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A directed climate network is constructed by Granger causality analysis of air
temperature time series from a regular grid covering the whole Earth. Using
winner-takes-all network thresholding approach, a structure of a smooth in-
formation flow is revealed, hidden to previous studies. The relevance of this
observation is confirmed by comparison with the air mass transfer defined
by the wind field. Their close relation illustrates that although the informa-
tion transferred due to the causal influence is not a physical quantity, the
information transfer is tied to the transfer of mass and energy.
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Recently the complex network approach to analysing dynamical systems reached
also the climate science and became one of the tools for uncovering dependence
structures and teleconnections in the atmospheric data. Usually, for the sake of
clarity and interpretability, symmetric statistical measures such as correlation
or mutual information are taken into account. However, the drawback is that
these measures lack the notion of directionality. In this paper we investigate the
possibility of inferring the causal climate network with the explicit direction of
causal influence, taking the conservative approach of linear Granger causality
applied to gridded temperature data. Following this avenue, in conjunction with
a novel winner-takes-all thresholding scheme, yields an easy-to-interpret causal
network with smooth information flow structure. To assess the significance of
this observation, we designed random graph models for climate networks and
quantitatively compared the temperature causal network with prevailing wind
direction.

I. INTRODUCTION

The network approach to characterization of complex systems is ever growing in applica-
tions, covering diverse fields ranging from social networks via neuroscience to technological
networks1,2. Recently, the complexity of the climate system and the high dimensionality of
the relevant data has lead to increased utilization of this approach in climate science3–6.

Probably the most commonly taken avenue to graph-theoretical characterization of com-
plex dynamical systems is the construction of an interdependence graph. In the case of
global climate, local temperature or pressure time series are commonly utilized to represent
the evolution of the local states. It is widely accepted that their statistical dependence struc-
ture reveals important phenomena, among all the existence, spatial patterns and dynamics
of the major modes of climate variability7 and distant atmospheric teleconnections8,9.
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The network is constructed using a pairwise estimate of statistical dependence between
regional temperature time series, and potentially thresholding the resulting matrix to obtain
a binary graph representation for further analysis. Detailed approaches differ between
studies; for discussion of the effect of using (non)linear dependence measures see Hlinka et
al.10.

The majority of the climate network studies have been limited to the use of symmetric
dependence measures such as correlation or mutual information, which lack an explicit
notion of direction and thus fall short of capturing the dynamics, as well as directionality of
causal interaction or information flow. Some authors11,12, however, have made inferences of
the latter using time-lagged cross-correlations. Most recently, a modified partial correlation
method was applied for estimation of direct links and teleconnection paths13.

A principled approach to the construction of directed networks is based on the ideas of
Granger causality14. Here, a source process is considered causal, if its inclusion in a pre-
dictive model decreases the uncertainty about the target process. Tirabassi et al.15 applied
bivariate Granger causality in order to construct directed bipartite networks describing the
air–sea interaction in the region of the South Atlantic Convergence Zone. In a different
context, Deza et al.16 used bivariate conditional mutual information (a nonlinear approach
related to Granger causality) to construct a directionality index and map the direction of
climate interactions in daily and monthly surface air temperature reanalysis data. The
authors of Deza et al.16 restricted the analysis to interaction maps for only a few selected
nodes, likely due to computational demands of their method.

Recently also directed climate networks based on multivariate causality approaches have
been introduced17–19. In these studies, the notion of conditional independence is used in
order to uncover direct links, i.e., to remove directed links resulting probably due to indirect
influences. Also, estimation of causal influence across a range of temporal lags is included
in these more general approaches. However, due to the curse of dimensionality (albeit
alleviated by various algorithms for preselection of variables included in the condition)20,
the practical application of the multivariate approaches is seriously limited with respect to
the tractable size of the network. Therefore these approaches require an initial convenient
reduction of dimensionality19 and/or a selection of a region of interest18.

In this study we document how one can tackle the challenge of large causal network
discovery by combining a simple yet efficient bivariate linear causality approach with ap-
propriately sampled data and proper random graph models. Although theoretically only
approximate and potentially blind to indirect links, bivariate linear causality is supremely
numerically robust, computationally efficient and reliable even in the case of large networks
– as recently shown in a direct comparison with nonlinear and multivariate approaches21.

By applying this approach, we obtain a directed graph of influences within the global
temperature field. We reveal a global smooth/laminar information flow structure in the
climate temperature network, that is not directly observable in correlation networks, and
could not be properly observed in previous causality studies due to sampling limitations of
less conservative causality estimates.

Thus this classical method proves suitable exactly for the original, spatiotemporally
densely sampled data, for which more sophisticated methods become computationally in-
feasible or unreliable. The global information flow structure is particularly clearly captured
when a nontraditional winner-takes-all thresholding is applied in the network construction;
this remedies both the spatial heterogeneity of the causal strengths as well as the iconic
issue with indirect links in bivariate causality networks.

To provide quantitative evidence concerning the observed climate network properties, we
design random graph models for climate networks that account for some of the spatiotem-
poral constraints. Finally, to gain insight into the meaning of relatively abstract climate
network structures, we advocate quantitative comparison with other measurable physical
quantities. As a pioneering example, we prove a plausible relation between the temperature
causality graph and the wind speed and direction field.
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II. DATA AND METHODS

A. Temperature data

For estimating the Granger causality flow in temperature, we employed spatio-temporal
fields from the NCEP/NCAR reanalysis22. We used daily air temperature at 1000hPa
level, spanning the period from 1/1/1948 up to 12/31/2012; in particular we worked with
air temperature anomalies obtained by subtracting the average yearly cycle. The data
(originally sampled at 2.5° × 2.5° angularly regular Gaussian grid) were remapped to an
equidistant geodesic grid of 2562 grid points23 in order to suppress the effect of unequal
distances between grid points of pairs located in different latitudes. The poles were omitted.

B. Construction of the directed graph

The estimation of causal interactions in the temperature data was carried out using
Granger causality analysis14. This defines a stochastic process Xt as causing Yt if it is
possible to better predict Yt using past of Xt (and potentially other all available information
in processes Zt) than if information from past of Xt had not been used. The causal influence
from X to Y is then quantified based on the decrease in the model residual variance when
we include the past of X in the model of Y ; in particular by the logarithm of the variance
ratio.

In the presented analysis we have utilized a basic (but numerically robust21) approach to
Granger causality analysis, working with bivariate linear autoregressive models of order 1.
The time unit was chosen to be 1 day.

Mathematically, in order to estimate the Granger causality between two grid points i and
j, we estimate the residuals of the AR(1) model from univariate models Xi(t) and Xj(t)
and then from a bivariate model Xi,j(t) as

X(t) = w +A1X(t− 1) + ε(t), (1)

where X(t) ∈ Rm is a state vector (in our case the vector of temperature anomalies),
w ∈ Rm is an intercept vector, ε(t) ∈ Rm is the vector of residuals and finally A1 ∈ Rm×m

is a coefficient matrix of the AR(1) model, while m = 1 for univariate model and m = 2 for
bivariate model.

In the next step we compute the variances of the four residual vectors from the AR(1)
model, namely the univariate residual vectors for grid points i and j separately (εi and εj),
and then the residual vectors from the bivariate AR(1) model for both of them (εi,ij and
εj,ij). Finally, we estimate the Granger causality as

GCi→j = log

(
var (εj)

var (εj,ij)

)
(2)

GCj→i = log

(
var (εi)

var (εi,ij)

)
. (3)

III. RESULTS

A. Directional graph

For the first overview of the results, we plot the strongest 2562 causalities in Fig. 1 (self-
causalities between the same grid points - the diagonal elements of the causality matrix -
are set to zero). The strongest causalities are located mainly in the northern hemisphere
extra-tropical region (roughly above 30°N) above the continents. We believe that this effect
has relation with the fact that above the continental areas the variance in temperature
time series (as well as the variance of residuals of AR(1) model of SATA) is higher than
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over the oceans. The temperature variability of the oceans has slower dynamics and longer
persistence, so that the short range changes investigated here (lag of 1 day) can be relatively
small in comparison with long range changes. Furthermore, the temperature field above
continents is less homogeneous and have less memory, hence more prone to show significant
information transfer. In general, the causal influence has an eastward direction with little
exceptions which seem to point equator-ward. This causal influence structure resembles a
laminar flow of liquid in the sense that there are no sudden changes of direction and no
substantial sinks or sources.
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30°N

60°N

120°W 60°W 0° 60°E 120°E

FIG. 1. (color online). Granger causality estimate for temperature field (at 1000hPa height level).
Showing 2562 overall strongest causalities for the period 1/1/1948 - 12/31/2012.

Fig. 1 shows a prominent non-homogeneity in the density of the directed graph over the
globe, revealed by the 2562 strongest links. While thresholding a graph based on a fixed
threshold is a common approach, in cases such as this one it complicates both visual and
quantitative inspection of the graph representation of the studied complex system. Note
that similar results can be expected from alternative thresholding approaches such as based
on statistical significance (due to more or less monotonic relation between significance and
coupling strength within a network, up to issues such as those related to violation of data
sample independence). Moreover, the heuristic choice of significance threshold is further
complicated by problems related to multiple testing corrections in large networks and related
computational difficulties.

For this reason we introduce an alternative representative graph construction (winner-
takes-all): for each grid point i we add a single outgoing edge (i, j) corresponding to the
node j that receives the strongest causal influence from the node i. Therefore, we force the
out-degree of each grid point to be 1. The complete directed network from the temperature
data is shown in Fig. 2. In agreement with the first approach (Fig. 1), the global network
shows strongest causal influences in the extra-tropical northern hemisphere. However, even
the substantially weaker interactions found in the extra-tropical southern hemisphere can
now be inspected. The general direction of causal influence on both hemispheres is eastward,
with a quite ordered, laminar flow-like pattern. The causal influences in the equatorial belt
have no general direction, are weaker when compared to the extra-tropical influences, and
many of the nodes even exhibit convergence (in-degree of these nodes is larger than 1). In
other words, the causal ‘pathways’ in the equatorial area are less ordered.

B. Smooth flow properties

The qualitative visual similarity of the temperature causality graph to a laminar flow is
an interesting observation in the climate network analysis that is not apparent when the
graph is constructed based on symmetric measures of statistical dependence such as Pearson
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FIG. 2. (color online). Granger causality estimate for temperature field (at 1000hPa height level).
Showing one strongest causality for each grid point for the period 1/1/1948 - 12/31/2012.

correlation coefficient or mutual information. However, to go behind a qualitative descrip-
tion of the observed graph structure, its properties need to be quantified and compared to
an expected distribution under a reasonable null model.

To this end, we propose two approaches. The first one considers the flow-likeness itself –
i.e. the sparse occurrence of sinks; and is thus framed purely graph-theoretically. It involves
recording the distribution of the in-degree of the graph nodes, to quantify the flow-like/non-
convergent character of the graph. Intuitively, a flow-like graph corresponding to a system
with just a few sinks/sources would have an in-degree distribution with a sharp peak at
in-degree 1 (in an extreme case, exactly one incoming link for each node).

The second measure focuses on the laminarity or smoothness of the causality direction
field. Indeed, the paths through the observed causality graph appeared not only non-
branching, but also surprisingly straight and locally parallel, with only minimal differences
in direction between neighbouring nodes. To capture this, we study the distribution of the
local average direction, e. g., the mean vector (i, j) between a grid point i and the six
closest sourcing node j on a rectangular projection.

1. Non-convergence

As one can see from the histogram of the in-degree in the temperature data driven graph
in Fig. 3 top in red, the in-degree 1 is roughly three times more probable than the in-
degree 2, and the count of nodes with higher in-degree is negligible. This quantitatively
corresponds to the visually observable flow-like structure of the graph.

To obtain a proper quantitative/statistical evidence, we generate a set of surrogate di-
rected graphs with out-degree one, but randomly selected target nodes. The comparison
with the random graph distribution (Fig. 3 in blue) shows that random graphs exhibit
generally higher variance of the in-degree. We can now conclude that convergence is less
frequent in the temperature graph than in the random graph. Note that this property is
purely graph-theoretical; random graphs obtained by permuting the geospatial locations of
the nodes have of course the same distribution of in-degrees as the original graph (Fig. 3 in
yellow).

2. Smoothness

However, the information flow uncovered in Fig. 2 is not only flow-like in a graph-
theoretical sense, but as a spatially embedded structure it is highly laminar in the sense of
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smoothness of the direction field. In fact, the difference between the temperature causal-
ity graph and random graphs is even stronger when looking at the histogram of aver-
age angle differences (Fig. 3). The temperature data driven graph contains smaller mean
local direction differences (mostly ≤ 10◦), meaning the causality flow is approximately
smooth/laminar.

This tendency is evident when comparing the distribution of mean local angle differences
of a random directed graph or a graph, where the spatial locations of the nodes were
randomly reassigned (Fig. 3 in blue and yellow). Here, the most common mean local
direction difference is between 50◦ and 60◦ for the used grid and orthogonal projection.

a)

b)

FIG. 3. (color online). Quantitative assessment of the flow-like structure of temperature causality
graph: (a) histogram of in-degrees and (b) histogram of average local direction angle differences.
Red: temperature causality graph, yellow: the same graph with randomly permuted spatial em-
bedding, blue: random directed graph with all nodes with out-degree 1. For random graphs, the
bars represent mean and the error-bars represent standard deviation of across 1000 realizations.

C. Wind direction

At this point we may consider the observation that the graph derived from causal influ-
ences in the temperature dynamics exhibits a smooth flow-like structure as quantitatively
substantiated. However, the question of the origin of this structure emerges. Based on
inspection of the specific pattern of the flow, we hypothesized that the causal influences in
the temperature field may be caused by air mass transfer. If this was the case, it should
at least partially comply with the prevalent wind direction. To test this hypothesis we
determined the prevalent wind direction for each grid point and compared it to the causal
influence direction.

For this purpose, the zonal (u-wind) and meridional (v-wind) wind fields were employed
from the same data source - the NCEP/NCAR reanalysis22. The field parameters (pressure
level, spatial and temporal sampling and span) were the same as for the temperature field.

The updated graph showing the temperature causality and relating it to wind direction
is shown in Fig. 4. In total, 36% of the causal influences are in agreement with the wind
direction (angle difference ≤ 30◦). Note that this is substantially higher than the 16.7%
that would be in agreement for a random directed graph. The agreement with the wind
direction is apparent especially in the extra-tropics, particularly on the northern hemisphere
where the strongest causalities are present.

Not only is the causality field in line with the wind field in terms of direction, there is
also a plausible relation in terms of the causal link length. Although when estimating the
causal influence between each pair of grid points, no restriction on length of such influence
was posed, only about 1% of the causal influence links (29 out of 2562) were longer than
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FIG. 4. (color online). Agreement between the direction of the estimated causal interaction (net-
work as in Fig. 2) and the wind direction. Arrow color: red - difference ≤ 30◦, yellow - difference
≤ 60◦, blue - difference ≤ 90◦ and black - difference ≥ 90◦.

2400km, with vast majority of them pointing to the next grid point. This typical spatial
scale of estimated causal influence is consistent with the spatiotemporal scale of the winds,
as within 1 day the air mass is realistically able to travel the average distance between grid
points, which is about 500km (corresponding to an average speed of 21kmh-1).

While the 36% direction agreement is substantially higher than an expectable ∼ 16.7%
random agreement, it is quite far from a perfect alignment of the wind and causality fields.
This suggests that other factors apart from air mass transport might play strong role in the
surface temperature dynamics; or otherwise that the estimation procedure is imprecise or
the data is too noisy. For instance, the causal influences in the equatorial belt (< ± 30◦N/S)
are in general not in agreement with the wind direction, while the estimated influences here
are small in comparison with extra-tropical areas.

To gather more insight into this problem, we further analyzed data from higher levels of
atmosphere, where the spatiotemporal dynamics are in general simpler, unaffected by the
surface orography. Interestingly, the agreement between the direction of causal influences
and local prevalent wind direction grows with height. When the directed graph is estimated
using the 500hPa temperature field and then compared with 500hPa wind field (i.e. about
5,500 meters (18,000 feet) above the see level), full 75.9% of the causal influences are in
excellent agreement with the wind direction (angle difference ≤ 30◦), see Fig. 5.
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FIG. 5. (color online). Granger causality estimate for temperature field (at 500hPa height level).
Visualization as in Fig. 4.
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IV. CONCLUSION

We have proposed an approach to the construction of climate networks that provides a
representation of the system that captures the directed interactions within the field, globally,
robustly and with a high spatial resolution. To solve the problem of thresholding a graph
with a highly heterogeneous degree, we introduced a winner-takes-all construction. For the
case of air temperature field, our methodology clearly uncovers a smooth flow structure;
evident both qualitatively and in quantitative comparison with appropriate random graphs.
The climatological relevance is shown by the close relation to the air-mass flow. Our study
is probably the first quantitative comparison of an abstract causality measure (information
flow) with a measured physical quantity - the wind vector field. This new observation, not
clearly represented in the correlation (or mutual information) networks, provides a major
improvement in the interpretability of climate networks, opening new avenues of research
in this field.

The presented result also adds to the ongoing discussions about the (non)physical nature
of information. Paluš et al.24 proposed information-theoretic formulation of the Granger
causality for nonlinear processes using conditional mutual information. The latter func-
tional become known as the transfer entropy due to Schreiber25. The equivalence of the
two is shown by Palus and Vejmelka26. Barnett et al.27 have shown analytically that the
transfer entropy is equivalent to Granger causality for Gaussian processes. These equiva-
lence enable us to interpret the Granger causality relation as an information flow between
connected nodes of climate network. Prokopenko and Lizier28 related the transfer entropy
to fundamental physical quantities, namely to the thermodynamic entropy production in
small-scale physical systems. In macroscopic systems such as the Earth atmosphere studied
here, however, the interpretation as given by Ebeling and Feistel29 is more appropriate: the
information measuring dependence is an abstract, nonphysical quantity, however, informa-
tion transfer is tied to the transfer of mass and energy. Detection of information transfer
from instrumental and model climate data helps to shed new light on known climate pro-
cesses as well as to uncover new phenomena such as the recently observed information
transfer across time scales of atmospheric dynamics30 which has considerable impact on
interannual temperature variability31.
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