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A method for random resampling of time series from multiscale processes is proposed. Boot-
strapped series – realizations of surrogate data obtained from random cascades on wavelet dyadic
trees preserve multifractal properties of input data, namely interactions among scales and nonlinear
dependence structures. The proposed approach opens the possibility for rigorous Monte-Carlo test-
ing of nonlinear dependence within, with, between or among time series from multifractal processes.
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Estimation of any quantity from experimental data,
with the aim to characterize an underlying process or
its change, is incomplete without assessing confidence
of the obtained values or significance of their difference
from natural variability. With increasing performance
and availability of powerful computers, Efron [1] pro-
posed to replace (not always possible) analytical deriva-
tions based on (not always realistic) narrow assumptions
by computational estimation of empirical distributions
of quantities under interest using so-called Monte-Carlo
randomization procedures. In statistics, the term “boot-
strap” [2] is coined for random resampling of experimen-
tal data, usually with the aim to estimate confidence in-
tervals (“error bars”). Theoretically different, but some-
times technically similar applications of the resampling
approaches have been developed in the field of hypothe-
sis testing. The latter has entered physics and nonlinear
dynamics with the question of detection of chaotic dy-
namics in experimental data [3]. With the aim to prove
that nonlinearity (and possibly, chaos) is present in ana-
lyzed data, “surrogate data” are constructed which pre-
serve “linear properties” of the analyzed data but oth-
erwise are realizations of a random process. The stan-
dard approach [3] uses the fast Fourier transform (FFT).
Randomization of the phases of the complex Fourier co-
efficients and the inverse FFT provides realizations of a
Gaussian process reproducing the sample spectrum and
autocorrelation function of the analyzed data. Common
preservation of spectra and amplitude distributions are
solved by appropriate amplitude transformation and it-
erative procedures [3]. Breakspear et al. [4] have intro-
duced surrogate data based on the wavelet transform [5].
The randomization is performed by one of the follow-
ing three ways of manipulating the wavelet coefficients
within each scale: (i) random permutation; (ii) cyclic ro-
tation with a random offset; and (iii) block resampling,
i.e., random permutation of blocks of the wavelet coef-
ficients. Keylock [6] combines both the techniques in
the sense that the wavelet coefficients within each scale
undergo the iterative amplitude-adjusted FFT random-
ization combined with cyclic rotation in order to align
extrema in coefficient values.

Generally, all these approaches reproduce the “linear
properties” (the first and the second moments) of ana-
lyzed data in combinations with some constraints. Pos-
sible nonlinear dependence between a signal s(t) and its
history s(t−η) is destroyed, as well as interactions among
various scales in a potentially hierarchical, multiscale
process. Multiscale processes that exhibit hierarchical
information flow or energy transfer from large to small
scales, successfully described by using the multifractal
concepts (see [7] and references therein) have been ob-
served in diverse fields from turbulence to finance [8],
through cardiovascular physiology [9] or hydrology, me-
teorology and climatology [10]. Angelini et al. [11] ex-
press the need for resampling techniques in evaluating
data from atmospheric turbulence and other hierarchical
processes. They apply a sophisticated block resampling
of the wavelet coefficients, however, multifractal proper-
ties of the tested data are only partially reproduced in
the resampled data [11]. The “twin” surrogates [12] re-
produce nonlinear dependence in trajectories, using the
recurrence properties of dynamical systems evolving on
or near attracting sets, however, they are not suitable
for randomization of multiscale processes violating the
recurrence condition.

In this letter we propose a method for random resam-
pling of time series from multifractal processes in the
sense that the resampled data replicate the multifrac-
tal properties of the original (input) data. The method
reproduces the interactions among scales, so that multi-
fractal spectra as well as nonlinear dependence structures
are preserved. The proposed construction of such, let us
call them multifractal surrogate data, is based on the idea
of synthesis of multifractal signals using an orthonormal
wavelet basis proposed by Arneodo et al. [7].

Let us consider a set {ψj,k} of periodic wavelets that
form an orthonormal basis of L2([0, L]). Thus any func-
tion f ∈ L2([0, L]) can be written as

f(x) =
+∞∑

j=0

2j−1∑

k=0

cj,kψj,k(x), (1)

where cj,k = 〈ψj,k|f〉 =
∫

L
ψj,k(x)f(x)dx, ψj,k =



2

2j/2ψ(2−jx − k). To construct a self-similar process
whose properties are defined multiplicatively from coarse
to fine scales, Arneodo et al. [7] propose to define a cas-
cade using the dyadic tree structure of coefficients of a
discrete wavelet transform (DWT thereafter) in the fol-
lowing way

c0,0 = 1,

cj,2k = W
(l)
j−1,kcj−1,k, (2)

cj,2k+1 = W
(r)
j−1,kcj−1,k,

for all j and k, j ≥ 1, 0 ≤ k < 2j−1 and where W
(s)
j,k

(s = l or s = r) are independent identically distributed
real valued random variables. Applying an inverse DWT
to the coefficients (2) we obtain a realization of a multi-
fractal process [7].

Now, let us consider that a measurement of an ex-
perimental signal, a time series {s(t)}, t = 1, . . . , N ;
N = 2n, underwent a DWT [13] which yielded the set
of the wavelet coefficients {cj,k}, 0 ≤ j ≤ n− 1; k = 1, 2
for j = 0, and 1 ≤ k ≤ 2j for j ≥ 1. To obtain a ran-
domization {s(%)(t)} of the original series {s(t)}, let us
compute, for each scale j ≥ 2, the multiplicators Mj,k as

Mj,2k = cj,2k/cj−1,k, (3)
Mj,2k+1 = cj,2k+1/cj−1,k.

Then, keeping unchanged c0,1, c0,2, c1,1 and c1,2, the co-
efficients of all finer scales are recursively constructed ac-
cording to the cascade

c̃j,2k = µj,2k c̃j−1,k, (4)
c̃j,2k+1 = µj,2k+1c̃j−1,k,

where the multiplicators µj,k for each scale j ≥ 2 are ob-
tained as a random permutation of the 2j original mul-
tiplicators Mj,k. Finally, for each scale j ≥ 2, a new
set of coefficients {ĉj,k} is obtained by rearranging the
sorted original {cj,k} according to the ordering of {c̃j,k}.
This transformation is known as the amplitude adjust-
ment procedure in the surrogate data methodology [3]
and is defined as a one-to-one correspondence between
the elements of the sorted series of {cj,k} and {c̃j,k}. As
a result, for each scale j ≥ 2, we obtain a random permu-
tation of the original {cj,k}, however, the permutations
on different scales are not independent. The new coef-
ficients preserve the statistical relationships among the
scales due to the recurrent cascade from coarse to finer
scales. Using the inverse DWT we obtain a realization
{s(%)(t)} of the multifractal surrogate data. Repeating
the randomization procedure we can generate a number
of the surrogate data realizations {s(%)(t)}, % = 1, . . . .

Using |W (s)
j,k | with a log-normal distribution and DWT

with the DAUB12 basis [13] we generate a set of real-
izations of a multifractal process for which we can ex-
press its scaling function τ(q) as well as its multifractal
spectrum D(α) as analytic formulae [7]. In a numerical

-10 -5 0 5 10

-6

-4

-2

0

(b)

-10 -5 0 5 10

-6

-4

-2

0

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ
ⓕⓕ
ⓕⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ

-10 -5 0 5 10

-6

-4

-2

0

-10 -5 0 5 10

-6

-4

-2

0

(a)

S
C

A
LI

N
G

 E
X

P
O

N
E

N
T

 τ
(q

)

-10 -5 0 5 10

-6

-4

-2

0

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ
ⓕ
ⓕⓕ
ⓕⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ

-10 -5 0 5 10

-6

-4

-2

0

-10 -5 0 5 10

-6

-4

-2

0

(c)

MOMENT ORDER q

S
C

A
LI

N
G

 E
X

P
O

N
E

N
T

 τ
(q

)

-10 -5 0 5 10

-6

-4

-2

0

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ
ⓕⓕ
ⓕⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ

-10 -5 0 5 10

-6

-4

-2

0

-10 -5 0 5 10

-6

-4

-2

0

(d)

MOMENT ORDER q
-10 -5 0 5 10

-6

-4

-2

0

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ
ⓕⓕ
ⓕⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ

-10 -5 0 5 10

-6

-4

-2

0

FIG. 1: The scaling function τ(q) for the multifractal process
with log-normally distributed multiplicators. (a,c): Means
(full circles) and 95% of distributions (vertical bars) of 1000
realizations of the process. (b,d): τ(q) values (full circles)
for a particular realization of the multifractal process; and
95% of distribution (vertical bars) of 1000 realizations of the
multifractal surrogate data constructed from the one process
realization. The used time series length was 65536 (a,b) and
4096 (c,d) samples. The solid line shows theoretical values
according to the analytic formula.

simulation we characterize the generated time series by
τ(q) estimated according to the wavelet transform mod-
ulus maxima approach [14] using the continuous wavelet
transform with the complex Morlet wavelet basis [15]. In
Figs. 1a,c we compare the theoretical τ(q) curve obtained
from the analytic formula (solid line) with means (full cir-
cles) obtained from 1000 independent realizations of the
same multifractal process. The variability of the process
is illustrated by the vertical bars drawn from the 2.5th
to the 97.5th percentile of the τ(q) values distribution
obtained from the 1000 generated process realizations.
The length of the generated time series was either 65536
(Fig. 1a) or 4096 (Fig. 1c) samples.

To study properties of the proposed multifractal sur-
rogate procedure we take one, randomly chosen realiza-
tion of the generated multifractal process and consider
it as the input data for the randomization procedure.
In Figs. 1b,d the full circles present the τ(q) values es-
timated from the chosen process realization, while the
variability of the surrogate data is shown by the vertical
bars drawn from the 2.5th to the 97.5th percentile of the
τ(q) distribution obtained from 1000 realizations of the
surrogate data. We can see that the surrogate procedure
slightly underestimates the natural variance of the pro-
cess in the case of the longer time series, however, in any



3

-10 -5 0 5 10

-4

-2

0

2

(b)

-10 -5 0 5 10

-4

-2

0

2

-10 -5 0 5 10

-4

-2

0

2

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ
ⓕⓕ
ⓕⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ

-10 -5 0 5 10

-4

-2

0

2

-10 -5 0 5 10

-4

-2

0

2

(a)
S

C
A

LI
N

G
 E

X
P

O
N

E
N

T
 τ

(q
)

-10 -5 0 5 10

-4

-2

0

2

-10 -5 0 5 10

-4

-2

0

2

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ
ⓕⓕ
ⓕⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ

-10 -5 0 5 10

-4

-2

0

2

-10 -5 0 5 10

-4

-2

0

(c)

MOMENT ORDER q

S
C

A
LI

N
G

 E
X

P
O

N
E

N
T

 τ
(q

)

-10 -5 0 5 10

-4

-2

0

-10 -5 0 5 10

-4

-2

0

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ
ⓕⓕ
ⓕⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ

-10 -5 0 5 10

-4

-2

0

-10 -5 0 5 10

-4

-2

0

(d)

MOMENT ORDER q
-10 -5 0 5 10

-4

-2

0

-10 -5 0 5 10

-4

-2

0

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ
ⓕⓕ
ⓕⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ
ⓕ

-10 -5 0 5 10

-4

-2

0

FIG. 2: The scaling function τ(q) for a particular realization
of the multifractal process (full circles) and 95% of distri-
bution (vertical bars) of 1000 realizations of (a) IAFT, (b)
permutated wavelet coefficients, (c) cyclically rotated wavelet
coefficients; and (d) multifractal surrogate data. The surro-
gate means are connected by the thin solid lines, the thick
solid lines show the theoretical τ(q).

case 95% of the surrogate τ(q) distribution includes both
the input data value and the theoretical τ(q) value for all
q’s.

The proposed multifractal surrogate data procedure is
compared with the well-known surrogate procedures in
Fig. 2 which is drawn in the same way as Figs. 1b,d, but,
in addition, the surrogate means are connected by the
thin solid lines. The iterated amplitude adjusted FFT
(IAFT) surrogates reflect well the monofractal scaling,
however, for q > 6 and q < −3 both the theoretical τ(q),
as well as τ(q) estimated from the input data significantly
differ from the IAFT surrogate data (Fig. 2a). Simi-
lar behavior can be observed using the wavelet surrogate
data obtained by random permutation of the wavelet co-
efficients (Fig. 2b). The surrogate data obtained by the
cyclic rotation of the wavelet coefficients (Fig. 2c) are
closer to the original data, however, some statistically
significant differences can be observed. Only the intro-
duced multifractal surrogate data fit the scaling curve
τ(q) of the input data and of the process itself (Fig. 2d,
the thin line, connecting the surrogate means almost ev-
erywhere coincides with the theoretical τ(q) curve).

The IAFT surrogate data are constructed to fit the
autocorrelation function (ACF) of the input data so that
they replicate ACF of the input data with very small
variance (in Fig. 3a the vertical bars giving the 95% of
the variability of the IAFT surrogate ACF are covered
by the full circles, giving the ACF of the input data).
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FIG. 3: Autocorrelation function of a realization of the multi-
fractal process (full circles) and 95% of distribution (vertical
bars) of 1000 realizations of (a) IAFT, (b) permutated wavelet
coefficients, (c) cyclically rotated wavelet coefficients; and (d)
multifractal surrogate data.

Also the other compared surrogate algorithms replicate
the ACF, they just have different variability (Fig. 3).
While the ACF reflects the linear dependence between
a signal s(t) and its future s(t + η), for measuring possi-
ble nonlinear dependence we use the mutual information
I(s(t); s(t+η)), in a short notation I(η), given as the dif-
ference H(s(t))+H(s(t+ η))−H(s(t), s(t+ η)) between
the marginal and joint Shannon entropies [16]. Only the
proposed multifractal surrogate data are able to repro-
duce the nonlinear dependence between s(t) and s(t+η),
as documented by I(η) (cf. Fig. 4d with Figs. 4a–c).
This property qualitatively differs the proposed multi-
fractal surrogate data from other previously known tech-
niques suitable for multifractal processes. Using the pro-
posed randomization method, rigorous statistical test-
ing and inference concerning nonlinear dependence in,
with, between or among multifractal processes is possi-
ble. For instance, studying synchronization phenomena
in cardio-respiratory interactions in mammals [17], the
heart rhythm is characterized by inter-beat intervals (so-
called RR intervals, RRI thereafter). To infer the direc-
tion of coupling, i.e., to decide whether the respiration in-
fluences the heart rhythm or vice-versa, a statistical test
involving the conditional mutual information and surro-
gate data can be used [18]. In anaesthetized rats a simple
random permutation of the RRI has been found sufficient
[19]. In vigilant mammals, however, the dynamics of
RRI in time is a complex, multiscale process with multi-
fractal properties [9]. The auto-mutual information I(η)
of one variable influences the conditional mutual infor-
mation used for inference of causality between two vari-
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FIG. 4: (Auto)mutual information function of a realization
of the multifractal process (full circles) and 95% of distri-
bution (vertical bars) of 1000 realizations of (a) IAFT, (b)
permutated wavelet coefficients, (c) cyclically rotated wavelet
coefficients; and (d) multifractal surrogate data.

ables, thus none of the previously known randomization

methods is appropriate for the randomization of the mul-
tifractal RRI. This problem will be discussed in detail
elsewhere, here we just note the typical surrogate data
application of the proposed algorithm: The RRI are ran-
domized in order to destroy possible dependence on the
respiratory rhythm, however, the multifractal properties
influencing nonlinear dependence within and with RRI
are preserved. In a different area, claims of multifractal
properties of some meteorological and hydrological data
were supported by tests using FFT-based surrogate data
[10]. Nagarajan [20] recently opposed that non-Gaussian
innovations were sufficient to reject the FFT-based sur-
rogate null hypothesis in such tests, without the presence
of multifractality. Such disputes could be resolved by es-
timation of confidence intervals of measures of multifrac-
tality using our randomization approach as a genuinely
multifractal bootstrap method. Considering multifrac-
tality of financial data [8], the proposed randomization
scheme can be used for Monte Carlo evaluations of fi-
nancial derivatives, e.g. for option pricing [21]. The in-
troduced method can find applications in estimation and
inference using data from complex, multiscale processes,
observed in various fields of physical, biological and social
sciences.
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