter, we have found in the (pre)ictal seg-
ment that the signal T 602 drove all signals
from the right hemisphere. Symmet-
rically , the same has been found about the
signal T5OI; however, there was no dis-
tinction of causality between T 501 and
T5T3. Infact, the latter drove all the sig-
nals asT 501 did. On the other hand, there
was no distinction of the information flow
direction (although there is a nonzero de-
pendence indicated by MCIR) between

laterally symmetrical leads such as

C3P 3-C4P 4. with the one exception-- T 501
has been found to drive T 602. This analy-
sis suggests that the primary epilepto-

a:
u
~
a:
u
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Time[s]

-
300

-
400 0 100 200
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Results
Patient I

From a segment with a short seizure,
signals from Ieads T6O2 [Fig. l(a)] and
F4C4 [Fig. l(b)] are illustrated here. Be-
fore the seizure both i(T 602) and i(F 4C4)
present occasional increases; however,
they develop independently and the mu-
tual CIR i(T6O2'F4C4) keeps low values
[Fig. l(c)]. At the edge of the seizure
(time: 32 s) CIRs and MCIR rise sharply,
reflecting an increase of both local syn-
chrony (CIR) and synchronization be-
tween different areas of the brain (MCIR).
The increased synchrony revealed by the
increased information rates could also be
indicated by decreased entropy rates or
decreased "dimensional complexity"
measures; e.g., by the correlation dimen-
sion. The Iatter and related dimensional
and entropy measures (correlation
integrals) have recently been used for an-
ticipation of approaching seizures
[ 18-19] .For evaluating predictive proper-
ties of CIRs, we do not have enough data
yet, thus we proceed to the cnR to find
that in the presented segment
i(F4C4IT6O2) > i(T6O2IF4C4); i.e., the in-
formation flow from T6O2 to F4C4 domi-
nates over the opposite flow , or the
subsystem (brain area) represented by the
signal from the Iead T 602 ( signal T 602 for
short) drives that from F4C4.

For comparison we present the same
analysis of the signals from the same Ieads
but from a segment in an interictal (i.e., far
from seizures) recording (Fig. 2). Both

3. A segment of an ictal (with a seizure) EEG recording of patient III, recorded from
(a) the Ieads F7 and (b) SPl. (c) The CIRs i(FJ (dashed line), i(SpJ (dash-and-dotted
line), and the mutual CIR i(F7'SpJ (fullline). (d) The coarse-grained
transinformation rates i(F7ISpJ (dashed line) and i(SPliFJ (fullline). (e)-(h) The
same as in (a)-(d), but for the signals from the Iaterally symmetricalleads Fs, SP2.
(The Ieads F7, SPl belong to the Ieft hemisphere, Fs, SP2 to the right hemisphere.)
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genic area is the left temporal and
occipital region, which drives the rest of
the left hemisphere and also the right tem-
poral and occipital areas, which second-
arily drive the rest ofthe right hemisphere.
This is in accordance with the MRI and
PF.T ~~an TP.~lI1t~

nals from the left central area. No direc-
tions of the information flow can be estab-
lished in the right hemisphere.

These phenomena in the results of pa-
tient III are illustrated in Fig. 3, where the
signals from leadsF7 [Fig. 3(a)], SPl [Fig.
3(b)], Fs [Fig. 3(e)], and Sp2 [Fig. 3(f)] are
displayed together with their synchroni-
zation analysis in a 7-min recording seg-
ment containing a seizure. The local
synchrony measured by the CIR i(.) in-
creases at the edge and during the seizure
in all cases, as well as the interarea syn-
chrony measured by the MCIR i(.,.). The
latter, however, is greater on the left (fo-
cus) side than on the right side; i.e.,
i(F7,SPl) > i(Fs,Sp2) in its peaks. Note that
during a part of the developed seizure the
condition [Eq. (16)] for the generalized
synchronization is fulfilled on the left side
when i(F7) < i(F7'SpJ < i(SpJ, while the
ictal increase of i(Fs,Sp2) is considerably
lower than that of i(FSI) and i(Sp?) [Fig.

Patients II and III
In general, the temporal evolution of

the synchronization phenomena Ieading
to seizures is similar to the previous case;
however, "information flows" in the case
of these patients are much Iess pro-
nounced than in the previous one. In par-
ticular, the drive-response relationships
cannot be determined for most pairs of the
analyzed signals. Only the signals re-
corded in areas close to the epileptic fQCus
are the exemption; e.g., in the case of pa-
tient III the signal from the Ieft sphenoidal
electrode SPl drives the signals from the
Ieft frontal area, which then drive the si.e:-

3(c) and (g)]. Also, the emergence of
preictal asymmetry in the information
t1ow can be observed only on the left side
when the TCIR i(F7ISpJ became greater
than i(SPliF7) in a time of approximately
160 s from the segment beginning [Fig.
3(d)], while no such asymmetry can be
observed on the right side; i.e., between
i(F8ISP2) and i(Sp2IF8) [Fig. 3(h)].

Further pairwise analyses of the signal
from the same leads and segment are pre-
sented in Fig. 4. The ictal increase of the
mutual CIR i(F7,Sp2) [Fig. 4(a)] is consid-
erably lower than that of i(F7'SpJ and
there is no clear asymmetry in the infor-
mation t1ow between F7 and SP2 [Fig.
4(b)]. On the otherhand, the ictal increase
of i(F8'SpJ is higher; however, i(F8'SpJ
is still lower than both i(F8) and i(SpJ;
i.e., thecondition [Eq. (16)] is notfulfilled
[Fig. 4(e)]. There is also a slight increase
of information t1ow asymmetry ret1ecting
the active role ofthe signal from SPl [Fig.
4(f)]. The ictal increase of the MCIR be-
tween the laterally symmetricalleads F7
and F8 [Fig. 4(c)] and SPl and SP2 [Fig.
4(g)] is again clearly visible, although
lower than that between F7 and SPl [Fig.
3(c) }. There is no clear distinction of the
direction of the information t1ow between
F7 and F8 [Fig. 4(d)], while a slightexcess
in the direction from SPl to SP2 can be
seen [Fig. 4(h), from 220 s].

For patient II similar phenomena have
beenobserved, namely the lateral asym-
metry in the level of synchronization
when the ictal increase of both the local
and interarea synchronization is very high
in the left frontal, temporal, and central ar-
eas, while considerably lower on the right
side [Fig. 5(c) and (g)]. The focus seems
to be located closely to the left central
area, since the signal from C3 drives that
from F7 [Fig. 5(d)] andalso thatfrom SPl.
No driving (asymmetry in the information
t1ow) can be detected on the right side
[Fi~. 5(h)].

Conclusion
The above-introduced inforrnation-

theoretic approach suitable for studying
synchronization phenomena in experi-
mental time series has been applied in
analysis of EEG recordings of epileptic
patients. Transient phenomena leading to
seizures have been characterized by in-
creased synchronization (local and be-
tween areas) and asymmetry in inforrna-
tion flow (the area of the epileptogenic
focus drives and synchronizes adjacent
areas). Althou~h the results should be re-
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garded as preliminary , they suggest that
the method has a promising potential for
localization of epileptic foci and anticipa-
tion of approaching seizures.
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5. A segment of an ictal (with a seizure) EEG recording of patient II, recorded from
(a) the Ieads F7 and (b) CJ. (c) The CIRs i(FJ (dashed Iine), i(CJ) (dash-and-dotted
Iine), and the mutual CIR i(F7' CJ) (fullline). (d) The coarse-grained
transinformation rates i(F71 CJ) (dashed Iine) and i(CJIFJ (fullline). (e)-(h) The same
as in (a)-(d) but for the signals from the Iaterally symmetricalleads F8, C4. (The
Ieads F7, CJ belong to the Ieft hemisphere, F8, C4 to the right hemisphere.)
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